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Abstract. The non-commuting graph is defined on a finite group G, denoted by ΓG,
with G\Z(G) is the vertex set of ΓG and vp ̸= vq ∈ G\Z(G) are adjacent whenever
they do not commute in G. In this paper, we focus on ΓG for dihedral groups of
order 2n, D2n, where n ≥ 3. We show the spectrum, spectral radius and energy
of the graph corresponding to the degree sum exponent distance matrix and analyze
the hyperenergetic property. Moreover, we then present the correlation between the
obtained energy and the adjacency energy.
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1. Introduction

Let G be a group and Z(G) be a center of G. The non-commuting graph of G,
denoted by ΓG, has vertex set G\Z(G) and two distinct vertices vp, vq in ΓG are
connected by an edge whenever vpvq ̸= vqvp ([1]).

The non-commuting graphs have been studied by many authors for various
kinds of groups. Abdollahi et al. [1] discussed ΓG for a non-abelian group G and
stated that it is always connected with diameter 2. Consequently, the distance
between two vertices in ΓG is well defined, and it is the length of the shortest
path between vp and vq. Moreover, this discussion continues by examining the
isomorphic properties of two non-commuting graphs related to the isomorphic
properties of the corresponding groups. Darafsheh [6] proved the conjecture

*. Corresponding author



428 M.U. ROMDHINI and A. NAWAWI

that two non-commuting graphs which are isomorphic imply that the groups
are also isomorphic as well. Likewise, Abdollahi and Shahverdi [2] stated that
if ΓG is isomorphic to ΓG of the alternating group An, then G ∼= An. Besides,
they presented this conjecture as verified for ΓG with the simple groups of Lie
type.

Afterward, Tolue et al. [28] extended the study of ΓG and introduced the new
concept of g−non-commuting graph of finite groups that involve the commutator
between two members of the group. If two groups are isoclinic and the numbers
of their center are the same, then their associated g−non-commuting graphs are
isomorphic. Moreover, Khasraw, et al. [15] presented the mean distance of ΓG

for the dihedral groups.

Moreover, ΓG on n vertices can be interpreted with the adjacency matrix
of ΓG. It is A(ΓG) = [apq] of size n × n whose entries apq = 1 for adjacent vp
and vq; otherwise, apq = 0. For the identity matrix of order n, In, the char-
acteristic polynomial of ΓG is defined as PA(ΓG)(λ) = det (λIn −A(ΓG)), and
its roots are λ1, λ2, . . . , λn as the eigenvalues of ΓG. The spectrum of ΓG is

Spec(ΓG) =
{
λk1
1 , λk2

2 , . . . , λkm
m

}
, with k1, k2, . . . , km are the respective multi-

plicities of λ1, λ2, . . . , λn.

Energy of ΓG is calculated by adding all the absolute values of λ1, λ2, . . . , λn.
Gutman [10] pioneered this definition in 1978. The graph energy on n vertices
with a value more than EA(Kn) can be stated as hyperenergetic, or it can be
said that E(ΓG) > 2(n − 1) [16]. In addition, the adjacency energy bounds
of the graph can be found at [7] and graphs with self-loops can be seen at
[11]. Additionally, Sun et al. have demonstrated that the clique path has the
maximum distance of eigenvalues and energy in their work [27]. It has been
shown that the adjacency energy is not equal to an odd integer [4] and is never
equal to its square root [18].

In 2008, Indulal et al. [12] introduced the graph matrix whose entries depend
on the distance between two vertices. They showed the distance energy of
graphs. For the degree product distance energy, the readers can refer [13].
Moreover, the discussion of the degree sum exponent distance of graphs can be
found in [14].

In this work, the set of vertex for ΓG is the non-abelian dihedral group of or-
der 2n, D2n where n ≥ 3 which denoted by D2n =

〈
a, b : an = b2 = e, bab = a−1

〉
[3]. The center of D2n and the centralizer of v, where v ∈ D2n are denoted by
Z (D2n) and CD2n(v), respectively. Therefore, we have

Z (D2n) =

{
{e}, if n is odd{
e, a

n
2

}
, if n is even,

CD2n(a
i) = {aj : 1 ≤ j ≤ n}, and

CD2n(a
ib) =

{
{e, aib}, if n is odd{
e, a

n
2 , aib, a

n
2
+ib

}
, if n is even.
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Energy studies of the commuting and non-commuting graphs involving D2n as
the set of vertex have been carried out by several authors. Romdhini and Nawawi
[21, 22] and Romdhini et al. [23] formulated the energy of ΓG by considering
the eigenvalues of the degree sum, degree subtraction, and neighbors degree sum
matrices, meanwhile, [17] presented the adjacency energy. The degree exponent
sum, maximum and minimum degree energies were shown in [24, 25].

In studies of correlations between molecules containing heteroatoms and
their total electron energy, Gowtham and Swamy [9] reports a correlation coef-
ficient of 0.952 between Sombor energy values and total electron energy. The
authors of Redzepovic and Gutman [20] also developed a numerical approach
to compare a graph’s Sombor energy with its adjacency energy, and it remains
an open problem for mathematical verification. Based on these two papers, the
authors take the initiative to apply it to ΓG. Then, this paper is dedicated
to formulating the energy based on the degree sum exponent distance matrix
DSED for ΓG on D2n and comparing the results obtained and the adjacency
energy.

2. Preliminaries

In this part, we begin with the definition of DSED-matrix. Suppose that dpq is
the distance between vertex vp and vq in ΓG and dvp is the degree of vertex vp.

Definition 2.1 ([14]). The degree sum exponent distance matrix of ΓG is an
n× n matrix DSED(ΓG) = [dsedpq] whose (p, q)-th entry is

dsedpq =

{(
dvp + dvq

)dpq , if vp ̸= vq

0, if vp = vq.

The DSED−energy of ΓG is given by

EDSED(ΓG) =

n∑
i=1

|λi| ,

with λ1, λ2, . . . , λn represent the eigenvalues (not necessarily distinct) of
DSED(ΓG).

The degree sum exponent distance spectral radius of ΓG is

(1) ρDSED(ΓG) = max{|λ| : λ ∈ Spec(ΓG)}.

From the fact that ΓG has 2n−1 and 2n−2 vertices for odd and even n, re-
spectively, then ΓG can be classified as hyperenergetic whenever theDSED−ener-
gy fulfil the following terms:

(2) EDSED(ΓG) >

{
4(n− 1), for odd n

4(n− 1)− 2, for even n,
.
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We now supply some previous results in support of the theorems derived in
Section 3. Obtaining the graph energy requires formulating the characteristic
polynomial of ΓG. Here is an essential result that assists in formulating the
characteristic polynomial of ΓG.

Theorem 2.1 ([8]). If M =

[
A B
C D

]
is a square matrix with four block

matrices and |A| ≠ 0, then

|M | =
∣∣∣∣ A B
O D − CA−1B

∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
Lemma 2.1 ([5]). If Kn is the complete graph on n vertices, then its adjacency
matrix is (J − I)n, and the spectrum is {(n− 1)(1), (−1)(n−1)}.

This article concerned on D2n of order 2n, D2n, where n ≥ 3. Let G1 =
{ai : 1 ≤ i ≤ n}\Z (D2n) and G2 = {aib : 1 ≤ i ≤ n}. Now, the degree of every
vertex of ΓG for G = G1 ∪G2 is determined as follows:

Theorem 2.2 ([15]). Let ΓG be the non-commuting graph on G, where G =
G1 ∪G2. Then

1. dai = n, and

2. daib =

{
2(n− 1), if n is odd

2(n− 2), if n is even.
.

Thus, we can see the isomorphism between ΓG and some common graph
types in the theorem as given below:

Theorem 2.3 ([15]). Let ΓG be a non-commuting graph for G.

1. If G = G1, then ΓG
∼= K̄s, for s = |G1|.

2. If G = G2, then ΓG
∼=

{
Kn, if n is odd

Kn − n
2K2, if n is even.

,

where n
2K2 denotes n

2 copies of K2.

In order to compare the DSED and adjacency energies of ΓG for D2n, here
we write the adjacency energy from Mahmoud et al. [17] as given below:

Theorem 2.4 ([17]). The adjacency energy of ΓG, where G = G1∪G2, EA(ΓG)
is

1. for odd n, EA(ΓG) = (n− 1) +
√
5n2 − 6n+ 1, and

2. for even n, EA(ΓG) =

{
8, if n = 4

(n− 2) +
√
5n2 − 12n+ 4, if n > 4

.
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To define the elements of DSED−matrix, we need to determine the distance
for every pair of vertices in ΓG, for G = G1 ∪G2. The discussion is in Theorem
2.5 below:

Theorem 2.5 ([26]). For two distinct vertices vp, vq in ΓG, where G = G1∪G2,
the distance between vp and vq is

1. for the odd n, dpq =

{
2, if vp, vq ∈ G1

1, otherwise,
and

2. for the even n, dpq =


2, if (vp, vq ∈ G1) or

(
vp ∈ G2, vq ∈

{
a

n
2
+ib

}
,

or vice versa)

1, otherwise.

.

3. Characteristic polynomial of some matrices

Several properties need to be performed in order to provide DSED−energy of
ΓG, for G = G1 ∪G2 in Section 4. In this section, we derive three theorems of
the solution of the determinant of a particular matrix.

Lemma 3.1 ([19]). If a, b, c, and d are real numbers, and Jn is an n×n matrix
whose all entries are equal to one, then the determinant of∣∣∣∣ (λ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (λ+ b)In2 − bJn2

∣∣∣∣
can be simplified as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1) a) (λ− (n2 − 1) b)− n1n2cd) ,

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

Theorem 3.1. For real numbers a, b, the characteristic polynomial of an n×n
matrix

M =


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a


can be simplified as

PM (λ) = (λ− a− (n− 1)b)(λ− a+ b)n−1.

Proof. Let a, b are real numbers and M is a square matrix of order n as

M = [(a− b)In + bJn] .
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Then, we get the characteristic polynomial of M as

(3) PM (λ) = |λIn −M | = |(λ− a+ b)In − bJn| .

The first step, we apply R
′
i = Ri − R1, for 2 ≤ i ≤ n. Consequently, Equation

3 is as the following:

(4) PM (λ) =

∣∣∣∣ λ− a −bJ1×(n−1)

−(λ− a+ b)J(n−1)×1 (λ− a+ b)I(n−1)

∣∣∣∣ .
The next step is replacing C1 by C

′
1 = C1 +C2 +C3 + . . .+Cn, then Equation

4 can be written as

(5) PM (λ) =

∣∣∣∣ λ− a− (n− 1)b −bJ1×(n−1)

0(n−1)×1 (λ− a+ b)I(n−1)

∣∣∣∣ .
It is obvious from Equation 5, PM (λ) is an upper triangle matrix. Thus, it

can be simplified as given below:

PM (λ) = (λ− a− (n− 1)b)(λ− a+ b)n−1,

and we complete the proof.

Theorem 3.2. For real numbers a, b, the characteristic polynomial of an n×n
matrix

M =

[
U V
V U

]
,

where U = [b(J − I)n
2
] and V = [b(J − I)n

2
+ aIn

2
], can be simplified as

PM (λ) = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) (λ+ a)

n
2 .

Proof. For real numbers s, t, suppose that M is an n× n matrix

M =

[
U V
V U

]
=



0 . . . b a . . . b
...

. . .
...

...
. . .

...
b . . . 0 b . . . a
a . . . b 0 . . . b
...

. . .
...

...
. . .

...
b . . . a b . . . 0


=

[
b(J − I)n

2
b(J − I)n

2
+ aIn

2

b(J − I)n
2
+ aIn

2
b(J − I)n

2

]
.

Then, equation PM (λ) = |λIn −M | can be written as follows:

(6) PM (λ) =

∣∣∣∣∣ (λ+ b)In
2
− bJn

2
−aIn

2
− b(J − I)n

2

−bIn
2
− b(J − I)n

2
(λ+ b)In

2
− bJn

2

∣∣∣∣∣ .
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To solve the determinant in Equation 6, it is necessary to perform row and
column operations. The first step is replacing Rn

2
+i by R

′
n
2
+i = Rn

2
+i − Ri,

where 1 ≤ i ≤ n
2 . Consequently, Equation 6 is as the following:

(7) PM (λ) =

∣∣∣∣∣ (λ+ b)In
2
− bJn

2
−aIn

2
− b(J − I)n

2

−(λ+ a)In
2

(λ+ a)In
2

∣∣∣∣∣ .
Next, the second step is replacing Ci by C

′
i = Ci + Cn

2
+i, where 1 ≤ i ≤ n

2 .
Hence, Equation 7 can be written as follows:

(8) PM (λ) =

∣∣∣∣∣ (λ− a+ 2b)In
2
− 2bJn

2
−aIn

2
− b(J − I)n

2

0n
2

(λ+ a)In
2

∣∣∣∣∣ =
∣∣∣∣ A B
C D

∣∣∣∣ .
Bearing in mind Theorem 2.1 and since C = 0, it implies Equation 8 can be
simplified to

(9) PM (λ) = |A| |D| .

We first consider |A| using Theorem 3.1 as follows:

(10) |A| = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) .

Meanwhile, as a result of D as a diagonal matrix, as a consequence, we derive:

(11) |D| = (λ+ a)
n
2 .

Therefore, by substituting Equations 10 and 11 to Equation 9, we obtain

PM (λ) = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) (λ+ a)

n
2 .

Theorem 3.3. For real numbers a, b, c, d, the characteristic polynomial of a
(2n− 2)× (2n− 2) matrix:

M =

 a(J − I)n−2 cJ(n−2)×n
2

cJ(n−2)×n
2

cJn
2
×(n−2) d(J − I)n

2
d(J − I)n

2
+ bIn

2

cJn
2
×(n−2) d(J − I)n

2
+ bIn

2
d(J − I)n

2

 ,

can be simplified as

PM (λ) = (λ+ a)n−3 (λ− b+ 2d)
n
2
−1 (λ+ b)

n
2(

λ2 − (b+ (n− 2)d+ a(n− 3))λ+ a(n− 3) (b+ (n− 2)d)− n(n− 2)c2
)
.
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4. Degree sum exponent distance energy of non-commuting graph
for dihedral groups

This section will present the results of non-commuting graph energy for D2n,
using the corresponding DSED-matrix. Since for n = 1 and n = 2, D2n is
abelian, then strictly it is for n ≥ 3. The following is an example of ΓG for D2n,
where n = 4.

Example 4.1. Let D8 = {e, a, a2, a3, b, ab, a2b, a3b} and Z(D8) = {e, a2}, where
CD8(a

i) = {e, a, a2, a3}, CD8(b) = {e, a2, b, a2b} = CD8(a
2b),

CD8(ab) = {e, a2, ab, a3b} = CD8(a
3b). For G = D8\Z(D8), according to each

element’s centralizer in G, as a consequence, ΓG is presented in Figure 1.

Figure 1: Non-commuting graph for D8

The vertex degree of a and a3 is four. Similarly, for 1 ≤ i ≤ 4, and the
degree of b, ab, a2b, and a3b is also four. The distance between a and b, between
a2b and a3b, and between a3 and ab are found to be equal, i.e. equal to one,
otherwise it is two.

In the next theorem, we derive DSED−energy of ΓG in terms of G = G1

and G = G2.

Theorem 4.1. Let ΓG be the non-commuting graph on G.

1. If G = G1, then EDSED(ΓG) is undefined, and

2. If G = G2, then EDSED(ΓG) =

{
4(n− 1)2, if n is odd

4n(n− 2)2, if n is even.
.

Proof. 1. For G = G1 case, by Theorem 2.3, ΓG
∼= K̄m, where m = |G1|.

Then, ΓG consists of m isolated vertices which implies the distance of every pair
vertices of G1 is undefined.

2. For the second case when G = G2, we first proceed for odd n. Again, by
Theorem 2.3, ΓG

∼= Kn. Then, for every vp of ΓG, dvp = (n− 1) and every pair
of vertices are at distance 1. Now, the DSED−matrix of ΓG is DSED(ΓG) =
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dsedpq, with (p, q)−entry if vp ̸= vq is ((n− 1) + (n− 1))1 = 2(n− 1), and zero
if vp = vq. Hence,

DSED(ΓG) =


0 2(n− 1) 2(n− 1) . . . 2(n− 1)

2(n− 1) 0 2(n− 1) . . . 2(n− 1)
2(n− 1) 2(n− 1) 0 . . . 2(n− 1)

...
...

...
. . .

...
2(n− 1) 2(n− 1) 2(n− 1) . . . 0


= 2(n− 1)A(Kn).

In other words, DSED(ΓG) is the product of 2(n − 1) and A(Kn). Therefore,
from Lemma 2.1, the DSED−energy of ΓG is 2(n− 1).2(n− 1) = 4(n− 1)2.

Meanwhile for the even n, by Theorem 2.3, ΓG
∼= Kn − n

2K2, then every

vertex has degree (n− 2) and the distance between every pair aib and a
n
2
+i for

all 1 ≤ i ≤ n is 2, and 1, otherwise. Thus, DSED(ΓG) = dsedpq and for vp ̸= vq,

dsedij =


4(n− 2)2, if vp = aib, vq = a

n
2
+ib, 1 ≤ i ≤ n

2(n− 2), if vp = aib, vq ̸= a
n
2
+ib, 1 ≤ i ≤ n

0, otherwise.

.

Now, we can construct DSED(ΓG) as follows:

DSED(ΓG) =



0 . . . 2(n− 2) 4(n− 2)2 . . . 2(n− 2)
...

...
...

...
. . .

...
2(n− 2) . . . 0 2(n− 2) . . . 4(n− 2)2

4(n− 2)2 . . . 2(n− 2) 0 . . . 2(n− 2)
...

...
...

...
. . .

...
2(n− 2) . . . 4(n− 2)2 2(n− 2) . . . 0


=

[
2(n− 2)(J − I)n

2
2(n− 2)(J − I)n

2
+ 4(n− 2)2In

2

2(n− 2)(J − I)n
2
+ 4(n− 2)2In

2
2(n− 2)(J − I)n

2

]
.

In this case, we have four block matrices of DSED(ΓG):

(12) DSED(ΓG) =

[
U V
V U

]
,

where U and V are n
2 × n

2 matrices. Matrix U consists of zero diagonal entries,
otherwise, the entries are 2(n− 2), while the diagonal entries of V are 4(n− 2)2

and the non-diagonal entries are 2(n− 2). By Theorem 3.2 with a = 4(n− 2)2

and b = 2(n− 2), Equation 12 is
(13)

PDSED(ΓG)(λ) =
(
λ+ 4(n− 2)2

)n
2 (λ− 4(n− 2)(n− 3))

n
2
−1 (λ− 6(n− 2)2

)
.
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Therefore, using the roots of Equation 13, the DSED−energy of ΓG is

EDSED(ΓG) =
(n
2

) ∣∣−4(n− 2)2
∣∣+ (n

2
− 1

)
|4(n− 2)(n− 3)|+

∣∣6(n− 2)2
∣∣

= 4n(n− 2)2.

Our next proposition will provide us with the characteristic polynomial of
ΓG for G = G1 ∪G2.

Theorem 4.2. Let ΓG be the non-commuting graph on G on G = G1 ∪ G2,
where n ≥ 3. Then, the characteristic polynomial of ΓG is

1. for n is odd:

PDSED(ΓG)(λ) =(λ+ 4n2)n−2(λ+ 4(n− 1))n−1

((λ− 4n2(n− 2))(λ− 4(n− 1)2)− (n− 1)n(3n− 2)2),

2. for n is even:

PDSED(ΓG)(λ)=(λ+4n2)n−3(λ−8(n− 2)(2n− 5))
n
2
−1(λ+16(n− 2)2)

n
2

(λ2 − (20(n−2)2+4n2(n− 3))λ+80n2(n− 3)(n−2)2−n(n−2)(3n− 4)2).

Proof. 1. Let n is odd, from Theorem 2.2, we have dai = n and daib = 2(n−1),
for 1 ≤ i ≤ n. Following Theorem 2.5, we then obtain the distance of every pair
of vertices. Since Z(D2n) = {e}, then there are 2n − 1 vertices for ΓG, where
G = G1∪G2. The vertex set consists of n−1 vertices of ai, for i = 1, 2, . . . , n−1,
and n vertices of aib, i = 1, 2, . . . , n. Then, from Definition 2.1, DSED(ΓG) is
an (2n− 1)× (2n− 1) matrix as the following:

DSED(ΓG) =



0 . . . 4n2 3n− 2 . . . 3n− 2
...

. . .
...

...
. . .

...
4n2 . . . 0 3n− 2 . . . 3n− 2

3n− 2 . . . 3n− 2 0 . . . 4(n− 1)
...

. . .
...

...
. . .

...
3n− 2 . . . 3n− 2 4(n− 1) . . . 0


.

It can be partitioned into four block matrices:

(14) DSED(ΓG) =

[
4n2(J − I)n−1 (3n− 2)J(n−1)×n

(3n− 2)J(n−1)×n 4(n− 1)(J − I)n

]
.

Now, the characteristic polynomial of Equation 14 is

PDSED(ΓG)(λ) = |λI2n−1 −DSED(ΓG)|

=

∣∣∣∣ (λ+ 4n2)In−1 − 4n2Jn−1 −(3n− 2)J(n−1)×n

−(3n− 2)Jn×(n−1) (λ+ 4(n− 1))In − 4(n− 1)Jn)

∣∣∣∣ .
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According to Lemma 3.1, with a = 4n2, b = 4(n − 1), c = d = 3n − 2, and
n1 = n−1, n2 = n, then we obtain the formula of PDSED(ΓG)(λ), and we obtain
the desired outcome.

2. Let us prove the even n case. Based on Theorem 2.2, we know that
d(ai) = n and d(aib) = 2(n − 2), for all 1 ≤ i ≤ n. Since Z(D2n) = {e, a

n
2 },

then there are 2n − 2 vertices in ΓG. The vertex set contains n − 2 vertices of
ai, for 1 ≤ i < n

2 ,
n
2 < i < n, and n vertices of aib, for 1 ≤ i ≤ n. Following

the result of Theorem 2.5 and by Definition 2.1, then matrix DSED(ΓG) of size
(2n− 2)× (2n− 2) is as given below:

0 . . . 4n2 3n− 4 . . . 3n− 4 3n− 4 . . . 3n− 4
...

. . .
...

...
. . .

...
...

. . .
...

4n2 . . . 0 3n− 4 . . . 3n− 4 3n− 4 . . . 3n− 4
3n− 4 . . . 3n− 4 0 . . . 4(n− 2) 16(n− 2)2 . . . 4(n− 2)

...
. . .

...
...

. . .
...

...
. . .

...
3n− 4 . . . 3n− 4 4(n− 2) . . . 0 4(n− 2) . . . 16(n− 2)2

3n− 4 . . . 3n− 4 16(n− 2)2 . . . 4(n− 2) 0 . . . 4(n− 2)
...

. . .
...

...
. . .

...
...

. . .
...

3n− 4 . . . 3n− 4 4(n− 2) . . . 16(n− 2)2 4(n− 2) . . . 0


.

Now, we provide nine block matrices of DSED(ΓG) as follows: 4n2(J − I)n−2 (3n− 4)J(n−2)×n
2

(3n− 4)J(n−2)×n
2

(3n− 4)Jn
2
×(n−2) 4(n− 2)(J − I)n

2
4(n− 2)(J − I)n

2
+ 16(n− 2)2In

2

(3n− 4)Jn
2
×(n−2) 4(n− 2)(J − I)n

2
+ 16(n− 2)2In

2
4(n− 2)(J − I)n

2

 .

By Theorem 3.3 with r = 4n2, s = 16(n− 2)2, t = 3n− 4, u = 4(n− 2), we then obtain the required
result.

As a result of Theorem 4.2, we proceed to the two following theorems.

Theorem 4.3. Let ΓG be a non-commuting graph on G, where G = G1 ∪ G2,
then DSED−spectral radius for ΓG is

1. for n is odd:

ρDSED(ΓG) =2n2 (n− 2) + 2 (n− 1)2+√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ n (n− 1) (3n− 2)2,

2. for n is even:

ρDSED(ΓG) =10 (n− 2)2 + 2n2 (n− 3)+√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2.
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Proof. 1. Consider the first case for odd n, DSED(ΓG) has four eigenvalues,
where it follows the result of Theorem 4.2 (1). They are λ1 = −4n2 of multiplic-
ity (n − 2) and λ2 = −4(n − 1) of multiplicity (n − 1). The quadratic formula
gives the other two eigenvalues, which are

λ3, λ4 = 2n2 (n− 2) + 2 (n− 1)2

±
√(

2n2 (n− 2)− 2 (n− 1)2
)2

+ (n− 1)n (3n− 2)2.

They are positive real numbers. Hence, the spectrum of ΓG as the following:

Spec(ΓG) =


(
2n2 (n− 2) + 2 (n− 1)2 +

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

)1

,

(
2n2 (n− 2) + 2 (n− 1)2 −

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

)1

,

(−4(n− 1))n−1,
(
−4n2

)n−2
}
.

By determining the maximum absolute eigenvalues, consequently, we derive the spectral radius of ΓG

as the desired result.
2. We may consider the even n case, it follows from Theorem 4.2 (2), DSED(ΓG) has five

eigenvalues. Hence, we get λ1 = −4nn of multiplicity (n− 3), the second is λ2 = 8(n− 2)(2n− 5) of
multiplicity n

2
− 1, and the third is λ3 = −16(n − 2)2 of multiplicity n

2
. From the quadratic formula

we have λ4, λ5 = 10 (n− 2)2 + 2n2 (n− 3)±
√

(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2.

Hence, the spectrum of ΓG as the following:

Spec(ΓG) =

{(
10 (n− 2)2 + 2n2 (n− 3) +

√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2

)1

,

(
10 (n− 2)2 + 2n2 (n− 3)−

√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2

)1

,

(8(n− 2)(2n− 5))
n
2
−1,

(
−4n2

)n−3
,
(
−16(n− 2)2

)n
2

}
.

Now, for i = 1, 2, 3, 4, the maximum of |λi| is DSED−spectral radius of ΓG.

Theorem 4.4. Let ΓG be a non-commuting graph on G, where G = G1 ∪ G2,
then DSED−energy for ΓG is

1. for n is odd: EDSED(ΓG) = 8n2 (n− 2) + 8 (n− 1)2

2. for n is even: EDSED(ΓG) = 8n2 (n− 3) + 8 (n− 2)2 + 8n(n− 2)2.

Proof. 1. The proving part of Theorem 4.3 (1) was given the spectrum of ΓG
for odd n, then the DSED−energy of ΓG can be calculated as follows:

EDSED(ΓG) =(n− 2)
∣∣−4n2

∣∣+ (n− 1) |−4(n− 1)|+∣∣∣∣∣2n2 (n− 2) + 2 (n− 1)2 ±
√(

2n2 (n− 2)− 2 (n− 1)2
)2

+ (n− 1)n (3n− 2)2

∣∣∣∣∣
=8n2 (n− 2) + 8 (n− 1)2
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2. Let n is even, by Theorem 4.3 (2), the DSED−energy of ΓG is derived as follows:

EDSED(ΓG) =(n− 3)
∣∣−4n2

∣∣+ (n
2
− 1
)
|−8(n− 2)|+

(n
2

) ∣∣−16(n− 2)2
∣∣+∣∣∣∣∣2n2 (n− 3) + 2 (n− 2)2 ±

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

∣∣∣∣∣
=8n2 (n− 3) + 8 (n− 2)2 + 8n(n− 2)2.

Example 4.2. Following Example 4.1, we can construct 6 × 6 degree sum
exponent distance matrix of ΓG as follows:

DSED(ΓG) =



0 64 8 8 8 8
64 0 8 8 8 8
8 8 0 8 64 8
8 8 8 0 8 64
8 8 64 8 0 8
8 8 8 64 8 0


Here PDSED(ΓG)(λ) is derived as follows:

PDSED(ΓG)(λ) = (λ− 48)2(λ+ 64)3(λ− 96).

As a result of using Maple, we have determined that

Spec(ΓG) =
{
(96)1, (48)2, (−64)3

}
.

Therefore, the DSED−energy of ΓG is as follows:

EDSED(ΓG) = (1)|96|+ (2)|48|+ (3)| − 64| = 384.

5. Discussion

As in the previous result of Theorem 4.4 for G = G1 ∪G2, in the following, we
get the classification of the DSED−Energy of ΓG for D2n.

Corollary 5.1. Graph ΓG associated with the degree sum exponent distance
matrix is hyperenergetic.

Moreover, based on the facts obtained in the previous section, the energies
in Theorem 4.4 yield the following fact:

Corollary 5.2. DSED−energy of ΓG is always an even integer.

The fact in Corollary 5.2 corresponds with the well-known statement from
[4] and [18]. Furthermore, as a comparison of the energies from Theorems 2.4
and 4.4, as a consequence, we derive the following conclusion:

Corollary 5.3. EDSED(ΓG) > EA(ΓG).
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Figure 2: Correlation of EDSED(ΓG) with EA(ΓG) for odd n

In our graph, the DSED−energy of ΓG for D2n, where n ≥ 3 is always
greater than the adjacency energy. In addition, it can be seen from Figures 2
and 3 that EDSED(ΓG) has a significant correlation with EA(ΓG), with a corre-
lation coefficient of 0.8619 for odd n, 0.865 for even n. Those results state that
EDSED(ΓG) and EA(ΓG) have a strong correlation between them and comply
with the result from [9]. However, it is slightly different from the claim from
[20].

Figure 3: Correlation of EDSED(ΓG) with EA(ΓG) for even n
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