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Abstract. In this paper, we first define a new half-discrete kernel function in the
whole plane, which involves some exponent functions and unifies some homogeneous
and non-homogeneous kernels. By employing some techniques of real analysis, a new
half-discrete Hilbert-type inequality with the newly defined kernel function, as well as
its equivalent forms are established. Furthermore, the constant factors of the newly
obtained inequalities are proved to be optimal. At last, assigning special values to
the parameters, we get some interesting Hilbert-type inequalities involving hyperbolic
functions, and with the constant factors related to Euler numbers, Bernoulli numbers,
and Catalan constant.
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1. Introduction

Suppose that p > 1, and f(x), µ(x) are two non-negative measurable functions
defined on a measurable set E. Define

Lp,µ(E) :=

{
f : ∥f∥p,µ :=

[∫
E
fp(x)µ(x)dx

]1/p
<∞

}
.

Specially, if µ(x) ≡ 1, then we have the following abbreviations: ∥f∥p := ∥f∥p,µ
and Lp(E) := Lp,µ(E). Additionally, suppose that p > 1, an, νn > 0, n ∈ F ⊆ Z,
a = {an}n∈F . Define

lp,ν :=

a : ∥a∥p,ν :=

(∑
n∈F

apnνn

)1/p

<∞

 .

Specially, if νn ≡ 1, then we have ∥a∥p := ∥a∥p,ν and lp := lp,ν .
Consider two real-valued sequences: a = {am}m∈N+ ∈ l2 and b = {bn}n∈N+ ∈

l2, then ∑
n∈N+

∑
m∈N+

ambn
m+ n

< π∥a∥2∥b∥2,(1)
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where the constant factor π is the best possible. Inequality (1) was proposed
by D. Hilbert in his lectures on integral equations in 1908, and in 1911, Schur
proved the integral analogy of inequality (1) as follows:∫

y∈R+

∫
x∈R+

f(x)g(y)

x+ y
dxdy < π∥f∥2∥g∥2,(2)

where f, g ≥ 0, f, g ∈ L2(R+), and the constant factor π is the best possible.
Inequalities (1) and (2) are usually known as Hilbert’s inequality [1]. In the

past twenty years, by the introduction of some parameters and special functions
such as the Beta function, some extended forms of (1) and (2) were established,
such as the following[2]:∑

n∈N+

∑
m∈N+

ambn
(m+ n)λ

< B

(
λ

p
,
λ

q

)
∥a∥p,µ∥b∥q,ν ,(3)

where 0 < λ ≤ min{p, q}, µm = mp−λ−1, νn = nq−λ−1, p > 1, 1
p + 1

q = 1, and
B(x, y) is the Beta function [3, 4], that is,

B(x, y) :=

∫ ∞

0

zx−1

(1 + z)x+y
dz (x, y > 0).

In addition, Yang [5] proved the following extended form of (2) in 2004:

(4)

∫
y∈R+

∫
x∈R+

f(x)g(y)

xλ + yλ
dxdy <

π

λ sin rπ
∥f∥p,µ∥g∥q,ν ,

where r, s, λ > 0, r + s = 1, µ(x) = xp(1−λr)−1, ν(x) = xq(1−λs)−1. With regard
to some other extensions of (1) and (2), we refer to [6, 7, 8, 9, 10, 11, 12,
13, 14]. Such extended inequalities as (3) and (4) are usually named as Hilbert-
type inequality. Furthermore, by constructing new kernel functions, introducing
parameters, and considering the reverse form, coefficient refinement and multi-
dimensional extension, a great many Hilbert-type inequalities were established
in the past 20 years (see, [15, 16, 17, 18, 19, 20, 21, 22, 23]).

It should be noted that, in addition to the discrete and integral forms,
Hilbert-type inequality sometimes appears in half-discrete form. The first half-
discrete Hilbert-type inequality was put forward by Hardy et al. (see, Theorem
351 of [1]). However, the constant factor was not proved to be the best possi-
ble. Until recently, researchers established some new half-discrete Hilbert-type
inequalities with the best possible constant factors, such as [24]∫

x∈R+

f(x)
∑
n∈N+

an
(1 + nx)λ

dx < B

(
λ

2
,
λ

2

)
∥f∥2,µ∥a∥2,ν ,(5)

where µ(x) = x
λ
2
−1, νn = n

λ
2
−1. Regarding some other half-discrete Hilbert-type

inequalities, we refer to [25, 26, 27, 28, 29, 30].
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The objective of this work is to establish a class of half-discrete Hilbert-type
inequalities with the kernel functions related to some hyperbolic functions. Our
motivation mainly comes from the following integral Hilbert-type inequalities
[31, 32]: ∫

y∈R+

∫
x∈R+

csch(xy)f(x)g(y)dxdy <
π2

4
∥f∥p,µ∥g∥q,ν ,(6)

∫
y∈R

∫
x∈R

f(x)g(y)

|epxy − e−qxy|
dxdy <

(
π

pq sin π
p

)2

∥f∥p,µ̂∥g∥q,ν̂ ,(7)

where µ(x) = x−(p+1), ν(y) = y−(q+1), µ̂(x) = |x|−(p+1), ν̂(y) = |y|−(q+1) .

In this work, we will establish the following Hilbert-type inequalities involv-
ing hyperbolic secant function and hyperbolic cosecant function:∫

x∈R
f(x)

∑
n∈Z0

sech

(
2m+1

√
n

x

)
andx <

Em

22m
(2m+ 1)π2m+1∥f∥p,µ∥a∥q,ν ,(8) ∫

x∈R
f(x)

∑
n∈Z0

∣∣csch ( 2m+1
√
xn
)∣∣ andx<Bm

m
(2m+1)(22m−1)π2m∥f∥p,µ̂∥a∥q,ν̂ ,(9)

where µ(x) = |x|2p−1, νn = |n|−1, µ̂(x) = |x|
p

2m+1
−1, ν̂n = |n|

q
2m+1

−1, Em(m ∈
N) is the Euler number, and Bm(m ∈ N+) is the Bernoulli number.

More generally, we will construct a new kernel function involving several
exponent functions with multiple parameters, which unifies some homogeneous
and non-homogeneous kernels, and then a half-discrete Hilbert-type inequality
and its equivalent forms are established. Detailed lemmas will be presented in
Section 2, and main results and some corollaries will be presented in Section 3
and Section 4, respectively.

2. Some Lemmas

Lemma 2.1. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Suppose that
c > a ≥ b > d > 0, and ab = cd when τη = 1. Define

K(z) :=
| az + τbz |
| cz + ηdz |

(z ̸= 0).(10)

Then, K(z) decreases on R+, and increases on R−.

Proof. If τ = 1, η = 1, then we have ab = cd, and

dK

dz
=

(ac)z log a
c + (bd)z log b

d + (ad)z log a
d + (bc)z log b

c

(cz + dz)2

: = L(z)(cz + dz)−2.
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Since c > a ≥ b > d > 0, we have bc > ad, and ac > bd.
If z ∈ R+, we have

L(z) < (ac)z log
a

c
+ (ac)z log

b

d
+ (bc)z log

a

d
+ (bc)z log

b

c
= 0.

If z ∈ R−, we have

L(z) > (bd)z log
a

c
+ (bd)z log

b

d
+ (ad)z log

a

d
+ (ad)z log

b

c
= 0.

It implies that dK
dz < 0 for z ∈ R+, and dK

dz > 0 for z ∈ R−. Thus, K(z)
decreases on R+ and increases on R− for τ = 1, η = 1.

If τ = 1, η = −1, z ∈ R+, then we have

dK

dz
= −

(ac)z log c
a + (bd)z log b

d + (ad)z log a
d + (bc)z log c

b

(cz − dz)2
< 0.

If τ = 1, η = −1, z ∈ R−, then we have

dK

dz
=

(ad)z log a
d + (bc)z log c

b + (ac)z log c
a + (bd)z log b

d

(cz − dz)2
> 0.

Therefore, K(z) decreases on R+ and increases on R− for τ = 1, η = −1.

If τ = −1, η = −1, then ab = cd, and we have

dK

dz
=

(ac)z log a
c + (bd)z log b

d − (ad)z log a
d − (bc)z log b

c

(cz − dz)2
(11)

:= g(z)

[(√
c

d

)z

−

(√
d

c

)z]−2

,

where g(z) = g1(z) + g2(z)− g3(z)− g4(z), and

g1(z) =
(a
d

)z
log

a

c
=

(√
ac

bd

)z

log

√
ad

bc
,

g2(z) =

(
b

c

)z

log
b

d
=

(√
bd

ac

)z

log

√
bc

ad
,

g3(z) =
(a
c

)z
log

a

d
=

(√
ad

bc

)z

log

√
ac

bd
,

g4(z) =

(
b

d

)z

log
b

c
=

(√
bc

ad

)z

log

√
bd

ac
.
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It follows that

dg1
dz

=

(√
ac

bd

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg2
dz

=

(√
bd

ac

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg3
dz

=

(√
ad

bc

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg4
dz

=

(√
bc

ad

)z [
log2

√
a

b
− log2

√
c

d

]
.

Therefore, we get

dg

dz
=

[
log2

√
a

b
− log2

√
c

d

]
×

[(√
ac

bd

)z

+

(√
bd

ac

)z

−

(√
ad

bc

)z

−

(√
bc

ad

)z]

=

[
log2

√
a

b
− log2

√
c

d

] [(c
b

)z
+

(
b

c

)z

−
(a
c

)z
−
( c
a

)z]
.

Let h(t) := tz + t−z, then it can be shown that h(t) increases on [1,∞) for
arbitrary z ∈ R+. Since c

b ≥ c
a > 1, we have h

(
c
b

)
≥ h

(
c
a

)
, that is,(c

b

)z
+

(
b

c

)z

−
(a
c

)z
−
( c
a

)z
≥ 0.

Additionally, in view of c
d ≥ a

b ≥ 1, we have log2
√

a
b − log2

√
c
d ≤ 0. Thus, we

obtain dg
dz ≤ 0 on R+, which leads to

g(z) ≤ g(0) = log
a

c
+ log

b

d
− log

a

d
− log

b

c
= 0 (z ∈ R+).

By (11), we have dK
dz ≤ 0 (z ∈ R+), and it implies that K(z) decreases on

R+. Similarly, it can be proved that K(z) increases on R−. Thus, we proved
Lemma 2.1 in the case of τ = −1, η = −1.

Lemma 2.2. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Suppose that
c > a ≥ b > d > 0, and ab = cd when τη = 1. Let λ be such that λ ≥ 1, and
λ ̸= 1 for τ = 1, η = −1. K(z) is defined via (10), and

κ (a, b, c, d, τ, η, λ) :=

∞∑
j=0

[
(−η)j

(j log c
d + log c

a)
λ
+

τ(−η)j

(j log c
d + log c

b)
λ

]
(12)

+

∞∑
j=0

[
(−η)j

(j log c
d + log b

d)
λ
+

τ(−η)j

(j log c
d + log a

d)
λ

]
.
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Then ∫
z∈R

K(z) |z|λ−1 dz = Γ(λ)κ (a, b, c, d, τ, η, λ) .(13)

Proof. Expanding 1
cz+ηdz (z ∈ R+) into power series, and observing that c >

d > 0, we obtain

1

cz + ηdz
=

c−z

1 + η(c−1d)z
= c−z

∞∑
j=0

(−η)j
(
d

c

)jz

.

By Lebesgue term-by-term integration theorem, we get∫ ∞

0
K(z)zλ−1dz =

∞∑
j=0

(−η)j
[ ∫ ∞

0

(
d

c

)jz (a
c

)z
zλ−1dz(14)

+ τ

∫ ∞

0

(
d

c

)jz (b
c

)z

zλ−1dz

]
:=

∞∑
j=0

(−η)j(J1 + τJ2).

Let z = u
j log c

d
+log c

a
(j ∈ N), then we have

J1 =
1

(j log c
d + log c

a)
λ

∫ ∞

0
e−uuλ−1du =

Γ(λ)

(j log c
d + log c

a)
λ
.(15)

Similarly, we can obtain

J2 =
1

(j log c
d + log c

b)
λ

∫ ∞

0
e−uuλ−1du =

Γ(λ)

(j log c
d + log c

b)
λ
.(16)

Plug (15) and (16) back into (14), then we obtain∫ ∞

0
K(z)zλ−1dz =

∞∑
j=0

[
(−η)jΓ(λ)

(j log c
d + log c

a)
λ
+

τ(−η)jΓ(λ)
(j log c

d + log c
b)

λ

]
.(17)

Since c > a ≥ b > d > 0, we have 1
d > 1

b ≥ 1
a > 1

c > 0. From the above
discussion, we get∫ 0

−∞
K(z) |z|λ−1 dz =

∫ ∞

0
K(−z)zλ−1dz(18)

=
∞∑
j=0

[
(−η)jΓ(λ)

(j log c
d + log b

d)
λ
+

τ(−η)jΓ(λ)
(j log c

d + log a
d)

λ

]
.

Combining (17) and (18), and using (12), we get (13). Lemma 2.2 is proved.
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Lemma 2.3. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Let

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
,

β ∈ Ω, and γ ∈ R+ ∩ Ω. Suppose that c > a ≥ b > d > 0, and ab = cd when
τη = 1. Let λ be such that λ ≥ 1, λγ ≤ 1, and λ ̸= 1 for τ = 1, η = −1. Let
K(z) be defined via (10), and for an arbitrary positive natural number s which
is large enough, define

ã := {ãn}n∈Z0 :=
{
|n|λγ−1− 2γ

qs

}
n∈Z0

,

f̃(x) :=

{
|x|λβ−1+ 2β

ps , x ∈ E

0, x ∈ R \ E
,

where Z0 := Z \ {0}, and E := {x : |x|sgnβ < 1}. Then

Ĩ : =
∑
n∈Z0

ãn

∫
x∈R

K
(
xβnγ

)
f̃(x)dx =

∫
x∈R

f̃(x)
∑
n∈Z0

ãnK
(
xβnγ

)
dx(19)

>
s

|βγ|

[∫
[−1,1]

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz

]
.

Proof. Let

E+ := {x : x ∈ E ∩ R+}, E− := {x : x ∈ E ∩ R−}.

Then

Ĩ = I1 + I2 + I3 + I4,

where

I1 :=

∫
x∈E−

f̃(x)
∑
n∈Z+

ãnK
(
xβnγ

)
dx,

I2 :=

∫
x∈E−

f̃(x)
∑
n∈Z−

ãnK
(
xβnγ

)
dx,

I3 :=

∫
x∈E+

f̃(x)
∑
n∈Z+

ãnK
(
xβnγ

)
dx,

I4 :=

∫
x∈E+

f̃(x)
∑
n∈Z−

ãnK
(
xβnγ

)
dx.
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In view of λγ ≤ 1, it follows that ãn = |n|λγ−1− 2γ
qs decreases with respect to n if

n ∈ Z+. In addition, for x ∈ E−, n ∈ Z+, we have xβnγ < 0. By Lemma 2.1, it
can be proved that K

(
xβnγ

)
decreases with respect to n if n ∈ Z+. Therefore,

I1 >

∫
x∈E−

|x|λβ−1+ 2β
ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W1.

Similarly, we can obtain

I2 >

∫
x∈E−

|x|λβ−1+ 2β
ps

∫ −1

−∞
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W2,

I3 >

∫
x∈E+

|x|λβ−1+ 2β
ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W3,

I4 >

∫
x∈E+

|x|λβ−1+ 2β
ps

∫ −1

−∞
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W4.

We first consider the case where β < 0, that is, β ∈ Ω ∩ R−. Letting xβyγ = z,

and observing that x
−β

γ = − |x|−
β
γ (x < 0) and z

1
r
−1 = |z|

1
r
−1 (z < 0), we get

W1 =

∫ −1

−∞
|x|λβ−1+ 2β

ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx(20)

=
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−∞
K(z) |z|λ−1− 2

qs dzdx

=
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ −1

−∞
K(z) |z|λ−1− 2

qs dzdx

+
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx

=
s

2 |βγ|

∫ −1

−∞
K(z) |z|λ−1− 2

qs dz

+
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx.

By Fubini’s theorem, we have∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx(21)

=

∫ 0

−1
K(z) |z|λ−1− 2

qs

∫ z1/β

−∞
|x|−1+ 2β

s dxdz

=
s

2 |β|

∫ 0

−1
K(z) |z|λ−1+ 2

ps dz.

Applying (21) to (20), we get

W1 =
s

2 |βγ|

[∫ −1

−∞
K(z) |z|λ−1− 2

qs dz +

∫ 0

−1
K(z) |z|λ−1+ 2

ps dz

]
.
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In addition, it can be proved that W1 =W4, and

W2 =W3 =
s

2 |βγ|

[∫ ∞

1
K(z) |z|λ−1− 2

qs dz +

∫ 1

0
K(z) |z|λ−1+ 2

ps dz

]
.

Therefore, we have

Ĩ > W1 +W2 +W3 +W4

=
s

|βγ|

[∫
[−1,1]

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz

]
.

Inequality (19) is proved for β < 0. Similarly, (19) can also be proved to be true
for β > 0, and we complete the proof of Lemma 2.3.

Lemma 2.4. Let s1, s2 > 0, s1+ s2 = 1, ψ(z) = cot z, ϕ(z) = csc z and m ∈ N.
Then

∞∑
j=0

[
1

(j + s1)2m+1
− 1

(j + s2)2m+1

]
=
π2m+1

(2m)!
ψ(2m)(s1π),(22)

∞∑
j=0

[
1

(j + s1)2m+2
+

1

(j + s2)2m+2

]
= − π2m+2

(2m+ 1)!
ψ(2m+1)(s1π),(23)

∞∑
j=0

[
(−1)j

(j + s1)2m+1
+

(−1)j

(j + s2)2m+1

]
=
π2m+1

(2m)!
ϕ(2m)(s1π).(24)

Proof. We write the partial fraction expansion of ψ(z) = cot z (0 < z < π) as
follows [4]:

ψ(z) =
1

z
+

∞∑
j=1

(
1

z + jπ
+

1

z − jπ

)
.

Taking the (2m)th derivative of ψ(z), we get

ψ(2m)(z) = (2m)!

 ∞∑
j=0

1

(jπ + z)2m+1
+

∞∑
j=1

1

(z − jπ)2m+1

(25)

= (2m)!
∞∑
j=0

[
1

(z + jπ)2m+1
− 1

(jπ + π − z)2m+1

]
.

Letting z = s1π in (25), and observing that s1 + s2 = 1, we obtain (22). Taking
the first derivative of (25) and setting z = s1π, we arrive at (23). Additionally,
owing to the following identity:

2ϕ(2z) = ψ
(π
2
− z
)
+ ψ(z)

(
0 < z <

π

2

)
,
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we have

22m+1ϕ(2m)(2z) = ψ(2m)
(π
2
− z
)
+ ψ(2m)(z).(26)

Let u = s1π
2 in (26), and use (22), then we have

ϕ(2m) (s1π) =
(2m)!

π2m+1

∞∑
j=0

[
1

(2j + s2)2m+1
− 1

(2j + 1 + s1)2m+1

]
(27)

+
(2m)!

π2m+1

∞∑
j=0

[
1

(2j + s1)2m+1
− 1

(2j + 1 + s2)2m+1

]

=
(2m)!

π2m+1

∞∑
j=0

[
(−1)j

(j + s1)2m+1
+

(−1)j

(j + s2)2m+1

]
.

Equality (27) implies (24) obviously. Lemma 2.4 is proved.

Remark 2.1. By Lemma 2.4, we have the following identities related to classical
special constants:

ψ(2m)
(π
4

)
= 22mEm,(28)

ϕ(2m)
(π
2

)
= Em,(29)

ψ(2m+1)
(π
4

)
=

42m+1

m+ 1

(
1− 22m+2

)
Bm+1,(30)

ψ(2m+1)
(π
2

)
=

22m+1

m+ 1

(
1− 22m+2

)
Bm+1,(31)

where Em is the Euler number, E0 = 1, E1 = 1, E2 = 5, · · · , and Bm+1 is
Bernoulli number, B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , · · · . In fact, let s1 = 1
4 , s2 = 3

4 in
(22). In view of [4]

∞∑
j=0

(−1)j

(2j + 1)2m+1
=

π2m+1Em

22m+2(2m)!
,(32)

and

∞∑
j=0

[
1

(4j + 1)2m+1
− 1

(4j + 3)2m+1

]
=

∞∑
j=0

(−1)j

(2j + 1)2m+1
,

we can get (28). Similarly, let s1 = s2 = 1
2 in (24). By (32), we have (29).

Additionally, let s1 =
1
4 , s2 =

3
4 in (23), and observe that [4]

∞∑
j=0

1

(2j + 1)2m+2
=

Bm+1

2(2m+ 2)!

(
22m+2 − 1

)
π2m+2 (m ∈ N),

then we get (30). At last, letting s1 = s2 =
1
2 in (23), we arrive at (31).
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3. Main results

Theorem 3.1. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Let

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
β ∈ Ω, and γ ∈ R+ ∩ Ω. Suppose that c > a ≥ b > d > 0, and ab = cd when
τη = 1. Let λ be such that λ ≥ 1, λγ ≤ 1, and λ ̸= 1 for τ = 1, η = −1. Assume
that µ(x) = |x|p(1−λβ)−1, νn = |n|q(1−λγ)−1, n ∈ Z0 := Z \ {0}, f(x), an ≥ 0
with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν , p > 1, 1

p + 1
q = 1. Let K(z) and

κ (a, b, c, d, τ, η, λ) be defined via (10) and (12), respectively. Then the following
inequalities hold and are equivalent:

I : =
∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(33)

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µ∥a∥q,ν ,

J1 : =
∑
n∈Z0

|n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p
(34)

<
[
|β|−

1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

]p
∥f∥pp,µ,

J2 : =

∫
x∈R

|x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q

dx(35)

<
[
|β|−

1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

]q
∥a∥qq,ν ,

where the constant |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) in (33), (34) and (35) is

the best possible.

Proof. For y ∈ [n − 1, n), n ∈ N+, let K̃
(
xβyγ

)
:= K

(
xβnγ

)
, g(y) := an,

h(y) := n. For y ∈ [n, n + 1), n ∈ N−, let K̃
(
xβyγ

)
:= K

(
xβnγ

)
, g(y) := an,

h(y) := |n|. By Hölder’s inequality, we have∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(36)

=

∫
y∈R

∫
x∈R

K̃
(
xβyγ

)
f(x)g(y)dxdy

=

∫
y∈R

∫
x∈R

[
K̃
(
xβyγ

)]1/p
[h(y)](λγ−1)/p |x|(1−λβ)/q f(x)

×
[
K̃
(
xβyγ

)]1/q
|x|(λβ−1)/q [h(y)](1−λγ)/pg(y)dxdy

≤
{∫

x∈R

∫
y∈R

K̃
(
xβyγ

)
[h(y)]λγ−1 |x|p(1−λβ)/q fp(x)dydx

}1/p
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×
{∫

y∈R

∫
x∈R

K̃
(
xβyγ

)
|x|λβ−1 [h(y)]q(1−λγ)/pgq(y)dxdy

}1/q

=

[∫
x∈R

Ψ(x) |x|p(1−λβ)/q fp(x)dx

]1/p ∑
n∈Z0

Φ(n) |n|q(1−λγ)/p aqn

1/q

,

where

Ψ(x) =
∑
n∈Z0

K
(
xβnγ

)
|n|λγ−1 ,(37)

Φ(n) =

∫
x∈R

K
(
xβnγ

)
|x|λβ−1 dx.(38)

In view of λγ ≤ 1, it can be easy to show that |n|λγ−1 decreases if n ∈ N+ and
increases if n ∈ N−. Additionally, using Lemma 2.1, and observing that β ∈ Ω
and γ ∈ R+ ∩ Ω, it can be proved that whether x > 0 or x < 0, K

(
xβnγ

)
decreases with respect to n when n ∈ N+, and increases with respect to n when
n ∈ N−. Therefore, we get

Ψ(x) <

∫
y∈R

K
(
xβyγ

)
|y|λγ−1 dy.(39)

We first consider the case where x < 0. Let xβyγ = z. Observing that β ∈ Ω

and γ ∈ R+ ∩Ω, we have x
−β

γ = − |x|−
β
γ (x < 0) and z

1
r
−1 = |z|

1
r
−1. It follows

therefore that∫
y∈R

K
(
xβyγ

)
|y|λγ−1 dy =

|x|−λβ

γ

∫
z∈R

K(z) |z|λ−1 dz.(40)

Similarly, it can also be proved that (40) holds when x > 0. Therefore, for
arbitrary x (x ̸= 0), combining (39) and (40), and using (13), we have

Ψ(x) <
|x|−λβ

γ
Γ(λ)κ (a, b, c, d, τ, η, λ) .(41)

Furthermore, by similar discussion, we have

Φ(n) =
|n|−λγ

|β|
Γ(λ)κ (a, b, c, d, τ, η, λ) .(42)

Plugging (41) and (42) back into (36), we get (33). In what follows, we will prove
(34) and (35) via (33). In fact, assuming (33) holds, and setting b = {bn}n∈N0 ,
where

bn := |n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p−1

,
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we obtain

J1 =
∑
n∈Z0

|n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p
(43)

=
∑
n∈Z0

bn

∫
x∈R

K
(
xβnγ

)
f(x)dx

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µ∥b∥q,ν

= |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µJ1/q

1 .

Inequality (43) implies (34) obviously. Moreover, let

g(x) := |x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q−1

.

By (33), we get

J2 =

∫
x∈R

|x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q

dx(44)

=

∫
x∈R

g(x)
∑
n∈Z0

K
(
xβnγ

)
andx

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥g∥p,µ∥a∥q,ν

= |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥a∥q,νJ1/p

2 .

Thus, we get (35) via (33). Conversely, if (34) or (35) holds, it can also be
proved that (33) is valid. In fact, we first suppose that (34) holds. By Hölder’s
inequality, we obtain

I =
∑
n∈Z0

[
|n|λγ−1/p

∫
x∈R

K
(
xβnγ

)
f(x)dx

] [
an |n|−λγ+1/p

]
(45)

≤ J
1/p
1

∑
n∈Z0

aqn |n|
q(1−λγ)−1

1/q

= J
1/p
1 ∥a∥q,ν .

Applying (34) to (45), we arrive at (33). Similarly, supposing that (35) holds,
we can also get (33). Therefore, Based on the above discussions, inequalities
(33), (34) and (35) are equivalent.

Lastly, it will be proved that the constant |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

in (33), (34) and (35) is the best possible. In fact, assume that there exists a
constant C satisfying

0 < C ≤ |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ,(46)
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and

I =
∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(47)

< C∥f∥p,µ∥a∥q,ν .

Replacing an and f(x) in (47) by ãn and f̃(x) defined in Lemma 2.3, repectively,
and using (19), we have∫

[−1,1]
K(z) |z|λ−1+ 2

ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz(48)

<
|βγ|
s
Ĩ <

|βγ|C
s

∥f̃∥p,µ∥ã∥q,ν

=
|βγ|C
s

(
2

∫
E+

x
2β
s
−1dx

) 1
p

(
2 + 2

∞∑
n=2

n
−2γ
s

−1

) 1
q

<
2 |βγ|C

s

(∫
E+

x
2β
s
−1dx

) 1
p
(
1 +

∫ ∞

1
x−

2γ
s
−1dx

) 1
q

= 2 |βγ|C
(

1

2 |β|

) 1
p
(
1

s
+

1

2γ

) 1
q

.

Applying Fatou’s lemma to (48), and using (13), it follows that

Γ(λ)κ (a, b, c, d, τ, η, λ) =

∫
z∈R

K(z) |z|λ−1 dz

=

∫
[−1,1]

lim
s→∞

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

lim
s→∞

L (z) |z|λ−1− 2
qs dz

⩽ lim
s→∞

[∫
[−1,1]

L (z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

L (z) |z|λ−1− 2
qs dz

]

⩽ lim
s→∞

[
2 |βγ|C

(
1

2 |β|

) 1
p
(
1

s
+

1

2γ

) 1
q

]
= C |β|

1
q γ

1
p .

It implies that

C ≥ |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) .(49)

Combining (46) and (49), we get C = |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) . There-

fore, the constant factor in inequality (33) is the best possible. Owing to the
equivalence of (33), (34) and (35), it can be proved that the constant factors in
(34) and (35) are the best possible. Theorem 3.1 is proved.
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4. Corollaries

Let τ = η = −1, and λ = 2m+1(m ∈ N) in Theorem 3.1, then we have ab = cd.
By (22), we have

κ (a, b, c, d, τ, η, λ) =

∞∑
j=0

[
2

(j log c
d + log b

d)
2m+1

− 2

(j log c
d + log c

b)
2m+1

]

=
2

(2m)!

(
π

ln c
d

)2m+1

ψ(2m)

(
π ln b

d

ln c
d

)
.

Thus, we have the following corollary.

Corollary 4.1. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and ab = cd. Let m be such that (2m +

1)γ ≤ 1, m ∈ N. Assume that ψ(z) = cot z, µ(x) = |x|p[1−(2m+1)β]−1, νn =

|n|q[1−(2m+1)γ]−1, n ∈ Z0 := Z \ {0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and
a = {an}n∈Z0 ∈ lq,ν . Then∫

x∈R
f(x)

∑
n∈Z0

ax
βnγ − bx

βnγ

cxβnγ − dxβnγ andx(50)

< 2 |β|−
1
q γ

− 1
p

(
π

ln c
d

)2m+1

ψ(2m)

(
π ln b

d

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (50), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

sinh
(
τ1x

βnγ
)
csch

(
τ2x

βnγ
)
andx(51)

< 2 | β |−
1
q γ

− 1
p

(
π

2τ2

)2m+1

ψ(2m)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Let τ2 = 2α, τ1 = α (α > 0) in (51). By (28), we obtain

(52)

∫
x∈R

f(x)
∑
n∈Z0

sech(αxβnγ)andx<|β|−
1
q γ

− 1
p
Em

22m

(π
α

)2m+1
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 m ∈ N, and α = 1 in (52), we get∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
andx <

Em

22m
(2m+ 1)π2m+1∥f∥p,µ∥a∥q,ν ,(53)
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where µ(x) = |x|−1, νn = |n|−1. Setting β = − 1
2m+1 , γ = 1

2m+1 , and α = 1 in
(52), we get (8).

Let τ2 = 3α, τ1 = α (α > 0) in (51), then we obtain∫
x∈R

f(x)
∑
n∈Z0

an
2cosh (2αxβnγ) + 1

dx(54)

< 2 |β|−
1
q γ

− 1
p

( π
6α

)2m+1
ψ(2m)

(π
3

)
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 , and α = 1

2 in (54), we get∫
x∈R

f(x)
∑
n∈Z0

an
2cosh ( 2m+1

√
xn) + 1

dx(55)

< (4m+ 2)
(π
3

)2m+1
ψ(2m)

(π
3

)
∥f∥p,µ∥a∥q,ν ,

where µ(x) = |x|−1, νn = |n|−1. Let m = 0 in (55), then (55) is transformed
into ∫

x∈R
f(x)

∑
n∈Z0

an
2cosh (xn) + 1

dx <
2
√
3π

9
∥f∥p,µ∥a∥q,ν .(56)

Let τ2 = 4α, τ1 = α (α > 0) in (51), then we have∫
x∈R

f(x)
∑
n∈Z0

sech
(
αxβnγ

)
sech

(
2αxβnγ

)
andx(57)

<
1

26m
|β|−

1
q γ

− 1
p

(π
α

)2m+1
ψ(2m)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 , and α = 1 in (57), we get∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
sech

(
2 2m+1

√
xn
)
andx

<
2m+ 1

26m
π2m+1ψ(2m)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Let τ = −1, η = 1, and λ = 2m + 2 (m ∈ N) in Theorem 3.1, By (23), we
have

κ (a, b, c, d, τ, η, λ)

=

∞∑
j=0

[
1

(j log c
d + log c

a)
2m+2

+
1

(j log c
d + log a

d)
2m+2

]

+

∞∑
j=0

[
1

(j log c
d + log b

d)
2m+2

+
1

(j log c
d + log c

b)
2m+2

]

=
1

(2m+ 1)!

(
π

ln c
d

)2m+2
[
ψ(2m+1)

(
π ln c

a

ln c
d

)
+ ψ(2m+1)

(
π ln b

d

ln c
d

)]
.
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Thus, we have the following corollary.

Corollary 4.2. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and m satisfies (2m + 2)γ ≤ 1 (m ∈ N).
Assume that ψ(z) = cot z, µ(x) = |x|p[1−(2m+2)β]−1, νn = |n|q[1−(2m+2)γ]−1,
n ∈ Z0 := Z\{0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν .
Then ∫

x∈R
f(x)

∑
n∈Z0

ax
βnγ

+ bx
βnγ∣∣cxβnγ − dxβnγ
∣∣andx < − |β|−

1
q γ

− 1
p

(
π

ln c
d

)2m+2

(58)

×

[
ψ(2m+1)

(
π ln c

a

ln c
d

)
+ ψ(2m+1)

(
π ln b

d

ln c
d

)]
∥f∥p,µ∥a∥q,ν .

Let a = b = 1 in (58), then we get c > 1 > d > 0. Since

ψ(2m+1)(z) = ψ(2m+1)(π − z), z ∈ (0, π),(59)

inequality (58) is transformed into∫
x∈R

f(x)
∑
n∈Z0

an∣∣cxβnγ − dxβnγ
∣∣dx < − |β|−

1
q γ

− 1
p(60)

×
(

π

ln c
d

)2m+2

ψ(2m+1)

(
π ln c

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let c = ep, d = e−q in (60), then (60) reduces to∫
x∈R

f(x)
∑
n∈Z0

an∣∣epxβnγ − e−qxβnγ
∣∣dx(61)

< − |β|−
1
q γ

− 1
p

(
π

pq

)2m+2

ψ(2m+1)

(
π

p

)
∥f∥p,µ∥a∥q,ν .

Let m = 0, β = γ = 1
3 in (61), then we get∫

x∈R
f(x)

∑
n∈Z0

an∣∣ep 3√xn − e−q 3√xn
∣∣dx <

( √
3π

pq sin π
p

)2

∥f∥p,µ∥a∥q,ν ,(62)

where µ(x) = |x|
p
3
−1, νn = |n|

q
3
−1.

Let c = eα, d = e−α (α > 0) in (60). By (31), we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣csch(αxβnγ)∣∣∣ andx(63)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .
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Setting β = γ = 1
2m+3 (m ∈ N), α = 1 in (63), and replacing m+ 1 with m, we

get (9). Similarly, setting β = − 1
2m+3 , γ = 1

2m+3 , α = 1 in (63), and replacing
m+ 1 with m, we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣∣csch( 2m+1

√
n

x

)∣∣∣∣ andx < Bm

m
(2m+ 1)(22m − 1)π2m∥f∥p,µ∥a∥q,ν ,

where µ(x) = |x|
(4m+1)p
2m+1

−1, νn = |n|
q

2m+1
−1 (m ∈ N+).

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (58), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

cosh
(
τ1x

βnγ
) ∣∣∣csch(τ2xβnγ)∣∣∣ andx(64)

<− 2 |β|−
1
q γ

− 1
p

(
π

2τ2

)2m+2

ψ(2m+1)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Let τ2 = 2α, τ1 = α (α > 0) in (64). By using (30), we can also get (63). Let
τ2 = 4α, τ1 = α (α > 0) in (64), then we have∫

x∈R
f(x)

∑
n∈Z0

∣∣∣csch(αxβnγ)∣∣∣ sech(2αxβnγ) andx(65)

<− 1

82m+1
|β|−

1
q γ

− 1
p

(π
α

)2m+2
ψ(2m+1)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Additionally, let a = b = e−α, c = e2α, d = e−2α (α > 0) in (58). By (59)
and (30), we get the following inequality with the same constant factor as (63),
that is, ∫

x∈R
f(x)

∑
n∈Z0

∣∣∣csch(αxβnγ)− sech
(
αxβnγ

)∣∣∣ andx(66)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .

Furthermore, let a = b = eα, c = e2α, d = e−2α (α > 0) in (58). Then we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣csch(αxβnγ)+ sech
(
αxβnγ

)∣∣∣ andx(67)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .

Let τ = η = 1, and λ = 2m + 1(m ∈ N) in Theorem 3.1, then we have
ab = cd. By (24), we get

κ (a, b, c, d, τ, η, λ) =

∞∑
j=0

[
2(−1)j

(j log c
d + log b

d)
2m+1

+
2(−1)j

(j log c
d + log c

b)
2m+1

]

=
2

(2m)!

(
π

ln c
d

)2m+1

ϕ(2m)

(
π ln b

d

ln c
d

)
.

Therefore, Theorem 3.1 is transformed into the following corollary.
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Corollary 4.3. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and ab = cd. Let m be such that (2m +

1)γ ≤ 1, m ∈ N. Assume that ϕ(z) = csc z, µ(x) = |x|p[1−(2m+1)β]−1, νn =

|n|q[1−(2m+1)γ]−1, n ∈ Z0 := Z \ {0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and
a = {an}n∈Z0 ∈ lq,ν . Then

∫
x∈R

f(x)
∑
n∈Z0

ax
βnγ

+ bx
βnγ

cxβnγ + dxβnγ andx(68)

< 2 |β|−
1
q γ

− 1
p

(
π

ln c
d

)2m+1

ϕ(2m)

(
π ln b

d

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (68), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

cosh
(
τ1x

βnγ
)
sech

(
τ2x

βnγ
)
andx(69)

<2 |β|−
1
q γ

− 1
p

(
π

2τ2

)2m+1

ϕ(2m)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Letting τ2 = α (α > 0), τ1 = 0 in (69), and using (29), we can also get (52).
Letting τ2 = 2α, τ1 = α (α > 0) in (70), we have∫

x∈R
f(x)

∑
n∈Z0

csch
(
αxβnγ

)
tanh

(
2αxβnγ

)
andx

<
1

24m
|β|−

1
q γ

− 1
p

(π
α

)2m+1
ϕ(2m)

(π
4

)
∥f∥p,µ∥a∥q,ν .

At last, let τ = η = 1, a = b, and λ = 2 in Theorem 3.1. Then, we have
cd = a2. Let c

a = a
d = eα (α > 0), then

log
c

a
= log

c

b
= log

b

d
= log

a

d
=

1

2
log

c

d
= α,

and

κ (a, b, c, d, τ, η, λ) =
4

α2

∞∑
j=0

(−1)j

(2j + 1)2
=

4c0
α2

,

where c0 is the Catalan constant. Thus, Theorem 3.1 is transformed into the
following corollary.
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Corollary 4.4. Let α > 0, β ∈ Ω, γ ∈ R+ ∩ Ω and γ ≤ 1
2 , where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that µ(x) = |x|p(1−2β)−1, νn = |n|q(1−2γ)−1, n ∈ Z0 := Z \ {0}. Let
f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν . Then∫

x∈R
f(x)

∑
n∈Z0

sech
(
αxβnγ

)
andx <

4c0
α2

|β|−
1
q γ

− 1
p ∥f∥p,µ∥a∥q,ν .(70)

Setting β = γ = 1
2m+1 (m ∈ N+), α = 1 in (70), we have∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
andx < 4c0(2m+ 1)∥f∥p,µ∥a∥q,ν ,(71)

where µ(x) = |x|
2m−1
2m+1

p−1, νn = |n|
2m−1
2m+1

q−1 (m ∈ N+).
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[12] M. Krnić, J. Pečarić, I. Perić, et. al., Advances in Hilbert-type inequalities,
Element Press, Zagreb, 2012.

[13] B. C. Yang, The norm of operator and Hilbert-type inequalities, Science
Press, Beijing, 2009.

[14] Q. Chen, Y. Hong, B. C. Yang, A more accurate extended Hardy- Hilbert’s
inequality with parameters, J. Math. Inequal., 16 (2022), 1075-1089.

[15] M. Th. Rassias, B. C. Yang, A Hilbert-type integral inequality in the whole
plane related to the hypergeometric function and the beta function, J. Math.
Anal. Appl., 428 (2015), 1286-1308.

[16] M. Th. Rassias, B. C. Yang, On a Hilbert-type integral inequality in the
whole plane related to the extended Riemann zeta function, Complex Anal.
Oper. Theory, 13 (2019), 1765-1782.

[17] M. Th. Rassias, B. C. Yang, On an equivalent property of a reverse Hilbert-
type integral inequality related to the extended Hurwitz-Zeta function, J.
Math. Inequal., 13 (2019), 315-334.

[18] M. Th. Rassias, B. C. Yang, A. Raigorodskii, On a more accurate reverse
Hilbert-type inequlity in the whole plane, J. Math. Inequal., 14 (2020), 1359-
1374.

[19] Y. Hong, B. He, B. C. Yang, Necessary and sufficient conditions for the
validity of Hilbert-type inequalities with a class of quasi-homogeneous ker-
nels ans its applications in operator theory, J. Math. Inequal., 12 (2018),
777-788.

[20] H. M. Mo, B. C. Yang, On a new Hilbert-type integral inequality involving
the upper limit functions, J. Inequal. Appl., 2020 (2020), 5.

[21] Q. Liu, A Hilbert-type integral inequality under configuring free power and
its applications, J. Inequal. Appl., 2019 (2019), 91.



ON A CLASS OF HALF-DISCRETE HILBERT-TYPE INEQUALITIES ... 385

[22] M. H. You, X. Sun, On a Hilbert-type inequality with the kernel involving
extended Hardy operator, J. Math. Inequal., 15 (2021), 1239-1253.

[23] M. H. You, F. Dong, Z. H. He, A Hilbert-type inequality in the whole plane
with the constant factor related to some special constants, J. Math. Inequal.,
16 (2022), 35-50.

[24] B. C. Yang, A mixed Hilbert-type inequality with a best constant factor,
International Journal of Pure and Applied Mathematics, 20 (2005), 319-
328.

[25] M. Th. Rassias, B. C. Yang, On half-discrete Hilbert’s inequality, Appl.
Math. Comp., 220 (2013), 75-93.

[26] M. Th. Rassias, B. C. Yang, A. Raigorodskii, On a half-discrete Hilbert-type
inequality in the whole plane with the kernel of hyperbolic secant function
related to the Hurwitz zeta function, In: Trigonometric Sums and their
Applications, Springer, 2020, 229-259.

[27] B. He, B. C. Yang, Q. Chen, A new multiple half-discrete Hilbert-type in-
equality with parameters and a best possible constant factor, Mediterr. J.
Math., 2014.

[28] B. C. Yang, S. H. Wu, A. Z. Wang, On a reverse half-discrete Hardy-
Hilbert’s inequality with parameters, Mathematics, 2019.
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