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Abstract. In the present paper, we present the very 1st time the generalized notion
of (m1,m2, α, β, γ, µ)-convex function in mixed kind, which is the generalization of 22
functions, which are presented in sequel manner.Our aim is to establish generalized
Ostrowski like inequalities for (m1,m2, α, β, γ, µ)-convex functions via Fuzzy Riemann
Integrals by applying several techniques in which power mean inequality and Hölder’s
inequality are included. Moreover, we would obtain various results with respect to the
convexity of function as special cases and also recapture several established results of
different authors of different papers.
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1. Introduction and definitions

About the features of convex functions, we code some lines from [18] “Convex
functions appear in many problems in pure and applied mathematics. They
play an extremely important role in the study of both linear and non-linear
programming problems. The theory of convex functions is part of the general
subject of convexity, since a convex function is one whose epigraph is a convex
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set. Nonetheless it is an important theory which touches almost all branches
of mathematics. Graphical analysis is one of the first topics in mathematics
which requires the concept of convexity. Calculus gives us a powerful tool in
recognizing convexity, the second-derivative test”.

The theory of convex functions is a crucial area of mathematics that has
applications in a wide range of fields, including optimization theory, control the-
ory, operations research, geometry, functional analysis, and information theory.
This theory is also highly relevant in other areas of science, such as economics,
finance, engineering, and management sciences.

The importance of convex functions for the generalization of integral in-
equalities due to the variety of their nature the notion have been established.
Integral inequalities are satisfied by many convex functions. Among these, the
well known is Ostrowski inequality. To generalize the Ostrowski’s inequality, we
need to generalize the concept of convex functions, in this way we can easily see
the generalizations and its particular cases. From the literature, we remind few
definitions for various convex(concave) functions [2].

Definition 1.1. Any function g : K ⊆ R → R is known as convex(concave), if

g(ty + (1− t)z) ≤ (≥)tg(y) + (1− t)g(z),(1.1)

∀ y, z ∈ K, t ∈ [0, 1].

Here we remind definition of P -convex(concave) function see [5].

Definition 1.2. Any function g : K ⊆ R → R is known as P -convex(concave),
if function g is a non-negative, then we have

g(ty + (1− t)z) ≤ (≥)g(y) + g(z),(1.2)

∀ y, z ∈ K, t ∈ [0, 1].

The definition of quasi-convex function is extracted from [9].

Definition 1.3. Any function g : K ⊆ R → R is called a quasi-convex(concave),
if

g(ty + (1− t)z) ≤ (≥)max{g(y), g(z)}(1.3)

∀ y, z ∈ K, t ∈ [0, 1].

We present definition of s-convex(concave) functions in the 1st kind as fol-
lows (see [16]).

Definition 1.4. Suppose s ∈ (0, 1]. Any function g : K ⊆ [0,∞) → [0,∞) is
known as s-convex(concave) in the 1st kind, if

g(ty + (1− t)z) ≤ (≥)tsg(y) + (1− ts)g(z),(1.4)

∀ y, z ∈ K, t ∈ [0, 1].
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Remark 1.5. Note that in this definition we also included s = 0. Further if we
put s = 0, we get quasi-convexity (see Definition 1.3).

We also present definition of s-convex(concave) functions in the second kind
from [16].

Definition 1.6. Suppose s ∈ (0, 1]. Any function g : K ⊆ [0,∞) → [0,∞) is
known as s-convex(concave) in the 2nd kind, if

g(ty + (1− t)z) ≤ (≥)tsg(y) + (1− t)sg(z),(1.5)

∀ y, z ∈ K, t ∈ [0, 1].

Remark 1.7. In the similar manner, we have slightly improved definition of
2nd kind convexity by including s = 0. Further if we put s = 0, we easily get
P -convexity (see Definition 1.2).

The following definition of m-convex(concave) function is extracted from [10]

Definition 1.8. Suppose m ∈ [0, 1]. Any function g : [0,∞) → R is known as
m-convex (concave), if

g(ty +m(1− t)z) ≤ (≥)tg(y) +m(1− t)g(z)(1.6)

∀ y, z ∈ [0,∞), t ∈ [0, 1].

Remark 1.9. Form = 1 the above definition recaptures the concept of standard
convex(concave) functions in the interval K and for m = 0 the concept star-
shaped functions.

Following definition is extracted from [10]

Definition 1.10. Let (m1,m2) ∈ (0, 1]2. Any function g : [0,∞) → R is known
as (m1,m2)-convex(concave), if

g(m1ty +m2(1− t)z) ≤ (≥)m1tg(y) +m2(1− t)g(z),(1.7)

∀ y, z ∈ K, t ∈ [0, 1].

In [15], Mihesan stated (α,m)-convexity as in the following:

Definition 1.11. Suppose (α,m) ∈ [0, 1]2. A function g : [0,∞) → R is known
as (α,m)-convex(concave), if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− tα)g(z)(1.8)

∀ y, z ∈ [0,∞), t ∈ [0, 1]. Above function can also be written as (m, s)-
convex(concave) function in the 1st kind.

Firstly, we introduce a new class of (m, s)-convex(concave) function in the
2nd kind that is given below:
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Definition 1.12. Let (m, s) ∈ (0, 1]2. Any function g : K ⊆ [0,∞) → [0,∞) is
known as (m, s)-convex(concave) in the 2nd kind, if

g(ty +m(1− t)z) ≤ (≥)tsg(y) +m(1− t)sg(z)(1.9)

∀ y, z ∈ K, t ∈ [0, 1].

A new class of (s, r)-convex(concave) functions in the mixed kind is extracted
from [7].

Definition 1.13. Suppose (s, r) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) → [0,∞)
is known as (s, r)-convex(concave) in the mixed kind, if

g(ty + (1− t)z) ≤ (≥)trsg(y) + (1− tr)sg(z),(1.10)

∀ y, z ∈ K, t ∈ [0, 1].

Definition 1.14 ([6]). Suppose (α, β) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) →
[0,∞) is known as (α, β)-convex(concave) in the 1st kind, if

g(ty + (1− t)z) ≤ (≥)tαg(y) + (1− tβ)g(z),(1.11)

∀ y, z ∈ K, t ∈ [0, 1].

Definition 1.15 ([6]). Suppose (α, β) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) →
[0,∞) is known as (α, β)-convex(concave) in the 2nd kind, if

g(ty + (1− t)z) ≤ (≥)tαg(y) + (1− t)βg(z),(1.12)

∀ y, z ∈ K, t ∈ [0, 1].

Secondly, we introduce a new class of (m, s, r)-convex(concave) functions in
mixed kind which is given below:

Definition 1.16. Let (m, s, r) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m, s, r)-convex(concave) in the mixed kind, if

g(ty +m(1− t)z) ≤ (≥)trsg(y) +m(1− tr)sg(z),(1.13)

∀ y, z ∈ K, t ∈ [0, 1].

Thirdly, we introduce a new class of (m,α, β)-convex(concave) functions in
the 1st kind which is given below:

Definition 1.17. Let (m,α, β) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m,α, β)-convex(concave) in the 1st kind, if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− tβ)g(z),(1.14)

∀ y, z ∈ K, t ∈ [0, 1].
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Fourthly, we introduce a new class of (m,α, β)-convex(concave) functions in
the 2nd kind which is given below:

Definition 1.18. Let (m,α, β) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m,α, β)-convex(concave) in the 2nd kind, if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− t)βg(z),(1.15)

∀ y, z ∈ K, t ∈ [0, 1].

Following definition is extracted from [10]

Definition 1.19. Let (α,m1,m2) ∈ (0, 1]3. Any function g : [0,∞) → R is
known as (α,m1,m2)-convex(concave), if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− tα)g(z),(1.16)

∀ y, z ∈ K, t ∈ [0, 1]. Above function can also be written as (m1,m2, s)-
convex(concave) function in the 1st kind.

Fifthly, we introduce a new class of (m1,m2, s)-convex(concave) functions in
the 2nd kind which is given below:

Definition 1.20. Let (m1,m2, s) ∈ (0, 1]3. Any function g : [0,∞) → R is
known as (m1,m2, s)-convex(concave) in the 2nd kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
sg(y) +m2(1− t)sg(z),(1.17)

∀ y, z ∈ K, t ∈ [0, 1].

Sixthly, we introduce a new class of (m1,m2, s, r)-convex(concave) functions
in mixed kind which is given below:

Definition 1.21. Let (m1,m2, s, r) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, s, r)-convex(concave) in the mixed kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
rsg(y) +m2(1− tr)sg(z),(1.18)

∀ y, z ∈ K, t ∈ [0, 1].

Seventhly, we introduce a new class of (m1,m2, α, β)-convex(concave) func-
tions in the 1st kind which is given below:

Definition 1.22. Let (m1,m2, α, β) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β)-convex(concave) in the 1st kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− tβ)g(z),(1.19)

∀ y, z ∈ K, t ∈ [0, 1].
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Eighthly, we introduce a new class of (m1,m2, α, β)-convex(concave) func-
tions in the 2nd kind which is given below:

Definition 1.23. Suppose (m1,m2, α, β) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β)-convex(concave) in the 2nd kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− t)βg(z),(1.20)

∀ y, z ∈ K, t ∈ [0, 1].

Upcoming definition is (α, β, γ, µ)-convex(concave) function which is ex-
tracted from [7].

Definition 1.24. Let (α, β, γ, µ) ∈ [0, 1]4. A function g : K ⊆ [0,∞) → [0,∞)
is known as (α, β, γ, µ)-convex(concave) in the mixed kind, if

g(ty + (1− t)z) ≤ (≥)tαγg(y) + (1− tβ)µg(z),(1.21)

∀ y, z ∈ K, t ∈ [0, 1].

Ninthly, we introduce a new class of (m,α, β, γ, µ)-convex(concave) functions
in mixed kind that is given below:

Definition 1.25. Let (m,α, β, γ, µ) ∈ [0, 1]5. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m,α, β, γ, µ)-convex(concave) in the mixed kind, if

g(ty +m(1− t)z) ≤ (≥)tαγg(y) +m(1− tβ)µg(z),(1.22)

∀ y, z ∈ K, t ∈ [0, 1].

Tenthly and Finally we introduce a new class of function which would be
called class of (m1,m2, α, β, γ, µ)-convex(concave) function in mixed kind and
containing all above classes of functions. This definition is used sequentially in
this paper.

Definition 1.26. Let (m1,m2, α, β, γ, µ) ∈ (0, 1]6. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β, γ, µ)-convex(concave) in the mixed kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αγg(y) +m2(1− tβ)µg(z),(1.23)

∀ y, z ∈ K, t ∈ [0, 1].

Remark 1.27. In Definition 1.26, we have the following cases.

(i) If we choosem1 = 1,m2 = m in (1.23), we get (m,α, β, γ, µ)-convex(concave)
function in the mixed kind.

(ii) If we choose m1 = m2 = 1 in (1.23), we get (α, β, γ, µ)-convex(concave)
function in the mixed kind.
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(iii) If we choose β = γ = 1 and µ = β in (1.23), we get (m1,m2, α, β)-
convex(concave) function in the 2nd kind.

(iv) If we choose γ = µ = 1 in (1.23), we get (m1,m2, α, β)-convex(concave)
function in the 1st kind.

(v) If we choose γ = r, α = µ = s and β = 1 in (1.23), we get (m1,m2, s, r)-
convex(concave) function in mixed kind.

(vi) If we choose α = µ = s and β = γ = 1 in (1.23), we get (m1,m2, s)-
convex(concave) function in the 2nd kind.

(vii) If we choose γ = s and α = β = µ = 1 in (1.23), we get (m1,m2, s)-
convex(concave) function in the 1st kind.

(viii) If we choose m1 = 1, m2 = m, β = γ = 1 and µ = β in (1.23), we get
(m,α, β)-convex(concave) function in the 2nd kind.

(ix) If we choose m1 = 1, m2 = m and γ = µ = 1 in (1.23), we get (m,α, β)-
convex(concave) function in the 1st kind.

(x) If we choose m1 = 1, m2 = m, γ = r, α = µ = s and β = 1 in (1.23), we
get (m, s, r)-convex(concave) function in the mixed kind.

(xi) If we choose m1 = m2 = 1, β = γ = 1 and µ = β in (1.23), we get
(α, β)-convex(concave) function in the 2nd kind.

(xii) If we choose m1 = m2 = 1 and γ = µ = 1 in (1.23), we get (α, β)-
convex(concave) function in the 1st kind.

(xiii) If we choose m1 = m2 = 1, γ = r, α = µ = s and β = 1 in (1.23), we get
(s, r)-convex(concave) function in the mixed kind.

(xiv) If we choose m1 = 1, m2 = m, α = µ = s and β = γ = 1 in (1.23), we get
(m, s)-convex(concave) function in the 2nd kind.

(xv) If we choose m1 = 1, m2 = m, γ = s and α = β = µ = 1 in (1.23), we get
(m, s)-convex(concave) function in the 1st kind.

(xvi) If we choose α = β = γ = µ = 1 in (1.23), we get (m1,m2)-convex(concave)
function.

(xvii) If we choose m1 = 1, m2 = m and α = β = γ = µ = 1 in (1.23), we get
m-convex(concave) function.

(xviii) If we choose m1 = m2 = 1, α = µ = s and β = γ = 1 in (1.23), we get
s-convex(concave) function in the 2nd kind.

(xix) If we choose m1 = m2 = 1, α = β = s and γ = µ = 1 in (1.23), we get
s-convex(concave) function in the 1st kind.
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(xx) If we choose m1 = m2 = 1, γ = s and α = β = µ = 1 in (1.23), we get
s-convex(concave) function in the 1st kind.

(xxi) If we choose m1 = m2 = 1, α = β = 0, and γ = µ = 1 in (1.23), we get
quasi-convex(concave) function.

(xxii) If we choose m1 = m2 = 1, α = µ = 0 and β = γ = 1 in (1.23), we get
P -convex(concave) function.

(xxiii) If we choose m1 = m2 = α = β = γ = µ = 1 in (1.23), gives us ordinary
convex(concave) function.

In almost each field of science, inequalities act an important role. Although
it is very vast discipline but our focus is mainly on Ostrowski’s like inequalities.

In 1938, [17] Ostrowski proved the below interesting inequality for differen-
tiable mappings with bounded derivatives. It is well known in the literature as
Ostrowski inequality.

Proposition 1.28. Suppose g : K → R is a differentiable mapping in the
interior Ko of K, where j, k ∈ Ko with j < k. If |g′(y)| ≤ M ∀ y ∈ [j, k] where
M > 0 is constant. Then

∣∣∣∣g(y)− 1

k − j

∫ k

j
g(τ)dτ

∣∣∣∣ ≤ M(k − j)

[
1

4
+

(
y − j+k

2

)2
(k − j)2

]
.(1.24)

The value 1
4 is the best possible constant that this can not be replaced by the

smallest one.

Since fuzziness is a natural reality different than randomness and determin-
ism, Anastassiou extends Ostrowski like inequalities into the fuzzy setting in
2003 [1]. Congxin and Ming [3] introduced the concepts of fuzzy Riemann in-
tegrals. Fuzzy Riemann integral is a closed interval whose end points are the
classical Riemann integrals.

2. Preliminaries with notations

Under this heading, we remind few basic definitions and notations that would
help us in the sequel manner.

Definition 2.1 ([3]). ρ : R → [0, 1] is called a fuzzy number if satisfies the below
properties

1. ρ is normal (i.e, there exists an y0 ∈ R such that ρ(y0) = 1).

2. ρ is a convex fuzzy set, i.e., yt + (1 − t)z) ≥ min{ρ(y), ρ(z)}, ∀ y, z ∈ R,
t ∈ [0, 1] (ρ is called a convex fuzzy subset).
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3. ρ is upper semi continuous on R, i.e., ∀ y0 ∈ R and ∀ ϵ > 0, ∃ neighborhood
V (y0) : ρ(y) ≤ ρ(y0) + ϵ, ∀ y ∈ V (y0).

4. The set [ρ]0 = {y ∈ R : ρ(y) > 0} is compact where A denotes the closure
of A.

RF denotes the set of all fuzzy numbers. For α ∈ (0, 1] and ρ ∈ RF , [ρ]α =
{y ∈ R : ρ(y) ≥ α}. Then, from (1) to (4) it follows that the α-level set [ρ]α

is a closed interval ∀ α ∈ [0, 1]. Moreover, [ρ]α = [ρ
(α)
− , ρ

(α)
+ ] ∀ α ∈ [0, 1], where

ρ
(α)
− ≤ ρ

(α)
+ and ρ

(α)
− , ρ

(α)
+ ∈ R, i.e., ρ(α)− and ρ

(α)
+ are the endpoints of [ρ]α.

Definition 2.2 ([4]). Let ρ, ϱ ∈ RF and a ∈ R. Then, the addition and scalar
multiplication are defined by the equations, respectively.

1. [ρ⊕ ϱ]α = [ρ]α + [ϱ]α;

2. [a⊙ ρ]α = a[ρ]α;

∀ α ∈ [0, 1] where [ρ]α+[ϱ]α means the usual addition of two intervals (as subsets
of R) and a[ρ]α means the usual product between a scalar and a subset of R.

Proposition 2.1 ([11]). Let ρ, ϱ ∈ RF and a ∈ R. Then, the given properties
holds:

1. 1⊙ ρ = ρ.

2. ρ⊕ ϱ = ϱ⊕ ρ.

3. a⊙ ρ = ρ⊙ a.

4. [ρ]α1 ⊆ [ρ]α2 whenever 0 ≤ α2 ≤ α1 ≤ 1.

5. For any αn converging increasingly to α ∈ (0, 1],
⋂∞

n=1[ρ]
αn = [ρ]α.

Definition 2.3 ([3]). Let D : RF × RF → R+ ∪ {0} be a function, defined as

D(ρ, ϱ) = sup
α∈[0,1]

max
{∣∣∣ρ(α)− , ϱ

(α)
−

∣∣∣ , ∣∣∣ρ(α)+ , ϱ
(α)
+

∣∣∣}
∀ ρ, ϱ ∈ RF , Then, D is metric on RF .

Proposition 2.2 ([3]). Let ρ, ϱ, σ, e ∈ RF and a ∈ R, we have

1. (RF , D) is a complete metric space.

2. D(ρ⊕ σ, ϱ⊕ σ) = D(ρ, ϱ).

3. D(a⊙ ρ, a⊙ ϱ) = |a|D(ρ, ϱ).

4. D(ρ⊕ ϱ, σ ⊕ e) = D(ρ, σ) +D(ϱ, e).
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5. D(ρ⊕ ϱ, 0̃) ≤ D(ρ, 0̃) +D(ϱ, 0̃).

6. D(ρ⊕ ϱ, σ) ≤ D(ρ, σ) +D(ϱ, 0̃),

where 0̃ ∈ RF is stated as 0̃(y) = 0 ∀ y ∈ R.

Definition 2.4 ([4]). Let y, z ∈ RF if ∃ θ ∈ RF such that y = z ⊕ θ, then θ is
H-difference of y and z denoted by θ = y ⊖ z.

Definition 2.5 ([4]). Let T := [y0, y0 + γ] ⊆ R, with γ > 0. A function
g : T → RF is H-differentiable at y ∈ T if ∃ g′(y) ∈ RF i.e., both limits (with
respect to the metric D)

lim
h→0+

g(y + h)⊖ g(y)

h
, lim

h→0+

g(y)⊖ g(y − h)

h

exists and are equal to g′(y). We call g′ the derivative or H-derivative of g at y.
If g is H-differentiable at any y ∈ T , we call g differentiable or H-differentiable
and it has H-derivative over T the function g′.

Definition 2.6 ([8]). Let g : [j, k] → RF if ∀ ζ > 0, ∃ η > 0, for any partition
P = {[ρ, ϱ]; δ} of [j, k] with norm ∆(P ) < η, we have

D

( ∗∑
P

(ϱ− ρ)⊙ g(δ,K)

)
< ζ,

then we say that g is Fuzzy-Riemann integrable to the interval K ∈ RF , we write
it as

K := (FR)

∫ k

j
g(y)dy.

For some recent results connected with Fuzzy-Riemann integrals (see [12,
13]).

The main purpose of this paper is to establish generalized fuzzy Ostrowski
like inequalities for (m1,m2, α, β, γ, µ)-convex function in mixed kind and we
obtain various results with respect to the convexity of function as special cases
and also recapture several previous established results of different authors of
different papers [19] and [14].

3. Generalized fuzzy Ostrowski like inequalities for
(m1,m2, α, β, γ, µ)-convex functions

Regarding to prove our main results, we require the below Lemma.
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Lemma 3.1. Let g : K ⊂ R → RF be differentiable mapping on Ko where
m1,m2j,m2k ∈ K with m2j < m2k. If g′ ∈ CF [m2j,m2k]∩LF [m2j,m2k], then

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

⊕ (m1y −m2j)
2

k − j
⊙ (FR)

∫ 1

0
t⊙ g′(m1ty +m2(1− t)j)dt

= m2⊙g(m1y)⊕
(m2k −m1y)

2

k − j
⊙(FR)

∫ 1

0
t⊙g′(m1ty +m2(1− t)k)dt,(3.1)

∀ y ∈ (m2j,m2k).

Proof. We obtain the required result by using similar techniques of proof of
Lemma 3.1 of [19].

Remark 3.1. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α, we
recapture Lemma 3.1 of [19].

Remark 3.2. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.1, we
recapture Lemma 3.1 of [14].

Theorem 3.1. Let all the suppositions of Lemma 3.1 be true and assuming that
D(g′(y), 0̃) is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k] and D(g′(y), 0̃) ≤
M . Then

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ M

(
m1

αγ + 2
+

m2

β
B

(
2

β
, µ+ 1

))
I(y),(3.2)

∀ y ∈ (m2j,m2k) and β > 0, where I(y) = (m1y−m2j)2+(m2k−m1y)2

k−j .

Proof. From the Lemma 3.1 and using Proposition 2.2, then we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ D

(
(m1y −m2j)

2

k − j
⊙ (FR)

∫ 1

0
tg′(m1ty +m2(1− t)j)dt, 0̃

)

+D

(
(m2k −m1y)

2

k − j
⊙ (FR)

∫ 1

0
tg′(m1ty +m2(1− t)k)dt, 0̃

)

=
(m1y −m2j)

2

k − j
D

(
(FR)

∫ 1

0
tg′(m1ty +m2(1− t)j)dt, 0̃

)
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+
(m2k −m1y)

2

k − j
D

(
(FR)

∫ 1

0
tg′(m1ty +m2(1− t)k)dt, 0̃

)

≤ (m1y −m2j)
2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt.(3.3)

Since D(g′(y), 0̃) be (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M, we
have

D
(
g′(m1ty +m2(1− t)j), 0̃

)
≤ m1t

αγD
(
g′(y), 0̃

)
+m2

(
1− tβ

)µ
D
(
g′(j), 0̃

)
≤ M

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.4)

D
(
g′(m1ty +m2(1− t)k), 0̃

)
≤ m1t

αγD
(
g′(y), 0̃

)
+m2

(
1− tβ

)µ
D
(
g′(k), 0̃

)
≤ M

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.5)

Now, using (3.4) and (3.5) in (3.3) we get (3.2).

Note. Where B is Beta function and it is stated as B(l,m) =
∫ 1
0 tl−1(1 −

t)m−1dt =
Γ(l)Γ(m)

Γ(l +m)
. Since Γ(l) =

∫∞
0 e−uul−1du.

Remark 3.3. Some remarks about Theorem 3.1 are following as special cases:

(i) If we choose m1 = 1, m2 = m in Theorem 3.1, we can get inequality for
(m,α, β, γ, µ)-convex function in the mixed kind.

(ii) If we choose β = γ = 1 and µ = β in Theorem 3.1, we can get inequality
for (m1,m2, α, β)-convex function in the 2nd kind.

(iii) If we choose γ = µ = 1 in Theorem 3.1, we can get inequality for (m1,m2,
α, β)- convex function in the 1st kind.

(iv) If we choose γ = r, α = µ = s and β = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s, r)-convex function in mixed kind.

(v) If we choose α = µ = s and β = γ = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s)-convex function in the 2nd kind.

(vi) If we choose γ = s and α = β = µ = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s)-convex function in the 1st kind.

(vii) If we choose m1 = 1, m2 = m, β = γ = 1 and µ = β in Theorem 3.1, we
can get inequality for (m,α, β)-convex function in the 2nd kind.
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(viii) If we choose m1 = 1, m2 = m and γ = µ = 1 in Theorem 3.1, we can get
inequality for (m,α, β)-convex function in the 1st kind.

(ix) If we choose m1 = 1, m2 = m, γ = r, α = µ = s and β = 1 in Theorem
3.1, we can get inequality for (m, s, r)-convex function in the mixed kind.

(x) If we choose m1 = m2 = 1, β = γ = 1 and µ = β in Theorem 3.1, we can
get inequality for (α, β)-convex function in the 2nd kind.

(xi) If we choose m1 = m2 = 1 and γ = µ = 1 in Theorem 3.1, we can get
inequality for (α, β)-convex function in the 1st kind.

(xii) If we choose m1 = m2 = 1, γ = r, α = µ = s and β = 1 in Theorem 3.1,
we can get inequality for (s, r)-convex function in the mixed kind.

(xiii) If we choose m1 = 1, m2 = m, α = µ = s and β = γ = 1 in Theorem 3.1,
we can get inequality for (m, s)-convex function in the 2nd kind.

(xiv) If we choose α = β = γ = µ = 1 in Theorem 3.1, we can get inequality for
(m1,m2)-convex function.

(xv) If we choose m1 = 1, m2 = m and α = β = γ = µ = 1 in Theorem 3.1, we
can get inequality for m-convex function.

(xvi) If we choose m1 = m2 = 1, α = µ = s and β = γ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 2nd kind.

(xvii) If we choose m1 = m2 = 1, α = β = s and γ = µ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 1st kind.

(xviii) If we choose m1 = m2 = 1, γ = s and α = β = µ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 1st kind.

(xix) If we choose m1 = m2 = 1, α = β = 0, and γ = µ = 1 in Theorem 3.1,we
can get inequality for quasi-convex function.

(xx) If we choose m1 = m2 = 1, α = µ = 0 and β = γ = 1 in Theorem 3.1, we
can get inequality for P -convex function.

(xxi) If we choose m1 = m2 = α = β = γ = µ = 1 in Theorem 3.1, we can get
inequality for ordinary convex function.

Remark 3.4. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.1, we recapture the main Theorem 3.2 of [19].

Remark 3.5. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.1, we
recapture the main Theorem 3.1 of [14].

Remark 3.6. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.1,
we recapture all results of Corollary 3.1 of [14].
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Theorem 3.2. Let all the suppositions of Lemma 3.1 be true and assuming
that [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k], q ≥ 1 &
D(g′(y), 0̃) ≤ M . Then,

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)

≤ M

(2)
1− 1

q

(
m1

αγ + 2
+

m2

β
B

(
2

β
, µ+ 1

)) 1
q

I(y).(3.6)

∀ y ∈ (m2j,m2k) and β > 0.

Proof. From the inequality (3.3) & appling power mean inequality, we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ (m1y −m2j)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt

≤ (m1y−m2j)
2

k−j

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t

[
D

(
g′(m1ty+m2(1−t)j), 0̃

)]q
dt

) 1
q

+
(m2k−m1y)

2

k−j

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t

[
D

(
g′(m1ty+m2(1−t)k), 0̃

)]q
dt

) 1
q

.(3.7)

Since [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M ,
we have [

D

(
g′(m1ty +m2(1− t)j), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(j), 0̃

)]q
≤ M q

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.8)

[
D

(
g′(m1ty +m2(1− t)k), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(k), 0̃

)]q
≤ M q

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.9)

Now, using (3.8) and (3.9) in (3.7) we get (3.6).
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Remark 3.7. All remarks hold for Theorem 3.2 as we have given remarks (i)
to (xxi) for Theorem 3.1.

Remark 3.8. If we choose q = 1 in Theorem 3.2, we obtain the our main
Theorem 3.1.

Remark 3.9. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.2, we recapture the Theorem 3.4 of [19].

Remark 3.10. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.2, we
recapture the Theorem 3.2 of [14].

Remark 3.11. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.2,
we recapture all results of Corollary 3.2 and Remarks 3.1 of [14].

Theorem 3.3. Let all the suppositions of Lemma 3.1 be true and assuming
that [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k], p, q > 1
& D(g′(y), 0̃) ≤ M . Then,

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ M

(p+ 1)
1
p

(
m1

αγ + 1
+

m2

β
B

(
1

β
, µ+ 1

)) 1
q

I(y),(3.10)

∀ y ∈ (m2j,m2k) and β > 0. Where p−1 + q−1 = 1.

Proof. From inequality (3.3) & by Hölder’s inequality, we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ (m1y −m2j)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt

≤ (m1y−m2j)
2

k−j

(∫ 1

0
tpdt

) 1
p
(∫ 1

0

[
D

(
g′(m1ty+m2(1−t)j), 0̃

)]q
dt

) 1
q

+
(m2k−m1y)

2

k−j

(∫ 1

0
tpdt

) 1
p
(∫ 1

0

[
D

(
g′(m1ty+m2(1−t)k), 0̃

)]q
dt

) 1
q

.(3.11)

Since [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M ,
we have [

D

(
g′(m1ty +m2(1− t)j), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(j), 0̃

)]q
≤ M q

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.12)
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[
D

(
g′(m1ty +m2(1− t)k), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(k), 0̃

)]q
≤ M q

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.13)

Now, using (3.12) and (3.13) in (3.11), we get (3.10).

Remark 3.12. All remarks hold for Theorem 3.3 as we have given remarks (i)
to (xxi) for Theorem 3.1.

Remark 3.13. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.3, we recapture the Theorem 3.3 of [19].

Remark 3.14. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.3, we
recapture the Theorem 3.3 of [14].

Remark 3.15. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.3,
we recapture all results of Corollary 3.3 and Remarks 3.2 of [14].

4. Conclusion

As we all know Ostrowski inequality is one of the most celebrated inequalities. In
this paper, we presented 1st time the generalized notion of (m1,m2, α, β, γ, µ)-
convex function in mixed kind, which contains the generalization of many func-
tions as convex, P -convex, quasi-convex, s-convex in the 1st kind, s-convex in
the 2nd kind, m-convex, (m1,m2)-convex, (m, s)-convex in the 1st kind, (m, s)-
convex in the 2nd kind, (s, r)-convex in mixed kind, (α, β)-convex in the 1st kind,
(α, β)-convex in the 2nd kind, (m, s, r)-convex in mixed kind, (m,α, β)-convex in
the 1st kind, (m,α, β)-convex in the 2nd kind, (m1,m2, s)-convex function in the
1st kind, (m1,m2, s)-convex function in the 2nd kind, (m1,m2, s, r)-convex in
mixed kind, (m1,m2, α, β)-convex in the 1st kind, (m1,m2, α, β)-convex in the
2nd kind, (α, β, γ, µ)-convex in mixed kind, (m,α, β, γ, µ)-convex in mixed kind.
We proved the generalized Ostrowski like inequalities for (m1,m2, α, β, γ, µ)-
convex functions via Fuzzy Riemann Integrals by using Hölder’s and power
mean inequality. Further that we obtained several results with respect to the
convexity of function as special cases and recaptured various established results
of different authors of different papers [19] and [14].
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eşitsizlikler, Ph.D. Thesis, Thesis ID: 361162 in tez2.yok.gov.tr Atatürk
University, 2014.

[7] Ali Hassan, Asif R. Khan, Generalized fractional Ostrowski type inequalities
via (α, β, γ, δ)-convex functions, Fractional Differential Calculus, 12 (2022),
13-36.

[8] S. Gal, Approximation theory in fuzzy setting, Chapter 13 in Handbook
of Analytic Computational Methods in Applied Mathematics (edited by
G. Anastassiou), Chapman and Hall, CRC Press, Boca Raton, New York,
2000.

[9] E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that
contains convex, monotone and some other forms of functions, Numerical
Mathematics and Mathematical Physics, (Russian), 166 (1985), 138-–142.

[10] Huriye Kadakal, (α,m1,m2)-convexity and some inequalities of Hermite-
Hadamard type, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68
(2019), 2128-2142.

[11] O. Kaleva, Fuzzy diferential equations, Fuzzy Sets and Systems, 24 (1987),
301-317.

[12] M. A. Latif, S. Hussain, Two-point fuzzy Ostrowski type inequalities, Inter-
national Journal of Analysis and Applications, 3 (2013), 35-46.

[13] Jiagen Liao, Shanhe Wu, Tingsong Du, The Sugeno integral with respect to
α-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102-114.

[14] Faraz Mehmood, Ali Hassan, Atif Idrees, Faisal Nawaz, Ostrowski like in-
equalities for (α, β, γ, δ)-convex functions via fuzzy Riemann integrals, J.
Math. Computer Sci., 31 (2023), 137—149.

[15] V. G. Mihesan, A generalization of the convexity, Seminar on Functional
Equations, Approximation and Convexity, Cluj-Napoca, (Romania), 1993.

[16] M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of con-
vexities via fractional integrals, TJMM, 55 (2013), 129-136.



GENERALIZATION OF FUZZY OSTROWSKI LIKE INEQUALITIES ... 363

[17] A. M. Ostrowski, Uber die absolutabweichung einer differentiebaren funk-
tion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226-
227.

[18] Andrew Owusu-Hemeng, Peter Kwasi Sarpong, Joseph Ackora-Prah, The
role of concave and convex functions in the study of linear and non-linear
programming, Dama International Journal of Researchers, 3 (2018), 15-29.

[19] E. Set, S. Karatas, İ. Mumcu, Fuzzy Ostrowski type inequalities for (α,m)-
convex functions, Journal of New Theory, 2015 (2015), 54-65.

Accepted: November 6, 2023


