On the localization of a type B semigroup

Chunhua Li*

School of Science East China Jiaotong University Nanchang, Jiangxi 330013 P.R. China chunhuali66@163.com

Lingxiang Meng

School of Science East China Jiaotong University Nanchang, Jiangxi 330013 P.R. China

Jieying Fang

School of Science East China Jiaotong University Nanchang, Jiangxi 330013 P.R. China

Abstract. This paper mainly investigates the localization of a type B semigroup. Firstly, the unique localization of a type B semigroup on its idempotent semilattice is given, and some properties of the localization of a type B semigroup are studied. It is proved that the localization of a type B semigroup on its idempotent semilattice is the maximum cancellative monoid homomorphic image. Finally, the relationships between localizations and the minimum cancellative congruence of a type B semigroup are discussed.

Keywords: type B semigroup, idempotent semilattice, cancellative monoid homomorphic image, localization.

MSC 2020: 20M10, 06F05

1. Introduction

In recent years, abundant semigroups have attracted more and more attention from semigroup scholars (see, [4-5, 7-8, 16]). As an important subclass of abundant semigroups, type B semigroups (see, [12-15, 17-19]) are called generalized inverse semigroups together with ample semigroups (see, [2-3, 6]) because of their similar properties to inverse semigroups (see, [1, 11, 23]). The localization (see, [9, 20-22]) is a good method to construct a new algebraic structure, and it plays an important role in commutative algebra. Localizations of inverse semigroups and ample semigroups have been studied by many authors (see, [9,

^{*.} Corresponding author

21-22]). As an application of the localization, this paper will give some new characterizations of localizations of a type B semigroup.

2. Preliminaries

Firstly, some definitions, notations and known results used in this paper are provided.

In 1951, the concept of Green's relations were introduced by Green in [10]. Let $a, b \in S$, we have

 $a\mathcal{L}b \iff S^1a = S^1b; \quad a\mathcal{R}b \iff aS^1 = bS^1.$

In the 1970s, Fountain extended Green's relations to Green's * relations. Let S be a semigroup. Recall, from [5] that two elements a and b in S are \mathcal{L}^* - $[\mathcal{R}^*$ -] related if and only if they are \mathcal{L} - $[\mathcal{R}$ -]related in some oversemigroup of S. The equivalent definitions of \mathcal{L}^* -relation and \mathcal{R}^* -relation are given as follows:

Lemma 2.1 ([5]). Let S be a semigroup and $a, b \in S$. Then, the following statements hold:

- (1) $a\mathcal{L}^*b$ if and only if, for all $x, y \in S^1$, $ax = ay \Leftrightarrow bx = by$;
- (2) $a\mathcal{R}^*b$ if and only if, for all $x, y \in S^1$, $xa = ya \Leftrightarrow xb = yb$.

Corollary 2.2 ([5]). Let S be a semigroup and $a, e = e^2 \in S$. Then, the following statements are equivalent:

- (1) $a\mathcal{L}^*e [a\mathcal{R}^* e];$
- (2) $ae = a \ [a = ea]$ and for all $x, y \in S^1$, $ax = ay \ [xa = ya]$ implies $ex = ey \ [xe = ye]$.

Obviously, let S be a semigroup. The relation \mathcal{L}^* is a right congruence and \mathcal{R}^* is a left congruence on S. Usually, $\mathcal{L} \subseteq \mathcal{L}^*$ and $\mathcal{R} \subseteq \mathcal{R}^*$ on S. But, if a and b are regular elements of a semigroup S, then we obtain that $a\mathcal{L}^*b$ if and only if $a\mathcal{L}b$, and that $a\mathcal{R}^*b$ if and only if $a\mathcal{R}b$. That is, $\mathcal{L}^* \cap (RegS \times RegS) = \mathcal{L}$, $\mathcal{R}^* \cap (RegS \times RegS) = \mathcal{R}$, where RegS denotes the set of all regular elements of S. For convenience, \mathcal{L}^*_a and \mathcal{R}^*_a denote the \mathcal{L}^* -class and \mathcal{R}^* -class containing a, respectively; E(S) denotes the set of idempotents of S; a^+ and a^* denote the idempotent of the \mathcal{L}^* -class and \mathcal{R}^* -class containing a, respectively.

As in [4], a semigroup S is said to be right (left) abundant if each $\mathcal{L}^* - (\mathcal{R}^*)$ -class of S contains an idempotent. A semigroup S is abundant if it is both right and left abundant. A right (left) abundant semigroup S is right (left) adequate if E(S) is a semilattice ([5]). A semigroup S is said to be adequate if it is both left and right adequate.

Definition 2.1 ([4]). Let S be a right adequate semigroup. Then, S is said to be right type B, if it satisfies the following conditions:

- (B1) for all $e, f \in E(S^1), a \in S, (efa)^* = (ea)^*(fa)^*;$
- (B2) for all $a \in S, e \in E(S)$, if $e \leq a^*$, then there is $f \in E(S^1)$ such that $e = (fa)^*$, where \leq is a natural partial order on E(S).

Definition 2.2 ([4]). Let S be a left adequate semigroup. Then, S is left type B, if it satisfies the following conditions:

- (B1') for all $e, f \in E(S^1), a \in S, (aef)^+ = (ae)^+(af)^+;$
- (B2') for all $a \in S, e \in E(S)$, if $e \leq a^+$, then there is $f \in E(S^1)$ such that $e = (af)^+$, where \leq is a natural partial order on E(S).

A semigroup is said to be type B if it is both left and right type B.

Lemma 2.3 ([12]). Let S be a type B semigroup. The relation σ is defined as follows:

$$(a,b) \in \sigma \iff (\exists e \in E(S)) \ eae = ebe.$$

Then, σ is the least cancellative congruence on S.

Definition 2.3 ([21]). Let T be a monoid, S be a semigroup and H be a subsemigroup of S. Then, T is said to be a localization of S on H, if it satisfies the following conditions:

- (1) There is a surjective homomorphism $\phi: S \to T$ such that $\phi(a)$ is inverse on T, for all $a \in H$.
- (2) If there are a monoid S' and a homomorphism $\alpha : S \to S'$ such that $\alpha(a)$ is inverse on S', for all $a \in H$, then there is a unique homomorphism $\psi : T \to S'$ such that $\psi \phi = \alpha$.

Lemma 2.4 ([9]). Let S be a semigroup and H be a subsemigroup of S. If there exists a localization of S on H, then the localization is unique in the sense of isomorphism. For convenience, we denote the unique localization by $S[H^{-1}]$.

3. The localization of a type B semigroup on its idempotent semilattice

In this section, we shall characterize the localization of a type B semigroup on its idempotents. For convenience, we denote the idempotent set E(S) of a semigroup S by E.

Proposition 3.1. Let S be a type B semigroup and E be its idempotent semilattice. Define a relation on set $S \times E$ as follows:

$$(\forall (x,e) \in S \times E)(x,e) \sim (y,f) \iff (\exists h \in E) hfxfh = heyeh,$$

then the following statements hold:

- (1) The relation \sim is an equivalence relation on S.
- (2) For all $x \in S$, $e, f \in E$, $(x, e) \sim (x, f)$.
- (3) For all $(x,e) \in S \times E$, we denote the equivalence class containing (x,e) by x/e. Then, for all $e_1, e_2, e_3, e_4 \in E$, $e_1/e_2 \sim e_3/e_4$. In particular, for $e \in E$, we denote $\sim -class$ containing all (e_1, e_2) by e/e, where $e_1, e_2 \in E$.
- (4) Put $T = (S \times E) / \sim = \{x/e \mid x \in S\}$. Define a multiplication " \cdot " on T as follows:

$$(\forall x/e, y/e \in T) \ x/e \cdot y/e = (xy)/e.$$

Then, T is a monoid whose identity element is e/e under the multiplication " \cdot ".

Proof. (1) Obviously, "~" is reflexive and symmetric. Now, we prove that "~" is transitive. To see it, let $(x, e), (y, f), (z, g) \in S \times E$ such that $(x, e) \sim (y, f), (y, f) \sim (z, g)$. Then, there exist $e_1, e_2 \in E$ such that $e_1fxfe_1 = e_1eyee_1$ and $e_2gyge_2 = e_2fzfe_2$. Hence,

$$e_1e_2fgxge_1e_2f = e_2ge_1fxfe_1e_2g = e_2ge_1eyee_1e_2g = e_1ee_2gyge_2e_1e$$

= $e_1ee_2fzfe_2e_1e = e_1e_2fe_2e_1e_2f.$

Let $h = e_1 e_2 f \in E$. Then, hgxgh = hezeh. This shows that $(x, e) \sim (z, g)$. Therefore, "~" is an equivalence relation on S.

(2) For all $x \in S$, $e, f \in E$, we have that effxfef = efxef = eefxeef = efxeef. Let $h = ef \in E$. Then, hfxfh = hexeh. Therefore, $(x, e) \sim (x, f)$.

(3) Since E is the idempotent semilattice of S, we have that $h = e_1e_2e_3e_4 \in E$, for all $e_1, e_2, e_3, e_4 \in E$. Again, since $he_4e_1e_4h = he_2e_3e_2h$, we have $(e_1, e_2) \sim (e_3, e_4)$. That is, $e_1/e_2 \sim e_3/e_4$. In particular, we choose one element $e \in E$, it is easy to see that $(e_1, e_2) \in e/e$, for all $e_1, e_2 \in E$.

(4) Firstly, we prove that the multiplication operation " \cdot " on T is welldefined. Let $x_1/e, x_2/e, y_1/e, y_2/e \in T$ with $x_1/e = x_2/e, y_1/e = y_2/e$. Then, there exist $f, g \in E$ such that $fex_1ef = fex_2ef$ and $gey_1eg = gey_2eg$. Notice that $x_1^*ef \leq x_1^*, x_2^*ef \leq x_2^*$. We have that there exist $e_1, e_2 \in E(S^1)$ such that $x_1^*ef = (e_1x_1)^*$ and $x_2^*ef = (e_2x_2)^*$ from Condition (B2). Hence,

$$e_1e_2fex_1ef = e_1e_2fex_1x_1^*ef = e_1e_2fex_1(e_1x_1)^*$$
$$= e_1e_2fee_1x_1(e_1x_1)^* = e_1e_2fee_1x_1.$$

Similarly, $e_1e_2fex_2ef = e_1e_2fee_2x_2$. Again, $fex_1ef = fex_2ef$. Multiplying it on the left by e_1e_2 , we obtain that $e_1e_2fex_1ef = e_1e_2fex_2ef$. Thus, $e_1e_2fee_1x_1 = e_1e_2fee_2x_2$. On the other hand, it is clear that $gey_1^+ \leq y_1^+$ and $gey_2^+ \leq y_2^+$. Therefore, there exist $e_3, e_4 \in E(S^1)$ such that $gey_1^+ = (y_1e_3)^+$ and $gey_2^+ = (y_2e_4)^+$ from Condition (B2'), and so

$$gey_1ege_3e_4 = gey_1^+y_1ege_3e_4 = (y_1e_3)^+y_1ege_3e_4 = (y_1e_3)^+y_1e_3ege_3e_4 = y_1e_3ege_3e_4.$$

Similarly, $gey_2ege_3e_4 = y_2e_4ege_3e_4$. Again, $gey_1eg = gey_2eg$. Multiplying it on the right by e_3e_4 , we obtain that $gey_1ege_3e_4 = gey_2ege_3e_4$. Thus, $y_1e_3ege_3e_4 = y_2e_4ege_3e_4$. For some $h = e_1e_2e_3e_4fg \in E$, we have

$$\begin{aligned} hex_1y_1eh &= e_1e_2e_3e_4fgex_1y_1ee_1e_2e_3e_4fg = e_3e_4ge_1e_2fee_1x_1y_1e_3ege_3e_4e_1e_2f \\ &= e_3e_4ge_1e_2fee_2x_2y_2e_4ege_3e_4e_1e_2f = e_1e_2e_3e_4fgex_2y_2ee_1e_2e_3e_4fg \\ &= hex_2y_2eh. \end{aligned}$$

Hence, $(x_1y_1)/e = (x_2y_2)/e$. This means that the multiplication operation " \cdot " on T is good.

Next, we show that T is a monoid whose identity element is e/e under the multiplication " \cdot ". Let $x/e, y/e, z/e \in T$. We have

$$\begin{aligned} (x/e \cdot y/e) \cdot z/e &= (xy)/e \cdot z/e = (xyz)/e \\ &= x/e \cdot (yz)/e = x/e \cdot (y/e \cdot z/e). \end{aligned}$$

This shows that T is associative under the multiplication operation " \cdot ". It is clear that T is closed. Thus, T is a semigroup with respect to the multiplication " \cdot ". Obviously, we have ee(xe)ee = eexee, for all $e \in E, x/e \in T$. Hence, $(xe, e) \sim (x, e)$. That is, $(xe)/e = x/e \cdot e/e = x/e$. On the other hand, for all $e \in E, x/e \in T$, we have ee(ex)ee = eexee. Thus, $(ex, e) \sim (x, e)$. That is, $(ex)/e = e/e \cdot x/e \in T$, we have ee(ex)ee = eexee. Thus, $(ex, e) \sim (x, e)$. That is, $(ex)/e = e/e \cdot x/e = x/e$. Therefore, T is a monoid whose identity element is e/e under the multiplication " \cdot ".

The following theorem shows that the existence of localization of a type B semigroup on its idempotent semilattice.

Theorem 3.2. Let S be a type B semigroup and E be its idempotent semilattice. Then, there is a localization of S on E.

Proof. Define a mapping as follows:

$$\phi: S \longrightarrow T = (S \times E) / \sim, \ x \mapsto x/e,$$

where T is a monoid which is constructed in Proposition 3.1(4). It is clear that ϕ is a surjection from S into T. For all $x, y \in S$, we have

$$\phi(xy) = (xy)/e = x/e \cdot y/e = \phi(x) \cdot \phi(y).$$

Hence, ϕ is a surjective homomorphism from S into T. By Proposition 3.1, we have $\phi(f) = f/e = e/e$, for all $f \in E$. Thus, $\phi(f)$ is an identity element of T. This means that $\phi(f)$ is inverse on T.

Suppose that there are a monoid S' and a homomorphism $\alpha : S \to S'$ such that $\alpha(f)$ is inverse on S', for all $f \in E$. Define a mapping as follows:

$$\psi: T = (S \times E) / \sim \longrightarrow S', \ x/e \mapsto \alpha(x).$$

Let $x/e, y/e \in T$ with x/e = y/e. Then, there exists $h \in E$ such that hexeh = heyeh. Let $f = eh = he \in E$. It follows that fxf = fyf. Hence,

$$\alpha(f)\alpha(x)\alpha(f) = \alpha(f)\alpha(y)\alpha(f).$$

Multiplying it on the left and right by $\alpha(f)^{-1}$, we have $\alpha(x) = \alpha(y)$ since $\alpha(f)$ is inverse on S'. Thus, ψ is a well defined. Let $x/e, y/e \in T$. Then,

$$\psi(x/e \cdot y/e) = \psi((xy)/e) = \alpha(xy) = \alpha(x)\alpha(y) = \psi(x/e)\psi(y/e).$$

Hence, ψ is a homomorphism. It is easy to see that $\psi\phi(x) = \psi(x/e) = \alpha(x)$, for all $x \in S$. That is, $\psi\phi = \alpha$. Finally, we prove that ψ is unique. Suppose that there exists a homomorphism $\psi': T \to S'$ such that $\psi'\phi = \alpha$. Then, for all $x/e \in T$, we have $\psi'(x/e) = \psi'(\phi(x)) = (\psi'\phi)(x) = \alpha(x) = \psi(x/e)$. Thus, $\psi' = \psi$. To sum up, T is a localization of S on E. This completes the proof.

4. The cancellative monoid homomorphic image of a type B semigroup

In this section, we shall characterize the relations between localizations and the minimum cancellative congruence of a type B semigroup.

By Lemma 2.4, we have the localization T of S on E is unique. we denote the localization T by $S[E^{-1}]$.

Proposition 4.1. Let S be a type B semigroup and E be its idempotent semilattice. Then, the localization $S[E^{-1}]$ of S on E is cancellative.

Proof. Let $x/e, y/e, z/e \in S[E^{-1}]$ with $x/e \cdot y/e = x/e \cdot z/e$. Then, (xy)/e = (xz)/e. Hence, there exists $h \in E$ such that hexyeh = hexzeh, and so

$$\begin{split} hexyeh &= hexzeh \Rightarrow (hex)yeh = (hex)zeh \\ &\Rightarrow (hex)^*yeh = (hex)^*zeh \\ &\Rightarrow (hex)^*heye(hex)^*h = (hex)^*heze(hex)^*h. \end{split}$$

Thus, y/e = z/e since $(hex)^*h \in E$. This shows that $S[E^{-1}]$ is left cancellative. Dually, $S[E^{-1}]$ is right cancellative. That is, $S[E^{-1}]$ is cancellative.

Proposition 4.2. Let S be a type B semigroup and E be its idempotent semilattice. Then, the localization $S[E^{-1}]$ of S on E is the maximum cancellative monoid homomorphic image of S.

Proof. Let ϕ be a surjective homomorphism from S onto $S[E^{-1}]$ such that $\phi(f)$ is inverse on $S[E^{-1}]$, for all $f \in E$. If S' is the cancellative monoid homomorphic image of S, then there exists a homomorphism $\alpha : S \to S'$. By the definition of localization, there is a unique homomorphism $\psi : S[E^{-1}] \to S$ such that $\psi\phi = \alpha$. Thus, $S[E^{-1}]$ is the maximum cancellative monoid homomorphic image of S.

Proposition 4.3. Let S be a type B semigroup and E be its idempotent semilattice, H be a subsemigroup of S. If $E \subseteq H \subseteq RegS$, then there is the localization $S[H^{-1}]$ of S on H with $S[H^{-1}] = S[E^{-1}]$. In particular, $S[(RegS)^{-1}] = S[E^{-1}]$.

Proof. Since S is a type B semigroup, H is a subsemigroup of S and $E \subseteq H \subseteq RegS$, we have that $x^*\mathcal{L}x\mathcal{R}x^+$, for all $x \in H$. Again, since $S[E^{-1}]$ is the localization of S on E, there exists a surjective homomorphism $\phi : S \to S[E^{-1}]$. Hence,

$$\phi(x)\mathcal{H}(S[E^{-1}])\phi(x^*) = \phi(x^+) = e/e.$$

This means that $\phi(x)$ is inverse on $S[E^{-1}]$. On the other hand, if there are a monoid S' and a homomorphism $\alpha : S \to S'$ such that $\alpha(x)$ is inverse on S', for all $x \in H$, then $\alpha(f)$ is inverse on S', for all $f \in E \subseteq H$. By the definition of localization, there is a unique homomorphism $\psi : S[E^{-1}] \to S'$ such that $\psi \phi = \alpha$. Therefore, $S[E^{-1}]$ is the localization of S on H. That is, $S[H^{-1}] = S[E^{-1}]$.

Note that, E is an idempotent semilattice of S. we have that RegS is a subsemigroup of S. Again, $E \subseteq RegS$. Therefore, $S[(RegS)^{-1}] = S[E^{-1}]$. \Box

Theorem 4.4. Let S be a type B semigroup and E be its idempotent semilattice. Then, $S[E^{-1}] = S/\sigma$, where σ is the least cancellative congruence on S.

Proof. Define a mapping as follows:

$$\varphi: S[E^{-1}] \longrightarrow S/\sigma, \ x/e \mapsto x\sigma.$$

Now, we prove that φ is an isomorphism. Let $x/e, y/e \in S[E^{-1}]$ with x/e = y/e. Then, there exists $h \in E$ such that hexeh = heyeh. Hence, fxf = fyf for some $f = eh = he \in E$, and so $(x, y) \in \sigma$. That is, $x\sigma = y\sigma$. This means that φ is well defined. Let $x\sigma, y\sigma \in S/\sigma$ with $x\sigma = y\sigma$. Then, there is $g \in E$ such that gxg = gyg, and gexeg = geyeg. Thus, x/e = y/e. Obviously, φ is a surjection. Hence, φ is a bijection from $S[E^{-1}]$ onto S/σ . Finally, we show that φ is a homomorphism. Obviously, for all $x/e, y/e \in S[E^{-1}]$, we have

$$\varphi(x/e \cdot y/e) = \varphi((xy)/e) = (xy)\sigma = x\sigma \cdot y\sigma = \varphi(x/e) \cdot \varphi(y/e).$$

This completes the proof.

Acknowledgements

This work is supported by the NSF(CN) (No. 11261018; No.11961026), the NSF of Jiangxi Province (No. 20224BAB211005) and the Jiangxi Educational Department Natural Science Foundation of China (No. GJJ2200634).

References

- A. Cherubini, A. Frigeri, *Inverse semigroups with apartness*, Semigroup Forum, 98 (2019), 571-588.
- [2] A. El-Qalliali, Congruences on ample semigroups, Semigroup Forum, 99 (2019), 607-631.
- [3] A. El-Qalliali, A network of congruences on an ample semigroups, Semigroup Forum, 102 (2021), 612-654.
- [4] J. Fountain, Adequate semigroups, Proc. Edinb. Math. Soc., 22 (1979), 113-125.
- [5] J. Fountain, Abundant semigroups, Proc. London Math. Soc., 44 (1982), 103-129.
- [6] J.Y. Guo, X.J. Guo, Algebras of right ample semigroups, Open Math., 16 (2018), 842-861.
- [7] J.Y. Guo, X.J. Guo, Abundant semigroup algebras which are Azumaya, Semigroup Forum, 103 (2021), 879-887.
- [8] J.Y. Guo, X.J. Guo, Semiprimeness of semigroup algebras, Open Math., 19 (2021), 803-832.
- [9] Q. Guo, B.J. Yu, Y. Li, On the localization of type A semigroups, J. Sichuan Normal Univer., 29 (2006), 409-412 (in Chinese).
- [10] J. Green, The structure of semigroups, Ann. Math., 54 (1951), 163-172.
- [11] M. Lawson, The Booleanization of an inverse semigroup, Semigroup Forum, 100 (2020), 283-314.
- [12] C.H. Li, L.M. Wang, On the translational hull of a type B semigroup, Semigroup Forum, 82 (2011), 516-529.
- [13] C.H. Li, B.G. Xu, H.W. Huang, Congruences on ~ bisimple right type B ω semigroups, J. Discr. Math. Sci. Cryptography, 20 (2017), 1251-1262.
- [14] C.H. Li, L.M. Wang, B.G. Xu, H.W. Huang, An automorphism theorem on certain type B semigroups, Italian J. Pure Appl. Math., 42 (2019), 616-623.
- [15] C.H. Li, B.G. Xu, A characterization of the translational hull of a strongly right type B semigroup, Open Math., 17 (2019), 1340-1349.
- [16] C.H. Li, B.G. Xu, H.W. Huang, Bipolar fuzzy abundant semigroups with applications, J.Intelli. Fuzzy Syst., 39 (2020), 167-176.

- [17] C.H. Li, Z. Pei, B.G. Xu, A new characterization of a poper type B semigroup, Open Math., 18 (2020), 1590-1600.
- [18] C.H. Li, Z. Pei, B.G. Xu, A *-prehomomorphism of a type B semigroup, J. Algebra. Appli., 20 (2021), 2150222.
- [19] C.H. Li, J.Y. Fang, L.X. Meng, B.G. Xu, Almost factorizable weakly type B semigroups, Open Math., 19 (2021), 1721-1735.
- [20] S.L. Liu, Z.J. Tian, The localization of strictly π-regular semigroups, J. Inter. Contem. Math. Sci., 54 (2010), 2655-2661.
- [21] Y.F. Zhang, On the localization of inverse semigroups, J. Shandong Normal Univer., 4 (1989), 1-4 (in Chinese).
- [22] Y.F. Zhang, S.Z. Li, D.S. Wang, Localization of π-orthodox semigroup and application, Advan. Math., Beijing, 25 (1996), 334-337.
- [23] Z.P. Wang, Congruences on graph inverse semigroups, J. Algebra, 534 (2019), 51-64.