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Abstract. The dynamical behaviors of a predator-prey model with commercial har-
vesting are studied in the present work. The model is developed from the Leslie
predator-prey model with harvesting on predator, which is established by differential-
algebra equations. The harvesting is considered from an economic perspective, and the
impacts of the harvesting profit on the dynamics of our model are investigated. Firstly,
basing on the parameterisation approach of differential-algebra system, the local sta-
bility of positive equilibrium point is studied. Further, by treating the harvesting profit
as a bifurcation parameter, the Hopf bifurcation occurring at the equilibrium point is
analyzed, and we find a qualitative change in the dynamics. Besides, the stability of cen-
tre is also considered. Some computer simulations using Matlab software are presented
to support the analytical results. Lastly, we relate the results on mathematics and
dynamics with the biology, and interpret these results in terms of ecosystem stability
and destruction.
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1. Introduction

Predator-prey interactions are the fundamental blocks of any complex biologi-
cal and ecological systems, as well as generalized competitive and cooperative
systems [1]. As a result, the dynamic relationship between the populations of
predators and preys is an important research theme in the areas of applied
mathematics and theoretical ecology (see, [2, 3]). Actually, as with the dynamic
theory of differential equations has been widely used in these research areas, in
the past few years the dynamics of predator-prey system (usually formulated
by differential equations) also has become an interesting subject in itself, since
many complicated dynamical behaviors have been discovered in this subject, for
instances, instability, stability switches, limit cycle, oscillations, various kinds of
bifurcations, chaos, and so on [2-5]. Especially, in this work, by combining the
dynamic theories of differential-algebra system and differential equations, we aim
to present a complete dynamical analysis for a modified Leslie’s predator-prey



POPULATION DYNAMICS OF A MODIFIED PREDATOR-PREY MODEL ... 497

model with commercial harvesting, which takes the form of differential-algebra
equations. The establishing process of our model is introduced as follows.

The fundamental model that we consider is the following predator-prey
model introduced by Leslie [6], which is a system of nonlinear ordinary dif-
ferential equations:

(1.1)

 ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)

)
,

where x(t) and y(t) represent the densities of preys and predators at time t ≥ 0,
respectively; besides, the parameters r1, a, r2, and b are positive constants,
which stand for the intrinsic growth rate of prey species, the catch rate at which
the predator population kills its preys, the intrinsic growth rate of predator
species, and the conversion rate of consumed preys into the newborns of predator
species, respectively. For more details on the biological significance of model
(1.1), refer to the literature [6, 7].

In reality, biological populations are often harvested to satisfy people’s de-
mands for material life [8, 9]. For predator-prey system, in order to avoid the
extinction of prey population, harvesting of predator population is commonly
practiced, which is effective in controlling the population size of predators. So
we consider human harvesting effort E(t) on the predator species in model (1.1),
and then we have

(1.2)

 ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
.

Subsequently, the number of predators harvested by people is E(t)y(t), which
is regarded as the market supply here. We assume that the market is quite
capable of absorbing all the catches. Referring to Refs. [10, 11], the selling price
and market supply move in opposite directions, and harvesting cost also moves
inversely to the population density of harvested population. In light of these
rules, we let the unit selling price p̃ and the unit harvesting cost c̃ respectively
be p/[l + E(t)y(t)] and c/y(t), where p, l and c are positive parameters, p/l is
the maximum unit selling price, and c is the harvesting cost for unit population
density of predators. And then, we can show that p̃→ p/l as E(t)y(t) → 0, and
p̃ → 0 as E(t)y(t) → +∞, which indicate that the selling price will decrease
when the supply E(t)y(t) increases. Moreover, c̃→ +∞ as y(t) → 0, and c̃→ 0
as y(t) → +∞, which imply that the harvesting cost will increase when the
population density of predators becomes small. It is easy to imagine that, when
the predators are rare, people must make more effort to capture them. In this
way, the total revenue from harvesting is [p/(l+E(t)y(t))]·E(t)y(t) and the total
harvesting cost is [c/y(t)] ·E(t)y(t). Consequently, the net economic revenue is
[p/(l + E(t)y(t))] · E(t)y(t) − [c/y(t)] · E(t)y(t). On the basis of model (1.2),
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so we can establish the following modified predator-prey model with economic
harvesting, which is a differential-algebra system:

(1.3)


ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
,

0= E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v,

where v denotes people’s harvesting profit. In addition, when time t = 0, the
initial values of system (1.3) should be positive. That is,

(1.4) x(0) > 0, y(0) > 0, E(0) > 0.

In recent years, dynamical behaviors of harvested predator-prey models are
reported in Refs. [46-50]. The literature [45] has investigated the nontrivial
equilibrium solution and transcritical bifurcation of a three dimensional in-
traguild predator-prey model with Michaelis-Menten type of harvesting in preda-
tor. Besides, the stability of equilibria, limit cycle, saddle-node bifurcation and
Bogdanov-Takens bifurcation in several predator-prey systems with nonlinear
prey harvesting are discussed in Refs. [46, 47]. Das et al. [48] have studied the
endangeredness, resilience and extinction of a predator-prey system under prey
harvesting and predator harvesting, respectively. Kashyap et al. [49] have ex-
plored the coexistence, ecologically feasible steady states and local codimension
one bifurcations of a predator-prey system with predator harvesting. Moreover,
local and global stability at the interior equilibrium points of a harvested three
species predator-prey model (prey, predator, and super predator) have been
considered in Ref. [50]. Clearly, these harvested predator-prey models [46-50]
are modelled by systems of differential equations. In contrast, our harvested
predator-prey model (1.3) is established by differential-algebra equations. Com-
pared with the familiar harvested predator-prey models expressed by differen-
tial equations, the superiority of our modified model (1.3) is that it not only
involves population interactions in the harvested predator-prey system but also
investigates the harvesting from an economic viewpoint. Some relevant modi-
fied models are presented in the publications [21, 24, 26, 29, 32]. By employing
Rouche’s theorem [22] as well as the centre manifold reduction methods [23, 25],
Refs. [21, 24] have analyzed the existence of time-delay-induced Hopf bifurca-
tion phenomena and the stability of bifurcating periodic orbits in delayed mod-
ified predator-prey models. Moreover, the authors [26, 29, 32] have discussed
the local stability of equilibrium points and bifurcations (flip bifurcation and
N-S bifurcation) in several discrete modified predator-prey models by apply-
ing the center manifold theory and the bifurcation theory of discrete systems
in Refs. [27, 28, 30, 31]. Different from the literature [21, 24, 26, 29, 32], we will
investigate the impact of the harvesting profit v on the dynamics (including
the local stability of equilibrium point, Hopf bifurcation and stability of cen-
tre) in the modified predator-prey model (1.3), and then afterwards we propose
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an appropriate scope for the profit to guarantee the maintenance of long-term
sustainable development of our biological system. Besides, it is notable that
the relevant differential-algebra predator-prey models [21, 24, 26, 29, 32] are all
established under the assumptions that the price p̃ and cost c̃ are constants,
which results in that the harvesting variable E(t) can be explicitly solved out
from the algebra equation, and then the differential-algebra models can be easily
reduced to the systems of differential equations. Apparently, our differential-
algebra model (1.3) has overcome the shortages.

Furthermore, it is worth noting that there are many essential distinctions
between differential-algebra system and the system of differential equations, see
the literature [34-38] for more details. In the sense of index, the system of
ordinary differential equations is a special case of differential-algebraic system,
since the index of the former is zero, while the index of the latter is nonzero.
Obviously, it is a leap from a zero index system to a nonzero index one. In fact,
the dynamics of differential-algebra system is much more difficult to investigate
than the corresponding system of differential equations (see, [35-37]). Hence,
in a certain meaning, our work supplements and enhances the research in the
previous publications [12-21, 24, 26, 29, 32, 45-50] on the dynamic analysis for
predator-prey models.

We organize the rest of this paper as follows. In the next section, we deduce
the Jacobian matrix of model (1.3) and investigate the corresponding charac-
teristic equation, which give the local stability results for the equilibrium point.
In Section 3, we study the Hopf bifurcation of our model in detail basing on
the previous section. To complement Sections 2 and 3, the stability of the cen-
tre is further explored in Section 4. Moreover, some numerical simulations are
presented in Section 5 to make the derived findings more complete. Finally, in
Section 6 we discuss the theoretical results and summarize the research work of
this article.

2. Stability analysis for equilibrium point

In this section, combining the parameterisation approach [39, 40] with Routh-
Hurwitz stability criteria [2, 3], we study local stability of the equilibrium point
of model (1.3). At first, we prove the positiveness of the solutions of model (1.3).

Lemma 2.1. The trajectories of model (1.3)with initial values (1.4) and v > 0
stay in R3

+ = {(x(t), y(t), E(t)) | x(t) > 0, y(t) > 0, E(t) > 0}, for ∀ t > 0.

Proof. In view of model (1.3), we have

dx(t)

x(t)
= (r1 − ay(t)) dt.

Due to the initial value x(0) > 0, by integrating above equation in the interval
[0, t], we obtain
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x(t) = x(0) exp

{∫ t

0
(r1 − ay(s)) ds

}
> 0, for ∀ t > 0.

Similarly, we can get

y(t) = y(0) exp

{∫ t

0

(
r2 − b

y(s)

x(s)
− E(s)

)
ds

}
> 0, for ∀ t > 0.

Furthermore, E(t) is also positive for ∀ t > 0, since the harvesting profit v > 0
here.

Lemma 2.1 suggests that only the positive equilibrium point of model (1.3)
is required to be considered. If X0 := (x0, y0, E0)

T is an equilibrium point of
model (1.3), then we have

r1 − ay0 = 0,

r2 − b
y0
x0

− E0 = 0,

pE0y0
l + E0y0

− cE0 − v = 0.

By means of solving this set of linear equations, model (1.3) has an equilibrium
point:

X0(v) = (x0, y0, E0)
T =

(
by0

r2 − E0
,
r1
a
,E0

)T

,

where E0 =
{
(py0 − vy0 − cl)±

√
(cl + vy0 − py0)2 − 4clvy0

}
/2cy0.

To make such an equilibrium point X0 is positive, in this paper we need to
suppose that

(2.1) r2 > E0, py0 > cl + vy0, (cl + vy0 − py0)
2 ≥ 4clvy0.

On the basis of the theory of differential-algebra system [35-37], near the
point of X0, model (1.3) can be locally equivalent to

(2.2)



ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
,

Ė(t) = f3(x(t), y(t), E(t)),

0 = E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v,

where the function f3 satisfies f3(X0) = 0. The explicit expression of f3 is not
required to be defined, refer to Eq. (A.5) in Appendix.
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For the purpose of discussions, we denote

f(X) =

f1(X)
f2(X)
f3(X)

 =


x(t) (r1 − ay(t))

y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
f3(x(t), y(t), E(t))

 ,

g(X) = E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v, X = (x(t), y(t), E(t))T .(2.3)

So, system (2.2) can be written as

(2.4)

{
Ẋ = f(X),
0 = g(X).

In the following, we consider the parameterisation ψ [39, 40] for system (2.4):

(2.5) X = ψ(Y ) = X0 + U0Y + V0h(Y ) and

(2.6) g(ψ(Y )) = 0,

where Y = (y1, y2)
T ∈ R2, U0=

(
I2
0

)
, I2 denotes an identity matrix of dimension

2×2, V0=

(
0
0
1

)
, h : R2 → R is a smooth mapping. Consequently, by the param-

eterised system (A.5) in Appendix, the Taylor expansions of the parameterised
system of system (2.2) at X0 takes the form of

(2.7) Ẏ = UT
0 DXf(X0)DY ψ(0)Y + o(|Y |),

where D denotes the differential operator, and DXf(X) represents the Jacobian
matrix of function f(X) regarding X. With respect to the derivation process of
the formula (2.7), refer to Appendix.

Summarizing the above analysis, we have the following results.

Theorem 2.1. For model (1.3),
(i) if (

by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)2

≥ 4aby20
x0

,

then, when by0/x0 > plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

stable node; when by0/x0 < plE0y0/[ply0 − c(l + E0y0)
2], the equilibrium point

X0 is an unstable node;
(ii) if (

by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)2

<
4aby20
x0

,

then, when by0/x0 > plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

sink ; when by0/x0 < plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

source.
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Proof. We can derive the following Jacobian matrix P of system (2.7) in view
of Eqs. (2.7), (A.2) and (A.3) (in Appendix) that

P =

(
Dy1f1(ψ(Y )) Dy2f1(ψ(Y ))
Dy1f2(ψ(Y )) Dy2f2(ψ(Y ))

)∣∣∣∣
Y=0

= UT
0 DXf(X0)DY ψ(0) = UT

0 DXf(X0)

(
DXg(X0)

UT
0

)−1(
0
I2

)

=

Dxf1(X0) Dyf1(X0)−
plE0 ·DEf1(X0)

ply0 − c(l + E0y0)2

Dxf2(X0) Dyf2(X0)−
plE0 ·DEf2(X0)

ply0 − c(l + E0y0)2


=

 0 −ax0
by20
x20

−by0
x0

+
plE0y0

ply0 − c(l + E0y0)2

 ,(2.8)

where DXf1(X0)=
(
0,−ax0, 0

)
, DXf2(X0)=

(
by20/x

2
0,−by0/x0,−y0

)
, DXg(X0)

=
(
0, plE0/(l+E0y0)

2, [ply0 − c(l+E0y0)
2]/(l+E0y0)

2
)
. Hence, from Eq. (2.8),

the characteristic equation of matrix P is

(2.9) λ2 +

(
by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)
λ+

aby20
x0

= 0.

For case (i), if by0/x0 > plE0y0/[ply0 − c(l + E0y0)
2], then Eq. (2.9) has

two negative real roots. Hence, X0 is a stable node. Conversely, X0 is an
unstable node iff Eq. (2.9) has two positive real roots. For case (ii), if by0/x0 >
plE0y0/[ply0 − c(l + E0y0)

2], then Eq. (2.9) has two complex roots which have
negative real parts, and therefore X0 is a sink. On the contrary, X0 is a source
iff the two complex roots of Eq. (2.9) have positive real parts. And then, in view
of Eq. (2.9), we are easy to derive Theorem 2.1 on the grounds of Routh-Hurwitz
stability criteria [2, 3].

Remark 2.1. By analyzing the eigenvalues of characteristic equation (2.9),
Hopf bifurcation can take place in model (1.3) under certain conditions, which
will be discussed in the following section.

3. Hopf bifurcation analysis

In this section, by choosing the economic profit v as a variable bifurcation pa-
rameter, we investigate the Hopf bifurcation in model (1.3) on the grounds of
the Hopf bifurcation theorem developed by Guckenheimer and Holmes [33].

When ∆ = {by0/x0 − plE0y0/[ply0 − c(l + E0y0)
2]}2 − 4aby20/x0 < 0, it is

clear that Eq. (2.9) has the following complex roots:

λ1,2(v) := α(v)± iω(v),
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where α(v) = −(1/2){by0/x0−plE0y0/[ply0−c(l+E0y0)
2]}, ω(v) = {aby20/x0−

(1/4)[by0/x0−plE0y0/(ply0 − c(l + E0y0)
2)]2}1/2. Besides, in view of Eq. (2.9),

the bifurcation value v0 of variable v firstly needs to meet the equation

(3.1)
by0
x0(v)

=
plE0(v)y0

ply0 − c(l + E0(v)y0)2
.

Further, in order to guarantee the existence of Hopf bifurcation in model (1.3),
we assume that the following transversality conditions in the literatrue [33] are
satisfied throughout this section:

α(v0) = 0, α′(v0) =

(
− b2y20
x20(r2 − E0(v0))2

− ply0
ply0 − c(l + E0(v0)y0)2

− 2pcly20E0(v0)(l+E0(v0)y0)

[ply0−c(l+E0(v0)y0)2]2

)
·E′

0(v0) ̸=0, ω(v0) := ω0=

√
ab

x0
y0 ̸=0,(3.2)

where E′
0(v0) = − 1

2c ±
v0y0−py0−cl

2c
√

(cl+v0y0−py0)2−4clv0y0
. So Hopf bifurcation takes place

if the quantity v attains the critical value v0.

To derive the detailed information about the Hopf bifurcation, in the light
of the Hopf bifurcation theorem in Ref. [33], we need to make system (2.7)
equivalent to the following normal form:

(3.3)



ẏ1 = −ω0y2 +
1

2
a111y

2
1 + a112y1y2 +

1

2
a122y

2
2 +

1

6
a1111y

3
1 +

1

2
a1112y

2
1y2

+
1

2
a1122y1y

2
2 +

1

6
a1222y

3
2 + o(|Y |4) ,

ẏ2 = ω0y1 +
1

2
a211y

2
1 + a212y1y2 +

1

2
a222y

2
2 +

1

6
a2111y

3
1 +

1

2
a2112y

2
1y2

+
1

2
a2122y1y

2
2 +

1

6
a2222y

3
2 + o(|Y |4) .

Subsequently, we should first of all calculate the following third order Taylor
series developments of system (2.7):

(3.4)



ẏ1 = f1y1(X0)y1 + f1y2(X0)y2 +
1

2
f1y1y1(X0)y

2
1 + f1y1y2(X0)y1y2

+
1

2
f1y2y2(X0)y

2
2 +

1

6
f1y1y1y1(X0)y

3
1 +

1

2
f1y1y1y2(X0)y

2
1y2

+
1

2
f1y1y2y2(X0)y1y

2
2 +

1

6
f1y2y2y2(X0)y

3
2 + o(|Y |4),

ẏ2 = f2y1(X0)y1 + f2y2(X0)y2 +
1

2
f2y1y1(X0)y

2
1 + f2y1y2(X0)y1y2

+
1

2
f2y2y2(X0)y

2
2 +

1

6
f2y1y1y1(X0)y

3
1 +

1

2
f2y1y1y2(X0)y

2
1y2

+
1

2
f2y1y2y2(X0)y1y

2
2 +

1

6
f2y2y2y2(X0)y

3
2 + o(|Y |4).
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The coefficients of (3.4) are calculated as follows. From Eq. (2.3), we have

DXf1(X) = (r1−ay, −ax, 0) , DXf2(X) =

(
by2

x2
, r2−

2by

x
−E, −y

)
,

DXg(X) =

(
0,

plE

(l + Ey)2
,
ply − c(l + Ey)2

(l + Ey)2

)
.(3.5)

In view of Eqs. (A.2) and (A.3) in Appendix, we can derive

DY ψ(Y ) =

(
DXg(X)
UT
0

)−1(
0
I2

)
=

0
plE

(l + Ey)2
ply − c(l + Ey)2

(l + Ey)2

1 0 0
0 1 0


−1

×

0 0
1 0
0 1

 =


1 0
0 1

0 − plE

ply − c(l + Ey)2

 :=
(
Dy1ψ(Y ), Dy2ψ(Y )

)
.(3.6)

By Eqs. (2.7), (3.5) and (3.6), we get

f1y1(X) =DXf1(X)Dy1ψ(Y ) = r1 − ay,

f1y2(X) =DXf1(X)Dy2ψ(Y ) = −ax,

f2y1(X) =DXf2(X)Dy1ψ(Y ) =
by2

x2
,

f2y2(X) =DXf2(X)Dy2ψ(Y ) = r2 −
2by

x
− E +

plEy

ply − c(l + Ey)2
.(3.7)

Substituting X = X0 into Eq. (3.7), we obtain

f1y1(X0) = 0, f1y2(X0) = −ax0, f2y1(X0) =
by20
x20

,

f2y2(X0) = −by0
x0

+
plE0y0

ply0 − c(l + E0y0)2
= 0.(3.8)

By Eq. (3.7), we have

DXf1y1(X)=(0,−a, 0), DXf1y2(X)=(−a, 0, 0), DXf2y1(X)=

(
−2by2

x3
,
2by

x2
, 0

)
,

DXf2y2(X) =

(
2by

x2
, −2b

x
+

plE

ply − c(l + Ey)2
− p2l2Ey

[ply − c(l + Ey)2]2

+
2pclE2y(l+Ey)

[ply−c(l+Ey)2]2
,−1+

ply

ply−c(l+Ey)2
+

2pclEy2(l+Ey)

[ply−c(l+Ey)2]2

)
.(3.9)
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In view of Eqs. (2.7), (3.6) and (3.9), we obtain

f1y1y1(X)=DXf1y1(X)Dy1ψ(Y)= 0, f1y1y2(X)=DXf1y1(X)Dy2ψ(Y)=−a,

f1y2y2(X)=DXf1y2(X)Dy2ψ(Y)= 0, f2y1y1(X)=DXf2y1(X)Dy1ψ(Y)=−2by2

x3
,

f2y1y2(X)=DXf2y1(X)Dy2ψ(Y )=
2by

x2
,

f2y2y2(X)=DXf2y2(X)Dy2ψ(Y )=−2b

x
+

2plE

ply − c(l + Ey)2

− 2p2l2Ey

[ply−c(l+Ey)2]2
+

2pclE2y(l+Ey)

[ply−c(l+Ey)2]2
− 2p2cl2E2y2(l+Ey)

[ply−c(l+Ey)2]3
.(3.10)

Substituting X = X0 into Eq. (3.10), which yields

f1y1y1(X0) = 0, f1y1y2(X0) = −a, f1y2y2(X0) = 0,

f2y1y1(X0) =− 2by20
x30

, f2y1y2(X0) =
2by0
x20

,

f2y2y2(X0) =− 2p2l2E0y0
[ply0 − c(l + E0y0)2]2

+
2pclE2

0y0(l + E0y0)

[ply0 − c(l + E0y0)2]2

− 2p2cl2E2
0y

2
0(l + E0y0)

[ply0 − c(l + E0y0)2]3
.(3.11)

Besides, in view of Eqs. (3.6) and (3.10), we have

DXf1y1y1(X0) = DXf1y1y2(X0) = DXf1y2y2(X0) = (0, 0, 0),

DXf2y1y1(X0)=

(
6by20
x40

,−4by0
x30

, 0

)
, DXf2y1y2(X0)=

(
− 4by0

x30
,
2b

x20
, 0

)
,

DXf2y2y2(X0)=

(
2b

x20
,
2plE0(3clE0+4E2

0y0−2pl)

[ply0−c(l+E0y0)2]2

+
2p2l2E0y0(2pl − 9cE2

0y0)

[ply0 − c(l + E0y0)2]3
+

8pc2lE3
0y0(l + E0y0)

2 − 16p2cl3E2
0y0

[ply0 − c(l + E0y0)2]3

+
6p2cl2E2

0y
2
0(l + E0y0)[pl − 2cE0(l + E0y0)]

[ply0 − c(l + E0y0)2]4
,

2pl

ply0−c(l+E0y0)2
+
2ply0[4clE0+5cE2

0y0−pl]
[ply0−c(l+E0y0)2]2

+
8pc2lE2

0y
2
0(l+E0y0)

2

[ply0−c(l+E0y0)2]3

− 2p2l2E0y
2
0(6cl + 7cE0y0)

[ply0 − c(l + E0y0)2]3
− 12p2c2l2E2

0y
3
0(l + E0y0)

2

[ply0 − c(l + E0y0)2]4

)
,

DY ψ(0) =


1 0
0 1

0 − plE0

ply0 − c(l + E0y0)2

 :=
(
Dy1ψ(0), Dy2ψ(0)

)
.(3.12)
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Furthermore, Eqs. (2.7) and (3.12) can give that

f1y1y1y1(X0) =DXf1y1y1(X0)Dy1ψ(0) = 0,

f1y1y1y2(X0) =DXf1y1y1(X0)Dy2ψ(0) = 0,

f1y1y2y2(X0) =DXf1y1y2(X0)Dy2ψ(0) = 0,

f1y2y2y2(X0) =DXf1y2y2(X0)Dy2ψ(0) = 0,

f2y1y1y1(X0) =DXf2y1y1(X0)Dy1ψ(0) =
6by20
x40

,

f2y1y1y2(X0) =DXf2y1y1(X0)Dy2ψ(0) = −4by0
x30

,

f2y1y2y2(X0) =DXf2y1y2(X0)Dy2ψ(0) =
2b

x20
,

f2y2y2y2(X0) =DXf2y2y2(X0)Dy2ψ(0) =
2plE0(3clE0 + 4E2

0y0 − 3pl)

[ply0 − c(l + E0y0)2]2

+
2p2l2E0y0(3pl−14cE2

0y0−12clE0)+8pc2lE3
0y0(l+E0y0)

2

[ply0−c(l+E0y0)2]3

+
2p2cl2E2

0y
2
0(l + E0y0)[3pl − 10cE0(l + E0y0)]

[ply0 − c(l + E0y0)2]4

+
2p3l3E2

0y
2
0(6cl + 7cE0y0)

[ply0 − c(l + E0y0)2]4
+

12p3c2l3E3
0y

3
0(l + E0y0)

2

[ply0 − c(l + E0y0)2]5
.(3.13)

Substituting Eqs. (3.8), (3.11) and (3.13) into Taylor series developments (3.4),
we derive

(3.14)


ẏ1 = −ax0y2 − ay1y2,

ẏ2 =
by20
x20

y1 −
by20
x30

y21 +
2by0
x20

y1y2 +
1

2
f2y2y2(X0)y

2
2 +

by20
x40

y31

−2by0
x30

y21y2 +
b

x20
y1y

2
2 +

1

6
f2y2y2y2(X0)y

3
2 + o(|Y |4).

In view of the required form (3.3), we need to make a matrix transformation
— viz. Y = TZ for system (3.14), where Z = (z1, z2)

T , T2×2 is an invertible
matrix and satisfies

T−1

 0 −ax0
by20
x20

0

T =

(
0 −ω0

ω0 0

)
.

By computing, we can get T =

x
3
2
0 0

0

√
b

a
y0

. For convenience, Z is denoted

as Y . Accordingly, we obtain the normal form of system (3.14):
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(3.15)



ẏ1 = −ω0y2 −
√
aby0y1y2,

ẏ2 = ω0y1−
√
aby0y

2
1+

2by0√
x0
y1y2+

y0
2

√
b

a
f2y2y2(X0)y

2
2+

√
abx0y0y

3
1

−2by0y
2
1y2 +

b
3
2 y0√
ax0

y1y
2
2 +

by20
6a

f2y2y2y2(X0)y
3
2 + o(|Y |4).

Summarizing the above analysis, we have the following Hopf bifurcation
theorem.

Theorem 3.1. For model (1.3), there exist a small neighborhood Ω of equilib-
rium point X0(v) as well as a small positive constant γ.

Case I. If

y0f2y2y2y2(X0) > 2f2y2y2(X0),

then
(i) when v0 < v < v0 + γ, X0(v) is unstable, which excludes the points in Ω;
(ii) when v0−γ < v < v0, there exists a periodic orbit in Ω \{X0(v)}, besides

X0(v) is locally asymptotically stable, which attracts the points in Ω;

Case II. If

y0f2y2y2y2(X0) < 2f2y2y2(X0),

then
(i) when v0−γ < v < v0, X0(v) is locally asymptotically stable, which attracts

the points in Ω;
(ii) when v0 < v < v0+γ, there exists a periodic orbit in Ω \{X0(v)}, besides

X0(v) is unstable, which excludes the points in Ω.

Proof. In terms of the Hopf bifurcation theorem in the literature [33], we need
to calculate the important quantity 16ϱ0 (see below), in view of the normal
forms (3.3) and (3.15), we have

16ϱ0 :={a111(a112 − a211) + a222(a
1
22 − a212) + (a112a

1
22 − a211a

2
12)}/ω0

+ (a1111 + a1122 + a2112 + a2222)

=

{√
b

a
y0f2y2y2(X0)

(
0− 2by0√

x0

)
+ 2

√
aby0 ·

2by0√
x0

}/{√
ab

x0
y0

}

− 4by0 +
by20
a
f2y2y2y2(X0)

=− 2by0
a
f2y2y2(X0) +

by20
a
f2y2y2y2(X0).

Next, the two cases 16ϱ0 > 0 and 16ϱ0 < 0 need further discussion. Because the
rest of the process is quite similar to Ref. [33], and therefore it is eliminated in
this paper.
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4. Stability analysis for centre

In view of Eq. (2.9), when by0/x0 = plE0y0/[ply0 − c(l + E0y0)
2] (i.e., v = v0),

the eigenvalues of Eq. (2.9) are a pair of imaginary roots: ± i
√
ab/x0y0. That is

to say, the equilibrium point X0 is a centre. Nevertheless, for v = v0, Theorems
2.1 and 3.1 don’t include the corresponding stability result. In this section, we
study the stability of the centre.

Theorem 4.1. When v = v0,

(i) if

y0f2y2y2y2(X0) > 2f2y2y2(X0),

then the centre X0 of model (1.3) is unstable;

(ii) if

y0f2y2y2y2(X0) < 2f2y2y2(X0),

then the centre X0 of model (1.3) is stable.

Proof. First of all, we need to make system (3.15) equivalent to the following
form according to the formal series approach [33, 41, 42]:

(4.1)

{
ẏ1 = −y2 +M2(y1, y2) +M3(y1, y2) + o(|Y |4),
ẏ2 = y1 +N2(y1, y2) +N3(y1, y2) + o(|Y |4),

whereMi(y1, y2) and Ni(y1, y2) denote the i
th degree homogeneous polynomials

of y1 and y2.

On writing t̄ = ω0t in system (3.15), and in this section Ẏ denotes the
derivative of vector function Y regarding t̄, then (3.15) is transformed into

(4.2)



ẏ1 = −y2 −
√
aby0
ω0

y1y2,

ẏ2 = y1−
√
aby0
ω0

y21+
2by0
ω0

√
x0
y1y2+

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2+

√
abx0y0
ω0

y31

−2by0
ω0

y21y2 +
b
3
2 y0

ω0
√
ax0

y1y
2
2 +

by20
6aω0

f2y2y2y2(X0)y
3
2 + o(|Y |4).

Next, we consider the following formal series for the above system (4.2):

V (y1, y2) = y21 + y22 +
∞∑
n=3

Vn(y1, y2),
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where Vn(y1, y2) denotes the n
th degree homogeneous polynomials of y1 and y2.

We then have

dV (y1, y2)

dt̄

∣∣∣∣
(4.2)

=
∂V (y1, y2)

∂y1
· ẏ1 +

∂V (y1, y2)

∂y2
· ẏ2

=

(
2y1+

∞∑
n=3

∂Vj(y1, y2)

∂y1

)(
−y2−

√
aby0
ω0

y1y2

)
+

(
2y2+

∞∑
n=3

∂Vj(y1, y2)

∂y2

)

×
(
y1−

√
aby0
ω0

y21+
2by0
ω0

√
x0
y1y2+

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2

+

√
abx0y0
ω0

y31 −
2by0
ω0

y21y2 +
b
3
2 y0

ω0
√
ax0

y1y
2
2 +

by20
6aω0

f2y2y2y2(X0)y
3
2 + · · ·

)
.(4.3)

Setting the 3 th degree homogeneous polynomial in Eq. (4.3) to 0, we obtain

y1
∂V3(y1, y2)

∂y2
− y2

∂V3(y1, y2)

∂y1

=
4
√
aby0
ω0

y21y2 −
4by0
ω0

√
x0
y1y

2
2 −

y0
ω0

√
b

a
f2y2y2(X0)y

3
2.(4.4)

Let y1 = r cos θ, y2 = r sin θ, then by chain rule we can get

y1
∂Vn(y1, y2)

∂y2
− y2

∂Vn(y1, y2)

∂y1
=
∂Vn(y1, y2)

∂θ
= rn · dVn(cos θ, sin θ)

dθ
.(4.5)

In view of Eqs. (4.4) and (4.5), we have

dV3(cos θ, sin θ)

dθ
=
4
√
aby0
ω0

cos2 θ sin θ − 4by0
ω0

√
x0

cos θ sin2 θ

− y0
ω0

√
b

a
f2y2y2(X0) sin

3 θ

:=−H3(cos θ, sin θ) =
σ0
2

+
∞∑
δ=1

(aδ cos δθ + bδ sin δθ),(4.6)

where (σ0/2) +
∑∞

δ=1(aδ cos δθ + bδ sin δθ) is the Fourier series of H3. Such

a V3(cos θ, sin θ) exists if and only if σ0 = 0, viz.,
∫ 2π
0 H3(cos θ, sin θ) dθ = 0.

Indeed,∫ 2π

0

{
4
√
aby0
ω0

cos2 θ sin θ− 4by0
ω0

√
x0

cos θ sin2 θ− y0
ω0

√
b

a
f2y2y2(X0) sin

3 θ

}
dθ= 0.

Hence, V3(y1, y2) exists, and by Eq. (4.6) we derive

V3(y1, y2) =

(
2y0
3ω0

√
b

a
f2y2y2(X0)−

4
√
aby0

3ω0

)
y31

+
y0
ω0

√
b

a
f2y2y2(X0)y1y

2
2 −

4by0
3ω0

√
x0
y32.(4.7)
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Again, setting 4 th degree homogeneous polynomial in Eq. (4.3) to 0, which yields

y1
∂V4(y1, y2)

∂y2
− y2

∂V4(y1, y2)

∂y1
= −2

√
abx0y0
ω0

y31y2 +
4by0
ω0

y21y
2
2

− 2b
3
2 y0

ω0
√
ax0

y1y
3
2 −

by20
3aω0

f2y2y2y2(X0)y
4
2 +

√
aby0
ω0

y1y2 ·
∂V3(y1, y2)

∂y1

+

(√
aby0
ω0

y21 −
2by0
ω0

√
x0
y1y2 −

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2

)
· ∂V3(y1, y2)

∂y2
.(4.8)

Furthermore, setting y1 = r cos θ, y2 = r sin θ in Eq. (4.8), which leads to

dV4(cos θ, sin θ)

dθ
=

(
− 2

√
abx0y0
ω0

+
2by20
ω2
0

f2y2y2(X0)−
4aby0
ω2
0

+
2by20
ω2
0

)
cos3 θ sin θ

+

(
4by0
ω0

− 4b
√
aby20

ω2
0

√
x0

− 4by20
ω2
0

√
x0

√
b

a
f2y2y2(X0)

)
cos2 θ sin2 θ

+

(
by20
ω2
0

f2y2y2(X0)−
2b

3
2 y0

ω0
√
ax0

+
8b2y20
ω2
0x0

− by20
aω2

0

(f2y2y2(X0))
2

)
cos θ sin3 θ

+

(
2by20
ω2
0

√
x0

√
b

a
f2y2y2(X0)−

by20
3aω0

f2y2y2y2(X0)

)
sin4 θ

:= −H4(cos θ, sin θ).

Similarly, such a V4(cos θ, sin θ) exists if and only if
∫ 2π
0 H4(cos θ, sin θ)dθ = 0.

But, ∫ 2π

0
H4(cos θ, sin θ)dθ

= − by0π

ω0
+
b
√
aby20π

ω2
0

√
x0

− by20π

2ω2
0

√
x0

√
b

a
f2y2y2(X0) +

by20π

4aω0
f2y2y2y2(X0) ̸= 0.

There upon we should amend V4(cos θ, sin θ) such that

dV4(cos θ, sin θ)

dθ
=−H4(cos θ, sin θ) + ℵ4 := −H̃4(cos θ, sin θ),

where ℵ4 =
1
2π

∫ 2π
0 H4(cos θ, sin θ)dθ = − by0

2ω0
+

b
√
aby20

2ω2
0

√
x0

− by20
4ω2

0

√
x0

√
b
af2y2y2(X0)

+
by20
8aω0

f2y2y2y2(X0). Substituting ω0 =
√
ab/x0y0 into ℵ4, which yields ℵ4 =

1
2a(

y0
2 f2y2y2y2(X0) − f2y2y2(X0)) ̸= 0. Clearly,

∫ 2π
0 H̃4(cos θ, sin θ)dθ = 0, there-

fore the amended V4(cos θ, sin θ) exists.
We now construct the Lyapunov function V (y1, y2)= y21 + y22 + V3(y1, y2) +

V4(y1, y2) for system (4.2), and further we have

dV (y1, y2)

dt̄

∣∣∣∣
(4.2)

= ℵ4(y
2
1 + y22)

2 + o ((y21 + y22)
2).
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If ℵ4 > 0 (viz., y0f2y2y2y2(X0) > 2f2y2y2(X0)), then the equilibrium point (0, 0)T

of system (4.2) is unstable, consequently the centre X0 is unstable. On the
contrary, if ℵ4 < 0 (viz., y0f2y2y2y2(X0) < 2f2y2y2(X0)), then the equilibrium
point (0, 0)T of system (4.2) is stable, hence the centre X0 is stable.

Remark 4.1. Due to
∫ 2π
0 H2µ−1(cos θ, sin θ)dθ = 0, µ = 2, 3, · · · , so if∫ 2π

0 H4(cos θ, sin θ)dθ = 0, then we should find the minimum positive integer

ϑ such that
∫ 2π
0 H2ϑ(cos θ, sin θ)dθ ̸= 0, and then afterwards, amending the

corresponding function V2ϑ(cos θ, sin θ) similar to V4(cos θ, sin θ).

5. Numerical simulations

In this section, we perform several Matlab simulations to complement the ana-
lytical results above.

As an example, we consider the harvested predator-prey model (1.3) with
the coefficients r1 = 2, a = 1, r2 = 3

4 , b = 1, p = 1, l = 1, c = 4
9 . Then by

the analysis in section 2, we can find that model (1.3) has a positive equilibrium
point X0 = (4, 2, 0.25) and the bifurcation value v0 = 2/9. We can check that
model (1.3) satisfies the requirement (2.1), the transversality conditions for Hopf
bifurcation in (3.2), as well as the condition of case (i) in Theorems 3.1 and 4.1.

In accordance with Theorems 3.1 and 4.1 (on choosing γ = 0.002), we present
four groups of numerical simulations as follows:

(i) The equilibrium point X0 is locally asymptotically stable when v =
0.2205 < v0, which is verified as shown in Fig. 1. In this case, the prey species,
predator species and economic harvesting are in a stable state, so the ecological
balance can be maintained.

(ii) A Hopf-bifurcating periodic orbit bifurcates from the equilibrium point
X0 when v = 0.222222 < v0, which is verified as shown in Fig. 2. The emergence
of the periodic orbit would generate small-amplitude population oscillations in
our ecosystem.

(iii) The centre X0 is unstable when v equals to v0 = 2/9, which is verified
as shown in Fig. 3. Unstable center means that the aforementioned population
oscillations are growing as time t goes on, i.e., the prey species, predator species
and economic harvesting can’t coexist in an oscillatory mode.

(iv) The equilibrium point X0 is unstable when v = 0.223 > v0, which is
verified as shown in Fig. 4. At this moment, the biological populations and
harvesting effort are unstable, which can result in ecological unbalance.

From Figs. 1-4, it is clear that our harvested predator-prey model can exhibit
a Hopf bifurcation as the increase of the harvesting profit v, which can cause
potentially dramatic variations in the dynamical behaviors of the population
model. Hence, the Hopf bifurcation is biologically important.
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Figure 1: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.9999, y(0) = 1.9999, E(0) =
0.2499, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is locally asymptotically stable when v =
0.2205 < v0 = 2/9.
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Figure 2: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.999, y(0) = 1.999, E(0) =
0.249, numerical simulations show that a periodic orbit bifurcates
from the equilibrium point X0 = (4, 2, 0.25) of model (1.3) when v =
0.222222 < v0 = 2/9.
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Figure 3: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.99984, y(0) = 1.99985, E(0) =
0.24986, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is an unstable centre when v equals to the
bifurcation value v0 = 2/9.
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Figure 4: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.9999, y(0) = 1.9999, E(0) =
0.2499, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is unstable when v = 0.223 > v0 = 2/9.
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6. Concluding remarks

The present paper has studied the dynamics of a predator-prey model with ex-
ternal harvesting for predators. The original predator-prey model (1.1) proposed
by Leslie is described by two differential equations, which has been reasonably
modified as the differential-algebra predator-prey system (1.3) on the basis of
the consideration of expressing the harvesting profit. The asymptotic stabil-
ity of the modified predator-prey model (1.3) is investigated here, which reveals
that the population model can be asymptotically stable under certain condition.
In such a circumstance, the prey population, predator population and human
harvesting are able to coexist in harmony. For the benefit of maintaining the
ecological balance, the rational range of the harvesting profit v of human beings
should be the interval (0, v0). It means that people can’t exploit the biological
resource too heavy. Otherwise, the ecological balance would be in danger of be-
ing damaged, and then people will completely loss their productivity eventually.

Besides, it is interesting to note that the parameterisation used in section
2 can reduce our model (1.3) described by differential-algebra equations to the
system (3.14) of differential equations, which has a significant effect in this study.
Refs. [34-37] suggest that Differential-Algebraic Equations have widespread ap-
plications in constrained dynamical systems, so we expect that the parameter-
isation can be employed to analyze the dynamics of more complex constrained
systems in biology and engineering.

Finally, Refs. [43, 44] show that the impact of delays on the dynamics of a
system is an interesting problem. Thus, further studies on the stability and
bifurcations of differential-algebra population model (1.3) with delays can be
considered.
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Appendix

Here we deduce the formula (2.7). Substituting X = ψ(Y ) into system (2.4),
we have

(A.1) DY ψ(Y )Ẏ = f(ψ(Y )),
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Next, differentiating Eq. (2.5) regarding Y and then left multiplying UT
0 to the

differentiated equation, which lead to

(A.2) UT
0 DY ψ(Y ) = I2.

Differentiating Eq. (2.6) regarding Y , which yields

(A.3) DXg(X)DY ψ(Y ) = 0.

By Eqs. (A.1)-(A.3), we get

(A.4)

(
DXg(X)
UT
0

)−1(
0
I2

)
Ẏ (t) = f(ψ(Y )).

Further, Eqs. (A.1), (A.3) and (A.4) suggest that system (2.4) can be locally
equivalent to

(A.5) Ẏ = UT
0 f(ψ(Y )),

which shows that X0 corresponds to Y = 0 of system (A.5).
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