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On completeness of fuzzy metric spaces
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Abstract. Recently, p-convergence in fuzzy metric spaces, in George and Veeramani’s
sense, has been explored by Gregori et al. [6]. In this paper, we study consistency
of Cauchyness (completeness, respectively) and p-Cauchyness (p-completeness, respec-
tively) in fuzzy metric spaces.
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1. Introduction

Many authors have defined several concepts of fuzzy metric space in different
ways [3, 4, 11, 12]. In particular, to make the topology induced by a fuzzy metric
to be Hausdorff, George and Veeramani [4] gave the concept of fuzzy metric space
with the help of continuous t-norms. Later, Gregori and Romaguera [10] proved
that the topological space induced by a fuzzy metric is metrizable. In [13], Mihet
introduced the concept of p-convergence in fuzzy metric spaces. Whereafter,
some authors studied some aspects relative to p-convergence, p-Cauchy sequence
and p-completeness in fuzzy metric spaces in [1, 6, 7, 8]. Specifically, Gregori
et al. [6] posed an open problem of characterizing consistency of Cauchyness
(completeness, respectively) and p-Cauchyness (p-completeness, respectively) in
fuzzy metric spaces. Here, we will study those fuzzy metric spaces, that we call
k-unequal, in which the family of p-Cauchy sequences and Cauchy sequences
agree, moreover, completeness and p-completeness coincide.
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2. Preliminaries

From now on, N shall denote the set of positive integer numbers . Our basic
reference for general topology is [2].

Definition 2.1 ([4]). A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a, for all a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Observe that a ∗ b = min{a, b} and a ∗ b = a · b are two common examples of
continuous t-norms.

Definition 2.2 ([4]). An ordered triple (X,M, ∗) is said to be a fuzzy metric
space if X is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set
on X ×X × (0,+∞) satisfying the following conditions, for all x, y, z ∈ X and
s, t ∈ (0,+∞):

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) = M(y, x, t);

(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);

(v) the function M(x, y, ·) : (0,+∞) → (0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, then we will call (M, ∗), or simply M , a
fuzzy metric on X.

Definition 2.3 ([4]). Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t >
0 and x ∈ X. The set

BM (x, r, t) = {y ∈ X|M(x, y, t) > 1− r}

is called the open ball with center x and radius r with respect to t.

George and Veeramani [4] proved that {BM (x, r, t)|x ∈ X, t > 0, r ∈ (0, 1)}
forms a base of a topology τM in X.

Proposition 2.1 ([4]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X converges to x0 ∈ X if and only if limnM(xn, x0, t) = 1, for all t > 0.
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Definition 2.4 ([4]). Let (X, d) be a metric space. Define a ∗ b = a · b, for all
a, b ∈ [0, 1], and let Md be the real value mapping on X ×X × (0,+∞) defined
by

Md(x, y, t) =
t

t+ d(x, y)
.

Then, (X,Md, ·) is a fuzzy metric space and (Md, ·) is called the standard fuzzy
metric induced by d.

Definition 2.5 ([5]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X is called Cauchy if for each r ∈ (0, 1) and each t > 0, there exists n0 ∈ N
such that M(xn, xm, t) > 1− r, for all n,m ≥ n0. X is called complete if every
Cauchy sequence in X is convergent with respect to τM . In such a case M is
called complete.

Definition 2.6 ([9]). A fuzzy metric M on X is said to be stationary, if M
does not depend on t, i.e. if, for all x, y ∈ X and t, M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t).

Definition 2.7 ([6]). We say that the fuzzy metric space (X,M, ∗) is principal
(or simply, M is principal) if {BM (x, r, t)|r ∈ (0, 1)} is local base at x ∈ X, for
each x ∈ X and each t > 0.

Definition 2.8 ([6, 13]). Let (X,M, ∗) be a fuzzy metric space. A sequence
{xn} in X is said to be point convergent to x0 ∈ X if limnM(xn, x0, t0) = 1 for
some t0 > 0. In such a case we say that {xn} is p-convergent to x0 for t0 > 0,
or, simply, {xn} is p-convergent.

Remark 2.1 ([6, 13]). Clearly, {xn} is convergent to x0 ∈ X if and only if {xn}
is p-convergent to x0, for all t > 0.

Definition 2.9 ([6]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X is said to be p-Cauchy if for each r ∈ (0, 1), there are n0 ∈ N and t0 > 0
such that M(xn, xm, t0) > 1− r, for all n,m ≥ n0, i.e. limm,nM(xn, x0, t0) = 1
for some t0 > 0. In such a case we say that {xn} is p-Cauchy for t0 > 0, or,
simply, {xn} is p-Cauchy.

Remark 2.2 ([6]). It is not hard to see that {xn} is a Cauchy sequence if and
only if {xn} is p-Cauchy, for all t > 0 and, obviously, p-convergent sequences
are p-Cauchy.

Definition 2.10 ([6]). A fuzzy metric space (X,M, ∗) is called p-complete if
every p-Cauchy sequence in X is p-convergent to some point of X. In such a
case M is called p-complete.
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3. Main results

We start this section with the following definition.

Definition 3.1. A fuzzy metric space (X,M, ∗) is said to be k-unequal if k(1−
M(x, y, kt)) ≥ 1−M(x, y, t) whenever x, y ∈ X, t > 0 and k > 1. In such a case
M is called k-unequal.

Now, we recall several examples, which were given in [6].

Example 3.1. (a) A stationary fuzzy metric M1 is principal.
(b) The well-known standard fuzzy metric M2 is principal.

(c) M3(x, y, t) = e−
d(x,y)

t , where d is a metric on X, is principal.

(d) M4(x, y, t) =
min{x,y}+t
max{x,y}+t is a fuzzy metric on (0,+∞), which is principal.

Example 3.2. Consider the above examples. It is an easy exercise to verify
that M1,M2 and M4 are all k-unequal. Now, we only prove that M3 is also
k-unequal. If x = y, then it is clear that k(1 −M3(x, y, kt)) = 1 −M3(x, y, t).
Let x ̸= y and k > 1. Suppose that k(1−M3(x, y, kt)) < 1−M3(x, y, t), namely

k(1− e−
d(x,y)

kt ) < 1− e−
d(x,y)

t . Then, k · e
d(x,y)

kt −1

e
d(x,y)

kt

< e
d(x,y)

t −1

e
d(x,y)

t

, which means that

ke
d(x,y)

t (e
d(x,y)

kt −1) < e
d(x,y)

kt (e
d(x,y)

t −1). Notice that e
d(x,y)

kt > e0 = 1. We deduce

that ke
d(x,y)

t − ke
(k−1)d(x,y)

kt < e
d(x,y)

t − 1, that is (k− 1)zk − kzk−1+1 < 0, where

z = e
d(x,y)

kt . Set f(z) = (k − 1)zk − kzk−1 + 1, z ∈ (1,+∞). Then, f(z) < 0, for
all z > 1. Since f ′(z) = (k− 1)kzk−1 − k(k− 1)zk−2 = (k− 1)kzk−2(z− 1) > 0,
for all z > 1, we conclude that f is a strictly increasing function on (1,+∞).
Note that, f is a continuous function on [1,+∞). We get that f(z) > f(1) = 0,
for all z > 1, which is a contradiction. So, M3 is k-unequal.

Theorem 3.1. Let (X,M, ∗) be a fuzzy metric space. If M is k-unequal, then
M is principal.

Proof. Let BM (x, ε, s) be an open ball with center x and radius ε with respect
to s, where x ∈ X, ε ∈ (0, 1) and s > 0. Put t > 0. In case 0 < t < s. Take
r = ε. Then, x ∈ BM (x, r, t) ⊆ BM (x, ε, s). In case t ≥ s. Then, t

s ≥ 1.
Hence, there exists r = εs

2t such that x ∈ BM (x, r, t) ⊆ BM (x, ε, s). In fact, let
y ∈ BM (x, r, t). Since M is k-unequal, we have that

s

t
(M(x, y, s)− 1) + 1 ≥ M(x, y,

t

s
· s) = M(x, y, t) > 1− r.

Thus

M(x, y, s) > 1− rt

s
= 1− ε

2
> 1− ε,

which follows that y ∈ BM (x, ε, s). Consequently, M is principal.

The converse of the preceding theorem is not true, in general. We illustrate
this fact with the next example.
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Example 3.3. Let X = (0, 1). Denote a ∗ b = a · b, for all a, b ∈ [0, 1]. Define
the function M on X ×X × (0,+∞) by

M(x, y, t) =


1, x = y,

xyt, x ̸= y, t ≤ 1,

xy, x ̸= y, t > 1.

Then, (X,M, ∗) is a principal fuzzy metric space (see [6]). Choose x0 = 0.95, y0 =
0.96, t0 = 0.875 and k0 = 2. Then

k0(1−M(x0, y0, k0t0)) = 2(1−M(0.95, 0.96, 2·0.875)) = 2(1−0.95·0.96) = 0.176,

and

1−M(x0, y0, t0) = 1−M(0.95, 0.96, 0.875) = 1− 0.95 · 0.96 · 0.875 = 0.202.

So, k0(1 − M(x0, y0, k0t0)) < 1 − M(x0, y0, t0), which means that M is not
k-unequal.

Due to Example 3.2 and Theorem 3.1, the following chain of implications is
fulfilled obviously.

stationary ⇒ k-unequal ⇒ principal

At the end of paper [6], Gregori et al. posed an open problem of charac-
terizing those fuzzy metric spaces where the family of p-Cauchy sequences and
Cauchy sequences agree, or further, when it is satisfied that completeness is
equivalent to p-completeness.

Next, we will solve the above open problem by the following results.

Theorem 3.2. Let {xn} be a sequence in a k-unequal fuzzy metric space
(X,M, ∗). Then, {xn} is Cauchy if and only if {xn} is p-Cauchy.

Proof. Suppose that {xn} is Cauchy. Then, by Remark 2.2 we deduce that
{xn} is p-Cauchy.

Conversely, suppose that {xn} is p-Cauchy for t0 > 0. Let ε ∈ (0, 1) and t >
0. Pick ε1 = min{ tε

t0
, ε}. Then, there exists n0 ∈ N such that M(xn, xm, t0) >

1− ε1, for all n,m ≥ n0. If t > t0, then

M(xn, xm, t) ≥ M(xn, xm, t0) > 1− ε1 ≥ 1− ε.

If 0 < t ≤ t0, then
t0
t ≥ 1. Since M is k-unequal, we obtain that

t

t0
(M(xn, xm, t)− 1) + 1 ≥ M(xn, xm,

t0
t
· t) = M(xn, xm, t0) > 1− ε1.

It follows that

M(xn, xm, t) > 1− t0
t
· ε1 ≥ 1− t0

t
· tε
t0

= 1− ε.

So, {xn} is Cauchy. The proof is finished.
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Proposition 3.1 ([6]). Let (X,M, ∗) be a principal fuzzy metric space. If X is
p-complete, then X is complete.

It was shown in [6] that the converse of the above proposition is false, in
general. Nevertheless, the next proposition can be obtained.

Proposition 3.2. Let (X,M, ∗) be a k-unequal fuzzy metric space. If X is
complete, then X is p-complete.

Proof. Let {xn} be a p-Cauchy sequence. According to Theorem 3.2, we have
that {xn} is Cauchy. Hence, {xn} converges to some point x0 ∈ X. Due to
Remark 2.1, we obtain that {xn} is p-convergent to x0. We are done.

With Theorem 3.1, Proposition 3.1 and Proposition 3.2, we get the next
corollary.

Corollary 3.1. Let (X,M, ∗) be a k-unequal fuzzy metric space. Then, X is
complete if and only if X is p-complete.

Since stationary fuzzy metric does not depend on t, obviously “p-Cauchy
sequences and Cauchy sequences” and also “p-completeness and completeness”
are equivalent concepts in stationary fuzzy metrics.
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