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1. Introduction

In the last few decades, fixed point theorems were developed in a metric space,
normed linear space, topological space etc., while the conditions on the under-
lying mappings are usually metrical or compact type conditions. Further, new
algebraic structures were also formulated to improve the results. For instance,
the following notion of b-metric space is a generalization of a metric space, due
to Bakhtin [2].

*. Corresponding author
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Definition 1.1. Let s ≥ 1, X be a nonempty set and rs : X ×X → [0,+∞) be
such that

(b1) rs(x, y) = 0 if and only if x = y

(b2) rs(x, y) = rs(y, x), for all x, y ∈ X

(b3) rs(x, y) ≤ s[rs(x, z) + rs(y, z)], for all x, y, z ∈ X.

Then, rs is called a b-metric on X, and the pair (X, rs) denotes a b-metric space.

If s = 1, the condition (b3) reduces to the the triangle inequality of a metric.
Thus metric space is a particular case of a b-metric space, when s = 1. However,
a b-metric space is not necessarily a metric space. For instance, consider the
pair (X, rs), where X = R and rs(x, y) = |x − y|2, for all x, y ∈ R. Then, the
conditions (b1) and (b2) are obvious. Further, rs(x, y) = |x− y|2 = |x− z + z −
y|2 ≤ 2(|x− z|2 + |z − y|2) = 2[rs(x, z) + rs(y, z)], for all x, y ∈ X. Thus (R, rs)
is a b-metric space with b = 2. Since rs(1, 3) + rs(1, 0) = 5 and rs(0, 3) = 9, the
triangle inequality fails to hold good, showing that rs is not a metric. Thus the
class of b-metric spaces contains that of metric spaces.

Definition 1.2. A b-ball in a b-metric space (X, rs) is defined by

Brs
(x, r) =

{
y ∈ X : rs(x, y) < r

}
.

The family of all b-balls forms a basis for topology, which is called the b-metric
topology τ(rs) on X.

Definition 1.3. Let (X, rs) be a b-metric space with parameter s. A sequence
⟨xn⟩∞n=1 in X is said to be

(a) b-convergent, with limit p, if it converges to p in the b-metric topology
τ(rs)

(b) b-Cauchy, if limn,m→∞ rs(xn, xm) = 0

(c) b-complete, if every b-Cauchy sequence in X is b-convergent in it.

Remark 1.1. A b-metric is not jointly continuous in its coordinate variables x
and y, even though a metric d is known to be continuous (see, Example 2.13,
[8]).

Definition 1.4. Let (X, rs) be a b-metric space with parameter s. Given x0 ∈
X, and self-maps A, S and T on X, if there exist points x0, x1, x2, . . . , xn, . . .
such that

y2n−1 = Sx2n−2 = Ax2n−1, y2n = Tx2n−1 = Ax2n for n = 1, 2, . . . ,(1.1)

then, the sequence ⟨Axn⟩∞n=1 is called an (S, T )-orbit with respect to A at x0 or
simply an (S, T,A)-orbit at x0, and is denoted by OS,T,A(x0).
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The pair (S, T ) is said to be asymptotically regular with respect to A at
x0 , if limn→∞ rs(Axn, Axn+1) → 0, and (S, T ) is asymptotically regular with
respect to A, if it is asymptotically regular with respect to A at each x0 ∈ X.
The b-metric space X is said to be (S, T,A)-orbitally b-complete at x0, if every
b-Cauchy sequence in OS,T,A(x0) converges in X. The space X is said to be
(S, T,A)-orbitally b-complete, if it is (S, T,A)-orbitally b-complete at each x0.

Definition 1.5. Let (X, rs) be a b-metric space with parameter s. A self-map
T : X → X is said to be continuous at p ∈ X, if limn→∞ rs(Tpn, Tp) = 0
whenever ⟨pn⟩∞n=1 ⊂ X limn→∞ rs(pn, p) = 0. And, T is continuous on X, if it
is continuous at every x0 ∈ X.

Definition 1.6. The self-map A is (S, T ) orbitally continuous at x0 or simply
orbitally continuous at x0, if it is continuous on some (S, T,A)-orbit at x0.

Self-maps A and S on a metric space (X, d) are commuting, if Asx = SAx,
for all x ∈ X. As a weaker form of it, Sessa [7] introduced weakly commuting
maps A and S on X with the choice d(ASx, SAx) ≤ d(Ax, Sx), for all x ∈ X.
Gerald Jungck [4] introduced compatible maps as a generalization for weakly
commuting maps as follows:

Definition 1.7. Self-maps f and r on a metric space (X, d) are said to be
compatible, if

(1.2) lim
n→∞

d(ASpn, SApn) = 0,

whenever there exists a sequence ⟨pn⟩∞n=1 ⊂ X such that

(1.3) lim
n→∞

Apn = lim
n→∞

Spn = z, for some z ∈ X.

In [1], the following notion was introduced:

Definition 1.8. Let (X, d) be a metric space. Self-maps T and A on X are
(T,A)-weak compatible, if

(1.4) lim
n→∞

ATpn = Tz, and lim
n→∞

TApn = lim
n→∞

T 2pn = Tz,

whenever there exists a sequence ⟨pn⟩∞n=1 ⊂ X with the choice (1.3).

Note that, compatible maps T and A are (T,A)-weak compatible. However,
the converse is not true. For example, let X = (−∞,+∞) with usual metric
d(x, y) = |x− y|, for all x, y ∈ X.

As the compatibility of a pair of self-maps on a b-metric space is just similar
to that in metric space, we skip its discussion. In this paper, we establish a
common fixed point theorem for three self-maps on a b-metric space, which
satisfy a rational inequality, through the notions of orbital completeness, orbital
continuity and the compatibility.
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2. Main results

We use the following results from [5]:

Lemma 2.1. Let (X, rs) be a b-metric space with parameter s. Suppose that
⟨xn⟩∞n=1 is b-convergent with limit x, and ⟨yn⟩∞n=1 is b-convergent with limit y in
X. Then

(2.1)
1

s2
rs(x, y) ≤ lim inf

n→∞
rs(xn, yn) ≤ lim sup

n→∞
rs(xn, yn) ≤ s2rs(x, y).

In particular, if x = y, then limn→∞ rs(xn, yn) = 0. Further, for each z ∈ X,
we have

(2.2)
1

s
rs(x, z) ≤ lim inf

n→∞
rs(xn, z) ≤ lim sup

n→∞
rs(xn, z) ≤ srs(x, z).

The following is the main result of this paper:

Theorem 2.1. Let A, S and T be self-maps on a b-metric space (X, rs) with
s ≥ 1, satisfying the inclusions:

S(X) ⊂ A(X) and T (X) ⊂ A(X)(2.3)

and the rational inequality

rs(Sx, Ty) ≤ a rs(Ax,Ay) + b ·
rs(Ay, Ty)[1 + rs(Ax, Sx)]

1 + rs(Ax,Ay)
(2.4)

+ g ·
rs(Ay, Ty) + rs(Ay, Sx)

1 + rs(Ay, Ty)rs(Ay, Sx)
, for all x, y ∈ X,

where a, b and g are non-negative numbers, not all being zero, such that

s4a+ (s4 + 1)b+ (s5 + s4 + s)g < 1.(2.5)

Then, (S, T ) is asymptotically regular with respect to A at each x0 ∈ X. Suppose
that

(a) the space X is (S, T,A)-orbitally b-complete,

(b) A is orbitally continuous.

If one of the pairs (A,S) and (A, T ) is compatible, then S, T and A have a
unique common fixed point.

Proof. Given x0 ∈ X, in view of (2.3), we see that Sx0 = Ax1 for some x1 ∈ X
and Tx1 = Ax2 for some x2 ∈ X and so on. Thus inductively we choose points
x1, x2, . . . , xn, . . . in X with the choice (1.1).
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Writing x = x2n−2, y = x2n−1 in (2.4) and using (1.1),

rs(y2n−1, y2n) = rs(Sx2n−2, Tx2n−1)(2.6)

≤ a rs(Ax2n−2, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(Ax2n−2, Sx2n−2)]

1 + rs(Ax2n−2, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, Sx2n−2)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, Sx2n−2)

= a rs(y2n−2, y2n−1)

+ b ·
rs(y2n−1, y2n)[1 + rs(y2n−2, y2n−1)]

1 + rs(y2n−2, y2n−1)

+ g ·
rs(y2n−1, y2n) + rs(y2n−1, y2n−1)

1 + rs(y2n−1, y2n)rs(y2n−1, y2n−1)

≤ a

1− b− g
· rs(y2n−2, y2n−1) < q.rs(y2n−2, y2n−1),

where

q =
a+ b+ (s+ 1)g

1− b− sg
·(2.7)

Similarly, in view of (1.1), the inequality (2.4) with x = x2n−2 and y = x2n−3,
gives

rs(y2n−2, y2n−1) = rs(y2n−1, y2n−2)

= rs(Sx2n−2, Tx2n−3)

≤ a rs(Ax2n−2, Ax2n−3)

+ b ·
rs(Ax2n−3, Tx2n−3)[1 + rs(Ax2n−2, Sx2n−2)]

1 + rs(Ax2n−2, Ax2n−3)

+ g ·
rs(Ax2n−3, Tx2n−3) + rs(Ax2n−3, Sx2n−2)

1 + rs(Ax2n−3, Tx2n−3)rs(Ax2n−3, Sx2n−2)

= a rs(y2n−3, y2n−2) + b ·
rs(y2n−3, y2n−2)[1 + rs(y2n−2, y2n−1)]

1 + rs(y2n−2, y2n−3)

+ g ·
rs(y2n−3, y2n−2) + rs(y2n−3, y2n−1)

1 + rs(y2n−3, y2n−2)rs(y2n−3, y2n−1)

≤ a rs(y2n−3, y2n−2) + b rs(y2n−3, y2n−2) + b rs(y2n−2, y2n−1)

+ grs(y2n−3, y2n−2) + sg[rs(y2n−3, y2n−2) + rs(y2n−2, y2n−1)]

so, that

rs(y2n−2, y2n−1) ≤ q.rs(y2n−3, y2n−2).(2.8)

Thus from (2.6) and (2.8), it follows that

rs(yn−1, yn) ≤ qrs(yn−2, yn−1), for all n.



COMMON FIXED POINT FOR COMPATIBLE SELF-MAPS ... 457

By induction,

rs(yn, yn+1) ≤ qrs(yn−1, yn) ≤ q2rs(yn−2, yn−1) ≤ · · · ≤ qn−1rs(y1, y2), n ≥ 1.

(2.9)

Since q < 1/s4 < 1, (2.9) implies that rs(yn, yn+1) → 0 as n → ∞. Thus, (S, T )
is asymptotically regular with respect to A at x0.

Now, for all m > n, employing the condition (b3) repeatedly and using (2.9),

rs(yn, ym) ≤ s[rs(yn, yn+1) + rs(yn+1, ym)]

≤ srs(yn, yn+1) + s2[rs(yn+1, yn+2) + rs(yn+2, ym)]

≤ srs(yn, yn+1) + s2rs(yn+1, yn+2) + s3[rs(yn+2, yn+3) + rs(yn+3, ym)]

. . .

≤ srs(yn, yn+1) + s2rs(yn+1, yn+2) + · · ·+ sm−nrs(ym−1, ym)

≤
[
sqn−1 + s2qn + · · ·+ sm−nqm−2

]
rs(y1, y2)

= sqn−1

[
1 + sq + · · ·+ (sq)m−n−1

]
rs(y1, y2)

≤ sqn−1

1− sq
· rs(y1, y2).

Proceeding the limit as n → ∞ in this, we see that rs(yn, ym) → 0. Thus
⟨yn⟩∞n=1 is a b-Cauchy sequence.

Since X is (S, T,A)-orbitally b-complete at x0, there exists a point z ∈ X
such that limn→∞ yn = z. That is,

(2.10) lim
n→∞

Ax2n+1 = lim
n→∞

Sx2n = lim
n→∞

Ax2n+2 = lim
n→∞

Tx2n+1 = z.

In view of the condition (b) of the theorem, from (2.10) we get that

(2.11) lim
n→∞

A2x2n+1 = lim
n→∞

ASx2n = lim
n→∞

A2x2n+2 = lim
n→∞

ATx2n+1 = Az.

First, we suppose that (A,S) is compatible. Then, from (2.11), it follows that

(2.12) lim
n→∞

SAx2n = lim
n→∞

ASx2n = Az.

Now, from (2.4) with x = Ax2n and y = x2n−1,

rs(SAx2n, Tx2n−1) ≤ a rs(A
2x2n, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(A

2x2n, SAx2n)]

1 + rs(A
2x2n, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, SAx2n)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, SAx2n)
,
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which, in view of (2.1), (2.10), (2.11) and (2.12), gives

1

s2
rs(Az, z) ≤ lim inf

n→∞
rs(SAx2n, Tx2n−1) ≤ lim sup

n→∞
rs(SAx2n, Tx2n−1)

≤ lim sup
n→∞

[
a rs(A

2x2n, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(A

2x2n, SAx2n)]

1 + rs(A
2x2n, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, SAx2n)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, SAx2n)

]
≤ s2

[
a rs(Az, z) + b ·

rs(z, z)[1 + rs(Az,Az)]

1 + rs(Az, z)

+ g ·
rs(z, z) + rs(z,Az)

1 + rs(z, z)rs(z,Az)

]
= s2(a+ g)rs(z,Az)

so that rs(Az, z) ≤ s4(a+ g)rs(z,Az) and hence Az = z.
On one hand, writing x = Ax2n and y = z in (2.4),

rs(SAx2n, T z) ≤ a rs(A
2x2n, Az) + b ·

rs(Az, Tz)[1 + rs(A
2x2n, SAx2n)]

1 + rs(A
2x2n, Az)

+ g ·
rs(Az, Tz) + rs(Az, SAx2n)

1 + rs(Az, Tz)rs(Az, SAx2n)

Using (2.2), (2.10), (2.11) and (2.12), this gives

1

s
rs(Az, Tz) ≤ lim inf

n→∞
rs(SAx2n, T z)

≤ lim sup
n→∞

rs(SAx2n, T z)

≤ s

[
ars(Az, Tz) + b ·

rs(Az, Tz)[1 + rs(Az,Az)]

1 + rs(Az,Az)

+ g ·
rs(Az, Tz) + rs(Az,Az)

1 + rs(Az, Tz)rs(Az,Az)

]
so that rs(Az, Tz) ≤ s2(a + b + g)rs(Az, Tz) or rs(Az, Tz) = 0 and hence
Az = Tz. Thus

Az = Tz = z.(2.13)

On the other hand, writing x = z and y = z in (2.4), and using (2.13),

rs(Sz, z) = rs(Sz, Tz) ≤ a rs(Az,Az) + b ·
rs(Az, Tz)[1 + rs(Az, Sz)]

1 + rs(Az,Az)

+ g ·
rs(Az, Tz) + rs(Az, Sz)

1 + rs(Az, Tz)rs(Az, Sz)

= rs(Az, Sz)
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so that rs(Sz, z) = 0 or Sz = z. In other words, z is a common fixed point of A,
S and T . Similarly, a common fixed point of A, S and T is obtained, if (A, T )
is compatible.

It is not hard to establish the uniqueness of the common fixed point. □

Corollary 2.1. Let T be a self-map on a b-metric space (X, rs) with s ≥ 1,
satisfying the inequality

rs(Tx, Ty) ≤ a rs(x, y) + b ·
rs(y, Ty)[1 + rs(x, Tx)]

1 + rs(x, y)
(2.14)

+ g ·
rs(y, Ty) + rs(y, Tx)

1 + rs(y, Ty)rs(y, Tx)
, for all x, y ∈ X,

where a, b and g are non-negative numbers, not all being zero, such that

s4a+ (s4 + 1)b+ (s5 + s4 + s)g < 1.(2.15)

If the space X is T -orbitally b-complete, then T has a unique fixed point.

Proof. We write S = T and A = IX in Theorem 2.1, where IX is the identity
self-map on X. Note that IX commutes with every map and hence (I, T ) is com-
patible. Since every continuous function is T -orbitally continuous, by Theorem
2.1, T has a unique fixed point. □

The following result was proved in [6]:

Theorem 2.2. Let T be a self-map on a complete b-metric space (X, rs) with s ≥
1, satisfying the inequality (2.14), where a, b and g are non-negative numbers,
not all being zero, such that

sa+ b+ g < 1.(2.16)

Then, T has a unique fixed point.

Remark 2.1. It may be noted that a complete b-metric space is T -orbitally
b-complete at each of its points, and sa+b+g < s4a+(s4+1)b+(s5+s4+s)g < 1,
a unique fixed point of T follows from Corollary 2.1. Therefore, Corollary 2.1 is
a generalization of Theorem 2.2.

Since every complete metric space is orbitally complete, the following result
of Dass and Gupta [3] follows from Corollary 2.1 with s = 1 and g = 0:

Corollary 2.2. Let T be a self-map on a complete metric space (X, d) satisfying
the inequality

d(Tx, Ty) ≤ a d(x, y) + b · d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
, for all x, y ∈ X,(2.17)

where a and b are non-negative numbers, not both being zero, such that

a+ 2b < 1.(2.18)

Then, T has a unique fixed point.
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3. Conclusions

In the introductory section of this paper, a brief account of b-metric space and
its relation with metric space is presented along with its topological properties.
The highlights of Theorem 2.1 for three compatible self-maps on a b-metric space
satisfying a rational type condition are the notions of asymptotic regularity,
orbital completeness and orbital continuity. Also, the main result of this paper
is an elegant extension of theorems of Sarwar and Rahman [6], and Dass and
Gupta [3].
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