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Abstract. Let (mn)n∈N be an unbounded sequence of complex numbers and (av)v∈N
be a sequence of numbers in the unit circle

C(0, 1) = {z ∈ C | |z| = 1},

where N is the set of natural numbers.
We shall prove that there is an entire function f so that, for every entire function

g there is a subsequence (λn), n ∈ N of (mn)n∈N such that, for every compact subset
L ⊆ C and for every v ∈ N,

sup
z∈L

|f(z + λnav)− g(z)|→ 0 as n→∞.

In relation with other results about hypercyclic operators, the new element in this
paper is that we achieve the approximation with the same sequence (λn), for all numbers
av (v = 1, 2, . . .).
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1. Introduction

We denote H(C) the set of entire functions endowed with the topology Tu of
uniform convergence on compacta.

Let a ∈ C. We denote ta : C→C the translation function, which is given by
the formula ta(z) = z + a, for every z ∈ C.

We consider the translation operator Ta : H(C)→H(C), that is, the operator
defined by the formula Ta(f) = f ◦ ta, for every f ∈ H(C). The operator Ta is
a linear and continuous operator.

We write T 1
a = Ta and

Tn+1
a = Ta ◦ Tn

a , for n = 1, 2, . . . .

Birkhoff proved [4] that there is f ∈ H(C) so that

{Tn
a (f), n ∈ N} = H(C), where a ∈ C∖{0}.
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His proof was constructive.
Let (an)n∈N be an unbounded sequence of complex numbers. Luh [12] proved

that there is f ∈ H(C) so that

{Tan(f), n ∈ N} = H(C).

Gethner and Shapiro [8] and Grosse-Erdmann [9] have also proved the above
results by using the Baire’s Category Theorem. In particular, let U((Tan)) be
the set of entire functions that are universal (or hypercyclic) for the sequence
(Tan), that is,

U((Tan)) = {f ∈ H(C) | {Tan(f) | n ∈ N} = H(C)}.

Then, the set U((Tan)) is a Gδ and dense subset of H(C). Let (bm)m∈N be a
sequence of non-zero complex numbers. Based on the previous result, the set⋂

m∈N U((Tbman)) is a Gδ and dense subset of H(C).
Costakis and Sambarino [6] established a notable strengthening of Birkhoff’s

result. More specifically, they proved that the set⋂
a∈C−{0}

{f ∈ H(C) | {Tn
a (f), n ∈ N} = H(C)}

contains a Gδ and dense subset of H(C). Note that each set in the last inter-
section is U(Ta) := U((Tn

a )) = U((Tan)).
The important element here is the uncountable range of a.
Furthermore, Costakis [5] proved a more general result, that is, the set⋂

b∈C(0,1) U(Tban) contains a Gδ and dense subset of H(C), where an is an un-
bounded and specific sequence of complex numbers.

Let us apply this result, in certain cases.
Let (θv)v∈N be a sequence of distinct numbers in [0, 1) and (mn)n∈N be a

sequence of complex numbers so that mn→∞. We shall consider the numbers
wn(θv) = mne

2πiθv , n, v ∈ N. That is, for every v ∈ N we shall consider the
sequence (wn(θv))n∈N. Of course, we have wn(θv)→∞ as n→ + ∞, for every
v ∈ N.

We now set:

Ev = {f ∈ H(C)|{f(·+ wn(θv)) : n ∈ N} = H(C)}, for every v ∈ N.

Based on Grosse-Erdmann’s result we conclude that, for every v ∈ N the set Ev

is Gδ and dense in H(C). Hence, the set E :=
⋂+∞

v=1Ev is a Gδ dense subset
of H(C), so it is non-empty by Baire’s Category Theorem, given that the space
H(C) is a complete metric space. Let us see in more detail what this result
means.

Let f ∈ E. Then, for every v ∈ N and g ∈ H(C) there is a subsequence
(λv

n) = (λn(v, g)) of (wn(θv)), that depends on g and v so that, for every compact
set K ⊆ C one has

sup
z∈K

|f(z + λv
n)− g(z)|→ 0 as n→∞.
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So, this convergence depends on the specific sequence λv
n = λn(v, g), n ∈ N, and

the sequence λv
n depends on the specific number θv ∈ [0, 1). In the present paper

we shall examine whether we can have this convergence without the dependence
on the specific number θv ∈ [0, 1).

With this aim, we shall introduce the set of entire functions that achieve
simultaneous approximation on all numbers θv, v ∈ N, where θv ∈ [0, 1), for
every v ∈ N with the same sequence of indices. More specifically, we shall
consider the set SA (standing for Simultaneous Approximation) defined as

SA = {f ∈ H(C) : for every g ∈ H(C)

there is a subsequence (λn)n∈N of (mn)n∈N such that

sup
z∈K

|f(z + λne
2πiθv)− g(z)|→ 0 as n→∞,

for every compact set K ⊂ C and every v ∈ N}.
Of course SA ⊆ E.

We prove that the set SA is a Gδ-dense subset of H(C), so it is non-empty.
In order to prove that SA is a Gδ, dense subset of H(C) we shall introduce
one other set V ⊆ H(C) and we prove that V is a Gδ, dense subset of H(C)
and SA = V . Other articles dealing with translation operators or sequences of
translation operators on H(C) are [3] and [10].

Also, there are some papers concerning common hypercyclic vectors for
translation operators; see the papers [1], [5], [6], [7], [14], [15], [16], as well as
Chapter 11 in the book [11]. The notion of simultaneous hypercyclicity/univer-
sality was formally introduced (for finitely many operators) in [2].

Whenever we refer to a topology in the H(C) space, we always mean the
topology of uniform convergence on compacta.

In the following Section 2 we prove some helpful propositions in order to
prove our main result Theorem 2.6.

2. The main result

First of all, we shall prove a proposition which is the key in order to prove
our main result.

We fix g ∈ H(C).
We also fix some natural numbers n0 ≥ 2, v0, N0, and some real numbers

θ1, θ2, . . ., θn0 where θi ∈ [0, 1) for each i = 1, . . ., n0 and θi ̸= θj , for every
i, j ∈ An0 = {1, . . ., n0}, i ̸= j. For every natural number m we use the set

Vg(m, v0, N0, n0)=
{
f ∈ H(C)

/
sup
|z|≤v0

∣∣∣f(z +me2πiθj )− g(z)
∣∣∣< 1

N0
,

for every j=1, . . ., n0

}
.
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For every m ∈ N, j ∈ An0 we use the set

Ṽg(m, v0, N0, j) =
{
f ∈ H(C)

∣∣∣ sup
|z|≤v0

∣∣∣f(z +me2πiθj )− g(z)
∣∣∣ < 1

N0

}
.

Of course, we have

Vg(m, v0, N0, n0) =

n0⋂
j=1

Ṽg(m, v0, N0, j),(1)

based on the above definitions.
It is easy to see that the sets Ṽg(m, v0, N0, j) are open in H(C), for every m ∈

N, j = 1, . . ., n0, so the set Vg(m, v0, N0, n0) is open in H(C), for every m ∈ N,
according to the above relation (1). Therefore, the set

⋃+∞
m=1 Vg(m, v0, N0, n0)

is open in H(C).
For a function h : C→C and A ⊆ C, we shall denote ∥h∥A := sup{|h(z)| :

z ∈ A}.

Proposition 2.1. Under the above notations, we have that the set
⋃+∞

m=1 Vg(m, v0,
N0, n0) is dense in H(C).

Proof. We fix a function h ∈ H(C), a compact set K ⊆ C and an ε > 0. It
suffices to show that there are f ∈ H(C) and m0 ∈ N, so that

f ∈ Vg(m0, v0, N0, n0) and ∥f − h∥K < ε.(1)

We set Dv = {z ∈ C | |z| ≤ v}, for every v ∈ N. We also choose v1 ∈ N so that

Dv0 ∪K ⊆ Dv1 .(2)

Let us assume that m ∈ N satisfies

Dv1 ∩ (Dv1 +me2πiθj ) ̸= ∅,

for some j ∈ An0 (if it exists). We remind that An0 = {1, 2, . . ., n0}.
This means that there also exist zj , wj ∈ Dv1 , so that

wj = zj +me2πiθj , for some j ∈ An0 .(3)

According to (3), we shall have:

|wj − zj | = m, and this gives m ≤ 2v1.

Therefore, for every m ∈ N and m > 2v1, we have

Dv1 ∩ (Dv1 +me2πiθj ) = ∅, for every j ∈ An0 .(4)

Let j1, j2 ∈ An0 , so that j1 ̸= j2.
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Let m ∈ N so that

(Dv1 +me2πiθj1 ) ∩ (Dv1 +me2πiθj2 ) ̸= ∅ (if it exists).

This means that there are z1, w1 ∈ Dv1 so that

z1 +me2πiθj1 = w1 +me2πiθj2 .(5)

By (5) we have:

|z1 − w1| = m
∣∣e2πi(θj2−θj1 ) − 1

∣∣.(6)

From (6) we deduce that:

m ≤ 2v1∣∣e2πi(θj2−θj1 ) − 1
∣∣ .(7)

So, for every m ∈ N satisfying

m >
2v1∣∣e2πi(θj2−θj1 ) − 1

∣∣
we have:

(Dv1 +me2πiθj1 ) ∩ (Dv1 +me2πiθj2 ) = ∅.(8)

We set
M0 = min

{∣∣e2πi(θj2−θj1 ) − 1
∣∣ : j1, j2 ∈ An0 : j1 ̸= j2

}
.

We fix now some natural number m0 so that m0 > max{2v1, 2v1M0
}. Then, by (4)

and (8) we derive

Dv1 ∩ (Dv1 +m0e
2πiθj ) = ∅, for every j ∈ An0

and

(9) (Dv1 +m0e
2πiθj1 )∩(Dv1 +m0e

2πiθj2) = ∅, for every j1, j2 ∈ An0 , j1 ̸= j2.

Now, we set

L := Dv1 ∪
( n0⋃

j=1

(Dv1 +m0e
2πiθj )

)
.

Because of (9) we have that the set L is a union of n0 + 1 disjoint closed discs
with the same radius v1.

This means that the set L is a compact set with connected complement. We
shall consider the function F : L→C, defined as follows:

F (z) =

{
h(z), if z ∈ Dv1

g(z −m0e
2πiθj ), if z ∈ Dv1 +m0e

2πiθj , for some j ∈ An0 .
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Of course, F is continuous on L and holomorphic on
◦
L, the interior of L. So,

according to Mergelyan’s Approximation Theorem (see, e.g., [[13], Chapter 20])
there is a complex polynomial f , so that

∥F − f∥L < min

{
ε,

1

N0

}
.(10)

Based on the definition of F and (10), we have:

∥f − h∥K < ε,(11)

because of relation (2), and the definition of L.

Let us suppose w ∈ Dv1 . Then, for j ∈ An0 , w+m0e
2πiθj ∈ Dv1 +m0e

2πiθj .

We also set z = w + m0e
2πiθj . Then, F (z) = g(z − m0e

2πiθj ) = g(w). By
(10) we have, for every w ∈ Dv1 and j ∈ An0 that

∣∣f(w +m0e
2πiθj )− g(w)

∣∣ < 1

N0
.

This yields that f ∈ Vg(m0, v0, N0, n0), because of relation (2) and the fact that
f is a polynomial (so entire). By this fact and (11) the proof of this proposition
is complete now because relation (1) is satisfied.

Now, we shall fix an unbounded sequence (ms)s∈N of complex numbers. With
the notation of the previous Proposition 2.1 we shall consider the set:

Vg(ms, v0, N0, n0) =

{
f ∈ H(C)

∣∣∣ sup
|z|≤v0

∣∣∣f(z +mse
2πiθj )− g(z)

∣∣∣∣ < 1

N0
,

for every j ∈ An0

}
,

for every s ∈ N.
The sets Vg(ms, v0, N0, n0) are open for every s ∈ N, so the set

⋃+∞
s=1 Vg(ms,

v0, N0, n0) is open in H(C).
As in Proposition 2.1, we now state the following proposition:

Proposition 2.2. The set
⋃+∞

s=1 Vg(ms, v0, N0, n0) is dense in H(C).

Proof. The proof is similar to that of Proposition 2.1 and for this reason the
proof is omitted.

Indeed, the only property of {1, 2, . . .} used in the proof of the last proposi-
tion is its non-boundedness.

Recall that the space H(C) is separable, and so we can fix a dense sequence
(pk)k∈N of H(C) (for example (pk)k∈N be an enumeration of all complex poly-
nomials with coefficients in Q+ iQ). For every v,N, k, n, s ∈ N, n ≥ 2 we shall



SIMULTANEOUS APPROXIMATION OF TRANSLATION OPERATORS 467

consider the set:

Vpk(ms, v,N, n) =

{
f ∈ H(C)

∣∣∣∣ sup
|z|≤v

∣∣∣f(z +mse
2πiθj )− pk(z)

∣∣∣∣ < 1

N
,

for every j ∈ An

}
.

The sets Vpk(ms, v,N, n) are open in H(C), for every v,N, k, n, s ∈ N, n ≥ 2,
so that the set

⋃+∞
s=1 Vpk(ms, v,N, n) is open for every v,N, k, n ∈ N, n ≥ 2.

According to Proposition 2.2, we have that the sets
⋃+∞

s=1 Vpk(ms, v,N, n) are
dense in H(C), for every v,N, k, n ∈ N, n ≥ 2.

We shall also consider the set:

V =
+∞⋂
v=1

+∞⋂
N=1

+∞⋂
k=1

+∞⋂
n=2

(+∞⋃
s=1

Vpk(ms, v,N, n)

)
.

Under the above notation, we shall establish the following assertion

Proposition 2.3. The set V is a Gδ-dense subset of H(C), so V is non-empty.

Proof. The set V is a Gδ subset of H(C) due to its definition, because the sets⋃+∞
s=1 Vpk(ms, v,N, n) are open for every v,N, k, n ∈ N, n ≥ 2. Based on Proposi-

tion 2.2, the sets
⋃+∞

s=1 Vpk(ms, v,N, n) are dense for every v,N, k, n ∈ N, n ≥ 2.
Hence, the conclusion follows from Baire’s Category Theorem because the space
H(C) is a complete metric space.

We now connect the previous set V with the set of entire functions that suc-
ceed simultaneous approximation with respect to a countable set of real num-
bers.

We shall state here the respective data. Let (θn)n∈N be a sequence of real
numbers, so that θn ∈ [0, 1) and θj1 ̸= θj2 , for every j1, j2 ∈ N, j1 ̸= j2, n ∈ N.
Let (ms)s∈N be a fixed sequence of complex numbers which is unbounded.

Let Θ := {θn : n ∈ N}. Of course, the set Θ and the set:

m = {ms : s ∈ N}

consisting of all the terms of the sequence (ms)s∈N are also infinite.
We shall consider the set:

SA = {f ∈ H(C) |, for every g ∈ H(C),

there is a sequence (λn)n∈N so that λn ∈ m, for every n ∈ N, so that for every
a ∈ Θ and for every compact set K ⊆ C it holds that

sup
z∈K

∣∣f(z + λne
2πia)− g(z)

∣∣→ 0 as n→∞}.

The method to prove that SA ̸= ∅ is the following:
We shall prove that SA = V and given that V ̸= ∅ we shall also have SA ̸= ∅.

In order to prove that SA = V we show that SA ⊆ V and V ⊆ SA. This is
the subject of the following two propositions.
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Proposition 2.4. It holds SA ⊆ V .

Proof. If SA = ∅, then the result is obvious. We suppose that SA ̸= ∅. Let
f ∈ SA. We fix v0, N0, n0, k0 ∈ N, n0 ≥ 2.

Because f ∈ SA for g = pk0 there is a sequence (λn)n∈N, so that λn ∈ m,
for every n ∈ N and, for every a ∈ Θ and every compact set K ⊆ C, we have

sup
z∈K

|f(z + λne
2πia)− pk0(z)|→ 0 as n→∞.

So, for K = Dv0 we have that

sup
|z|≤v0

|f(z + λne
2πiθj )− pk0(z)|→ 0 as n→∞,

for every j ∈ An0 .
This entails that for every j ∈ An0 there is some nj ∈ N, so that

sup
|z|≤v0

∣∣f(z + λne
2πiθ)− pk0(z)

∣∣∣ < 1

N0
, for every n ∈ N, n ≥ nj .

Let ñ = max{nj |j ∈ An0}. With this selection we obtain

sup
|z|≤v0

∣∣f(z + λne
2πiθj )− pn0(z)

∣∣∣ < 1

N0
,

for every j ∈ An0 , for every n ∈ N, n ≥ ñ.
This implies that f ∈ Vpk0

(λñ, v0, N0, n0), or equivalently, f ∈
⋃+∞

s=1 Vpk0
(ms,

v0, N0.n0) because λñ ∈ m, that implies f ∈ V and the result is proven.

Proposition 2.5. It holds that V ⊆ SA.

Proof. We know that V ̸= ∅. Let f ∈ V . We shall prove that f ∈ SA.
We fix g ∈ H(C). We shall show that there exists a sequence (λn)n∈N, so

that λn ∈ m, for every n ∈ N, and so that for every a ∈ Θ and every compact
set K ⊆ C

sup
z∈K

∣∣f(z + λne
2πia)− g(z)

∣∣→ 0 as n→∞.

Based on the above mentioned properties, we shall now construct the respective
sequence (λn)n∈N. We shall fix some n0 ∈ N, n0 ≥ 2.

Given that the sequence (pk)k∈N of complex polynomials with coefficients in
Q+ iQ is dense in H(C), there is some k0 ∈ N so that

∥g − pk0∥Dn0
<

1

2n0
.(1)

Since f ∈ V we have f ∈
⋃+∞

s=1 Vpk0
(ms, n0, 2n0, n0). This means that there is

some sn0 ∈ N so that f ∈ Vpk0
(msn0

, n0, 2n0, n0), or equivalently,

sup
|z|≤n0

∣∣f(z +msn0
e2πiθj )− pk0(z)

∣∣∣ < 1

2n0
, for every j ∈ An0 .(2)
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By (1), (2) and the triangle inequality we have:

sup
|z|≤n0

∣∣f(z +msn0
e2πiθj )− g(z)

∣∣∣ < 1

n0
, for every j ∈ An0 .(3)

According to the previous procedure, for every n ∈ N, n ≥ 2, we can choose
some sn ∈ N such that

sup
|z|≤n

∣∣f(z +msne
2πiθj )− g(z)

∣∣∣ < 1

n
, for every j ∈ An.(4)

We shall now prove that for the sequence (sn)n∈N one has the following:

supz∈K

∣∣∣f(z+msne
2πia)− g(z)

∣∣∣→ 0 as n→∞, for every compact set K ⊆ C and

for every a ∈ Θ.
With this aim, fix some ε0 > 0.
There are v0 ∈ N and n0 ∈ N, so that K ⊆ Dv, for every v ∈ N, v ≥ v0 and

a0 = θn0 . Let us choose N0 ∈ N such that 1
N0

< ε0.
Let M0 = max{v0, n0, N0, 2}. For every n ∈ N, n ≥ M , we have n ≥ v0, so

K ⊆ Dn. Of course, a0 ∈ {θ1, θ2, . . ., θn}, for every n ∈ N, n ≥ M0, because
a0 = θn0 and n0 ≤ M0 ≤ n. With this, we also get

1

n
≤ 1

M0
≤ 1

N0
< ε0, for every n ∈ N, n ≥ M0.

Then, for every n ∈ N, n ≥ M0, it follows from (4) that

sup
z∈K

∣∣∣f(z +msne
2πia0)− g(z)| ≤ sup

|z|≤n

∣∣f(z +msne
2πia0)− g(z)

∣∣∣ < 1

n
< ε0.

This yields that

sup
z∈K

∣∣f(z +msne
2πia0)− g(z)

∣∣→ 0 as n→∞.

So, for every a ∈ Θ and every compact set K ⊆ C we have:

sup
z∈K

∣∣f(z +msne
2πia)− g(z)

∣∣→ 0 as n→∞.

Since this is the case for arbitrary g ∈ H(C) we conclude that f ∈ SA and the
proof of this proposition is complete.

Based on the above results, we are ready now to state and prove the main
result of this paper, that is Theorem 2.6.

Theorem 2.6. The set SA is a Gδ dense subset of H(C). In particular, the set
SA is non-empty.

Proof. Based on Proposition 2.4 and 2.5 we have that SA = V . We have also
proved in Proposition 2.3 that the set V is a Gδ and dense subset of H(C). So,
the result follows.
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