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Abstract. This paper mainly investigates the localization of a type B semigroup.
Firstly, the unique localization of a type B semigroup on its idempotent semilattice
is given, and some properties of the localization of a type B semigroup are studied.
It is proved that the localization of a type B semigroup on its idempotent semilattice
is the maximum cancellative monoid homomorphic image. Finally, the relationships
between localizations and the minimum cancellative congruence of a type B semigroup
are discussed.
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1. Introduction

In recent years, abundant semigroups have attracted more and more attention
from semigroup scholars (see, [4-5, 7-8, 16]). As an important subclass of abun-
dant semigroups, type B semigroups (see, [12-15, 17-19]) are called generalized
inverse semigroups together with ample semigroups (see, [2-3, 6]) because of
their similar properties to inverse semigroups (see, [1, 11, 23]). The localiza-
tion (see, [9, 20-22]) is a good method to construct a new algebraic structure,
and it plays an important role in commutative algebra. Localizations of inverse
semigroups and ample semigroups have been studied by many authors (see, [9,
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21-22]). As an application of the localization, this paper will give some new
characterizations of localizations of a type B semigroup.

2. Preliminaries

Firstly, some definitions, notations and known results used in this paper are
provided.

In 1951, the concept of Green’s relations were introduced by Green in [10].
Let a, b ∈ S, we have

aLb⇐⇒ S1a = S1b; aRb⇐⇒ aS1 = bS1.

In the 1970s, Fountain extended Green’s relations to Green’s * relations.
Let S be a semigroup. Recall, from [5] that two elements a and b in S are
L∗-[R∗-] related if and only if they are L-[R-]related in some oversemigroup of
S. The equivalent definitions of L∗-relation and R∗-relation are given as follows:

Lemma 2.1 ([5]). Let S be a semigroup and a, b ∈ S. Then, the following
statements hold:

(1) aL∗b if and only if, for all x, y ∈ S1, ax = ay ⇔ bx = by;

(2) aR∗b if and only if, for all x, y ∈ S1, xa = ya⇔ xb = yb.

Corollary 2.2 ([5]). Let S be a semigroup and a, e = e2 ∈ S. Then, the
following statements are equivalent:

(1) aL∗e [aR∗ e];

(2) ae = a [a = ea] and for all x, y ∈ S1, ax = ay [xa = ya]implies ex = ey
[xe = ye].

Obviously, let S be a semigroup. The relation L∗ is a right congruence and
R∗ is a left congruence on S. Usually, L ⊆ L∗ and R ⊆ R∗ on S. But, if a and
b are regular elements of a semigroup S, then we obtain that aL∗b if and only
if aLb, and that aR∗b if and only if aRb. That is, L∗ ∩ (RegS × RegS) = L,
R∗∩ (RegS×RegS) = R, where RegS denotes the set of all regular elements of
S. For convenience, L∗

a and R∗
a denote the L∗−class and R∗−class containing

a, respectively; E(S) denotes the set of idempotents of S; a+ and a∗ denote the
idempotent of the L∗−class and R∗−class containing a, respectively.

As in [4], a semigroup S is said to be right (left) abundant if each L∗ −
(R∗)−class of S contains an idempotent. A semigroup S is abundant if it is
both right and left abundant. A right (left) abundant semigroup S is right (left)
adequate if E(S) is a semilattice ([5]). A semigroup S is said to be adequate if
it is both left and right adequate.

Definition 2.1 ([4]). Let S be a right adequate semigroup. Then, S is said to
be right type B, if it satisfies the following conditions:
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(B1) for all e, f ∈ E(S1), a ∈ S, (efa)∗ = (ea)∗(fa)∗;

(B2) for all a ∈ S, e ∈ E(S), if e ≤ a∗, then there is f ∈ E(S1) such that
e = (fa)∗, where ≤ is a natural partial order on E(S).

Definition 2.2 ([4]). Let S be a left adequate semigroup. Then, S is left type
B, if it satisfies the following conditions:

(B1′) for all e, f ∈ E(S1), a ∈ S, (aef)+ = (ae)+(af)+;

(B2′) for all a ∈ S, e ∈ E(S), if e ≤ a+, then there is f ∈ E(S1) such that
e = (af)+, where ≤ is a natural partial order on E(S).

A semigroup is said to be type B if it is both left and right type B.

Lemma 2.3 ([12]). Let S be a type B semigroup. The relation σ is defined as
follows:

(a, b) ∈ σ ⇐⇒ (∃e ∈ E(S)) eae = ebe.

Then, σ is the least cancellative congruence on S.

Definition 2.3 ([21]). Let T be a monoid, S be a semigroup and H be a sub-
semigroup of S. Then, T is said to be a localization of S on H, if it satisfies
the following conditions:

(1) There is a surjective homomorphism ϕ : S → T such that ϕ(a) is inverse
on T , for all a ∈ H.

(2) If there are a monoid S′ and a homomorphism α : S → S′ such that α(a)
is inverse on S′, for all a ∈ H, then there is a unique homomorphism
ψ : T → S′ such that ψϕ = α.

Lemma 2.4 ([9]). Let S be a semigroup and H be a subsemigroup of S. If there
exists a localization of S on H, then the localization is unique in the sense of
isomorphism. For convenience, we denote the unique localization by S[H−1].

3. The localization of a type B semigroup on its idempotent
semilattice

In this section, we shall characterize the localization of a type B semigroup
on its idempotents. For convenience, we denote the idempotent set E(S) of a
semigroup S by E.

Proposition 3.1. Let S be a type B semigroup and E be its idempotent semi-
lattice. Define a relation on set S × E as follows:

(∀(x, e) ∈ S × E)(x, e) ∼ (y, f) ⇐⇒ (∃h ∈ E)hfxfh = heyeh,

then the following statements hold:



ON THE LOCALIZATION OF A TYPE B SEMIGROUP 333

(1) The relation ∼ is an equivalence relation on S.

(2) For all x ∈ S, e, f ∈ E, (x, e) ∼ (x, f).

(3) For all (x, e) ∈ S × E, we denote the equivalence class containing (x, e)
by x/e. Then, for all e1, e2, e3, e4 ∈ E, e1/e2 ∼ e3/e4. In particular, for
e ∈ E, we denote ∼ −class containing all (e1, e2) by e/e, where e1, e2 ∈ E.

(4) Put T = (S × E)/ ∼= {x/e | x ∈ S}. Define a multiplication “ · ” on T
as follows:

(∀x/e, y/e ∈ T ) x/e · y/e = (xy)/e.

Then, T is a monoid whose identity element is e/e under the multiplication
“ · ”.

Proof. (1) Obviously, “ ∼ ” is reflexive and symmetric. Now, we prove that
“ ∼ ” is transitive. To see it, let (x, e), (y, f), (z, g) ∈ S × E such that (x, e) ∼
(y, f), (y, f) ∼ (z, g). Then, there exist e1, e2 ∈ E such that e1fxfe1 = e1eyee1
and e2gyge2 = e2fzfe2. Hence,

e1e2fgxge1e2f = e2ge1fxfe1e2g = e2ge1eyee1e2g = e1ee2gyge2e1e

= e1ee2fzfe2e1e = e1e2fezee1e2f.

Let h = e1e2f ∈ E. Then, hgxgh = hezeh. This shows that (x, e) ∼ (z, g).
Therefore, “ ∼ ” is an equivalence relation on S.

(2) For all x ∈ S, e, f ∈ E, we have that effxfef = efxef = eefxeef =
efexeef . Let h = ef ∈ E. Then, hfxfh = hexeh. Therefore, (x, e) ∼ (x, f).

(3) Since E is the idempotent semilattice of S, we have that h = e1e2e3e4 ∈
E, for all e1, e2, e3, e4 ∈ E. Again, since he4e1e4h = he2e3e2h, we have (e1, e2) ∼
(e3, e4). That is, e1/e2 ∼ e3/e4. In particular, we choose one element e ∈ E, it
is easy to see that (e1, e2) ∈ e/e, for all e1, e2 ∈ E.

(4) Firstly, we prove that the multiplication operation “ · ” on T is well-
defined. Let x1/e, x2/e, y1/e, y2/e ∈ T with x1/e = x2/e, y1/e = y2/e. Then,
there exist f, g ∈ E such that fex1ef = fex2ef and gey1eg = gey2eg. Notice
that x∗1ef ≤ x∗1, x

∗
2ef ≤ x∗2. We have that there exist e1, e2 ∈ E(S1) such that

x∗1ef = (e1x1)
∗ and x∗2ef = (e2x2)

∗ from Condition (B2). Hence,

e1e2fex1ef = e1e2fex1x
∗
1ef = e1e2fex1(e1x1)

∗

= e1e2fee1x1(e1x1)
∗ = e1e2fee1x1.

Similarly, e1e2fex2ef = e1e2fee2x2. Again, fex1ef = fex2ef . Multiply-
ing it on the left by e1e2, we obtain that e1e2fex1ef = e1e2fex2ef . Thus,
e1e2fee1x1 = e1e2fee2x2. On the other hand, it is clear that gey+1 ≤ y+1 and
gey+2 ≤ y+2 . Therefore, there exist e3, e4 ∈ E(S1) such that gey+1 = (y1e3)

+ and
gey+2 = (y2e4)

+ from Condition (B2’), and so

gey1ege3e4 = gey+1 y1ege3e4 = (y1e3)
+y1ege3e4

= (y1e3)
+y1e3ege3e4 = y1e3ege3e4.
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Similarly, gey2ege3e4 = y2e4ege3e4. Again, gey1eg = gey2eg. Multiplying it on
the right by e3e4, we obtain that gey1ege3e4 = gey2ege3e4. Thus, y1e3ege3e4 =
y2e4ege3e4. For some h = e1e2e3e4fg ∈ E, we have

hex1y1eh = e1e2e3e4fgex1y1ee1e2e3e4fg = e3e4ge1e2fee1x1y1e3ege3e4e1e2f

= e3e4ge1e2fee2x2y2e4ege3e4e1e2f = e1e2e3e4fgex2y2ee1e2e3e4fg

= hex2y2eh.

Hence, (x1y1)/e = (x2y2)/e. This means that the multiplication operation “ · ”
on T is good.

Next, we show that T is a monoid whose identity element is e/e under the
multiplication “ · ”. Let x/e, y/e, z/e ∈ T . We have

(x/e · y/e) · z/e = (xy)/e · z/e = (xyz)/e

= x/e · (yz)/e = x/e · (y/e · z/e).

This shows that T is associative under the multiplication operation “ · ”. It is
clear that T is closed. Thus, T is a semigroup with respect to the multiplication
“ · ”. Obviously, we have ee(xe)ee = eexee, for all e ∈ E, x/e ∈ T . Hence,
(xe, e) ∼ (x, e). That is, (xe)/e = x/e · e/e = x/e. On the other hand, for all
e ∈ E, x/e ∈ T , we have ee(ex)ee = eexee. Thus, (ex, e) ∼ (x, e). That is,
(ex)/e = e/e · x/e = x/e. Therefore, T is a monoid whose identity element is
e/e under the multiplication “ · ”.

The following theorem shows that the existence of localization of a type B
semigroup on its idempotent semilattice.

Theorem 3.2. Let S be a type B semigroup and E be its idempotent semilattice.
Then, there is a localization of S on E.

Proof. Define a mapping as follows:

ϕ : S −→ T = (S × E)/ ∼, x 7→ x/e,

where T is a monoid which is constructed in Proposition 3.1(4). It is clear that
ϕ is a surjection from S into T . For all x, y ∈ S, we have

ϕ(xy) = (xy)/e = x/e · y/e = ϕ(x) · ϕ(y).

Hence, ϕ is a surjective homomorphism from S into T . By Proposition 3.1, we
have ϕ(f) = f/e = e/e, for all f ∈ E. Thus, ϕ(f) is an identity element of T .
This means that ϕ(f) is inverse on T .

Suppose that there are a monoid S′ and a homomorphism α : S → S′ such
that α(f) is inverse on S′, for all f ∈ E. Define a mapping as follows:

ψ : T = (S × E)/ ∼−→ S′, x/e 7→ α(x).
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Let x/e, y/e ∈ T with x/e = y/e. Then, there exists h ∈ E such that hexeh =
heyeh. Let f = eh = he ∈ E. It follows that fxf = fyf . Hence,

α(f)α(x)α(f) = α(f)α(y)α(f).

Multiplying it on the left and right by α(f)−1, we have α(x) = α(y) since α(f)
is inverse on S′. Thus, ψ is a well defined. Let x/e, y/e ∈ T . Then,

ψ(x/e · y/e) = ψ((xy)/e) = α(xy) = α(x)α(y) = ψ(x/e)ψ(y/e).

Hence, ψ is a homomorphism. It is easy to see that ψϕ(x) = ψ(x/e) = α(x),
for all x ∈ S. That is, ψϕ = α. Finally, we prove that ψ is unique. Suppose
that there exists a homomorphism ψ′ : T → S′ such that ψ′ϕ = α. Then, for
all x/e ∈ T , we have ψ′(x/e) = ψ′(ϕ(x)) = (ψ′ϕ)(x) = α(x) = ψ(x/e). Thus,
ψ′ = ψ. To sum up, T is a localization of S on E. This completes the proof.

4. The cancellative monoid homomorphic image of a type B
semigroup

In this section, we shall characterize the relations between localizations and the
minimum cancellative congruence of a type B semigroup.

By Lemma 2.4, we have the localization T of S on E is unique. we denote
the localization T by S[E−1].

Proposition 4.1. Let S be a type B semigroup and E be its idempotent semi-
lattice. Then, the localization S[E−1] of S on E is cancellative.

Proof. Let x/e, y/e, z/e ∈ S[E−1] with x/e · y/e = x/e · z/e. Then, (xy)/e =
(xz)/e. Hence, there exists h ∈ E such that hexyeh = hexzeh, and so

hexyeh = hexzeh⇒ (hex)yeh = (hex)zeh

⇒ (hex)∗yeh = (hex)∗zeh

⇒ (hex)∗heye(hex)∗h = (hex)∗heze(hex)∗h.

Thus, y/e = z/e since (hex)∗h ∈ E. This shows that S[E−1] is left cancellative.
Dually, S[E−1] is right cancellative. That is, S[E−1] is cancellative.

Proposition 4.2. Let S be a type B semigroup and E be its idempotent semi-
lattice. Then, the localization S[E−1] of S on E is the maximum cancellative
monoid homomorphic image of S.

Proof. Let ϕ be a surjective homomorphism from S onto S[E−1] such that ϕ(f)
is inverse on S[E−1], for all f ∈ E. If S′ is the cancellative monoid homomorphic
image of S, then there exists a homomorphism α : S → S′. By the definition
of localization, there is a unique homomorphism ψ : S[E−1] → S such that
ψϕ = α. Thus, S[E−1] is the maximum cancellative monoid homomorphic
image of S.
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Proposition 4.3. Let S be a type B semigroup and E be its idempotent semilat-
tice, H be a subsemigroup of S. If E ⊆ H ⊆ RegS, then there is the localization
S[H−1] of S on H with S[H−1] = S[E−1]. In particular, S[(RegS)−1] = S[E−1].

Proof. Since S is a type B semigroup, H is a subsemigroup of S and E ⊆
H ⊆ RegS, we have that x∗LxRx+, for all x ∈ H. Again, since S[E−1] is the
localization of S on E, there exists a surjective homomorphism ϕ : S → S[E−1].
Hence,

ϕ(x)H(S[E−1])ϕ(x∗) = ϕ(x+) = e/e.

This means that ϕ(x) is inverse on S[E−1]. On the other hand, if there are
a monoid S′ and a homomorphism α : S → S′ such that α(x) is inverse on
S′, for all x ∈ H, then α(f) is inverse on S′, for all f ∈ E ⊆ H. By the
definition of localization, there is a unique homomorphism ψ : S[E−1] → S′

such that ψϕ = α. Therefore, S[E−1] is the localization of S on H. That is,
S[H−1] = S[E−1].

Note that, E is an idempotent semilattice of S. we have that RegS is a
subsemigroup of S. Again, E ⊆ RegS. Therefore, S[(RegS)−1] = S[E−1].

Theorem 4.4. Let S be a type B semigroup and E be its idempotent semilattice.
Then, S[E−1] = S/σ, where σ is the least cancellative congruence on S.

Proof. Define a mapping as follows:

φ : S[E−1] −→ S/σ, x/e 7→ xσ.

Now, we prove that φ is an isomorphism. Let x/e, y/e ∈ S[E−1] with x/e = y/e.
Then, there exists h ∈ E such that hexeh = heyeh. Hence, fxf = fyf for some
f = eh = he ∈ E, and so (x, y) ∈ σ. That is, xσ = yσ. This means that φ is
well defined. Let xσ, yσ ∈ S/σ with xσ = yσ. Then, there is g ∈ E such that
gxg = gyg, and gexeg = geyeg. Thus, x/e = y/e. Obviously, φ is a surjection.
Hence, φ is a bijection from S[E−1] onto S/σ. Finally, we show that φ is a
homomorphism. Obviously, for all x/e, y/e ∈ S[E−1], we have

φ(x/e · y/e) = φ((xy)/e) = (xy)σ = xσ · yσ = φ(x/e) · φ(y/e).

This completes the proof.

Acknowledgements

This work is supported by the NSF(CN) (No. 11261018; No.11961026), the
NSF of Jiangxi Province (No. 20224BAB211005) and the Jiangxi Educational
Department Natural Science Foundation of China (No. GJJ2200634).



ON THE LOCALIZATION OF A TYPE B SEMIGROUP 337

References

[1] A. Cherubini, A. Frigeri, Inverse semigroups with apartness, Semigroup
Forum, 98 (2019), 571-588.

[2] A. El-Qalliali, Congruences on ample semigroups, Semigroup Forum, 99
(2019), 607-631.

[3] A. El-Qalliali, A network of congruences on an ample semigroups, Semi-
group Forum, 102 (2021), 612-654.

[4] J. Fountain, Adequate semigroups, Proc. Edinb. Math. Soc., 22 (1979), 113-
125.

[5] J. Fountain, Abundant semigroups, Proc. London Math. Soc., 44 (1982),
103-129.

[6] J.Y. Guo, X.J. Guo, Algebras of right ample semigroups, Open Math., 16
(2018), 842-861.

[7] J.Y. Guo, X.J. Guo, Abundant semigroup algebras which are Azumaya,
Semigroup Forum, 103 (2021), 879-887.

[8] J.Y. Guo, X.J. Guo, Semiprimeness of semigroup algebras, Open Math., 19
(2021), 803-832.

[9] Q. Guo, B.J. Yu, Y. Li, On the localization of type A semigroups, J. Sichuan
Normal Univer., 29 (2006), 409-412 (in Chinese).

[10] J. Green, The structure of semigroups, Ann. Math., 54 (1951), 163-172.

[11] M. Lawson, The Booleanization of an inverse semigroup, Semigroup Forum,
100 (2020), 283-314.

[12] C.H. Li, L.M. Wang, On the translational hull of a type B semigroup, Semi-
group Forum, 82 (2011), 516-529.

[13] C.H. Li, B.G. Xu, H.W. Huang, Congruences on ∼ bisimple right type B
ω semigroups, J. Discr. Math. Sci. Cryptography, 20 (2017), 1251-1262.

[14] C.H. Li, L.M. Wang, B.G. Xu, H.W. Huang, An automorphism theorem on
certain type B semigroups, Italian J. Pure Appl. Math., 42 (2019), 616-623.

[15] C.H. Li, B.G. Xu, A characterization of the translational hull of a strongly
right type B semigroup, Open Math., 17 (2019), 1340-1349.

[16] C.H. Li, B.G. Xu, H.W. Huang, Bipolar fuzzy abundant semigroups with
applications, J.Intelli. Fuzzy Syst., 39 (2020), 167-176.



338 CHUNHUA LI, LINGXIANG MENG and JIEYING FANG

[17] C.H. Li, Z. Pei, B.G. Xu, A new characterization of a poper type B semi-
group, Open Math., 18 (2020), 1590-1600.

[18] C.H. Li, Z. Pei, B.G. Xu, A ∗-prehomomorphism of a type B semigroup, J.
Algebra. Appli., 20 (2021), 2150222.

[19] C.H. Li, J.Y. Fang, L.X. Meng, B.G. Xu, Almost factorizable weakly type
B semigroups, Open Math., 19 (2021), 1721-1735.

[20] S.L. Liu, Z.J. Tian, The localization of strictly π-regular semigroups, J.
Inter. Contem. Math. Sci., 54 (2010), 2655-2661.

[21] Y.F. Zhang, On the localization of inverse semigroups, J. Shandong Normal
Univer., 4 (1989), 1-4 (in Chinese).

[22] Y.F. Zhang, S.Z. Li, D.S. Wang, Localization of π-orthodox semigroup and
application, Advan. Math., Beijing, 25 (1996), 334-337.

[23] Z.P. Wang, Congruences on graph inverse semigroups, J. Algebra, 534
(2019), 51-64.


