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Abstract. In mathematical ecology, the study of interactions that are reactive-
diffusive in nature between different species and their relevant systems has been re-
searched extensively. However, there is still room for contribution on this rich topic.
Therefore, we study a spatial-temporal prey-predator model which includes kinesis
terms representing plankton dynamics under info-chemical mediated trophic interac-
tions. The Beddington-DeAngelis functional response is coupled with a simplified two
species approach within the model to describe the grazing pressure of zooplankton (M)
on phytoplankton (P).This pressure is controlled through an external info-chemical (C).
The mutual interference by predators within the ecosystem is implemented through the
Beddington-DeAngelis functional response, a distinctive feature of this response type.
This feature is utilized in this study to indicate the effect of changes in prey density
in relation to predator density. In our model, a stability analysis is performed between
the two aforementioned species to provide a system dynamics comparison. The critical
conditions for kinesis are derived on the basis that increases in the reproduction coeffi-
cient decrease the diffusion. This means that species prefer to stay in good conditions
to facilitate the reproduction process, but are likely to escape in bad conditions. The
kinesis terms within our Phytoplankton-Zooplankton model impact factors such as sur-
vival and traveling wave behavior. Numerical experiments are performed in this work
to examine the traveling waves and the monotonic dependence of the reproduction co-
efficient in the species population. Moreover, the possible benefits of purposeful kinesis
are demonstrated.
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1. Introduction

Phytoplankton are the primary source of carbon dioxide transfer to the ocean
and capture carbon dioxide through the process of photosynthesis. Carbon
capture, and modelling processes involved, has recently become a topic of in-
creasing interest, given its potential role in countering global warming, although
little novel mathematical research into this aspect has been published in recent
years. We wanted to improve the modelling of the interactions between a partic-
ular group of phytoplankton and its main predator. Phytoplankton need light
for photosynthesis. This limits their viable depth to less than 200m [27]. The
vertical distribution of phytoplankton is highly heterogeneous, but empirical re-
search has shown that profiles of certain chemicals (info-chemicals), for instance
dimethyl sulfide (DMS), closely resemble chlorophyll maxima (i.e. clusters of
phytoplankton) as seen in [28]. Predators of plankton (e.g. Copepods) are
known to travel vertically to follow prey distribution. This suggests that Cope-
pods may use vertical gradients of info-chemicals to locate prey and remain
within their profitable foraging zones. Lewis [52] developed a non-spatial model
involving Copepods. Further investigation showed that small increases in the
ability of Copepods to sense info-chemicals could increase their longevity in the
system, and hence increased sensitivity to info-chemicals can be an evolutionar-
ily advantageous a strategy for these predators. The phenomenon of vertically
migrating zooplankton has been studied by many (e.g., [29], [30], [31], [65]),
including a spatial heterogeneity which lead to the development of reaction-
advection-diffusion models. The Beddington DeAngelis functional response is
an essential tool in the field of plankton modelling. Although it is similar to
responses such as the Holling type II functional response, it includes a term that
accounts for mutual interference by predators. This allows for the prediction
of predators per capita feeding rates on the prey, as well as providing better
descriptions of predator-prey abundances and their relation to predator feeding
activity within their respective predator-prey systems. In plankton models, the
Beddington DeAngelis functional response can be used to perform a detailed
mathematical analysis of the intra-species competition among predators [21].
Many ecologists have proposed the prey dependent predator-prey model, based
on the assumption that the predators rate of prey capture is independent of
prey density. However, some biologists disagree with that in many instances,
particularly when predators must search for food and thus must share or start
competing for food, the predator prey models deliver results should really be
predator dependent. The Beddington DeAngelis type functional response out-
performed the others in several circumstances. The functional response of a
predator is the rate at which it consumes prey as a function of food density.
Understanding the underlying dynamic relationships between prey and preda-
tor in the Beddington DeAngelis model is crucial for the description of ecosys-
tem dynamics. [21, 26] implemented the effect of this functional response to
describe mutual interference by predators within their predatorprey ecosystem
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model. Later this approach was used to highlight the effect of changes in prey
density on the predator density attached per unit time in Sarwardi [25]. [58]
and [48] introduced the classical PDE model which defines population disper-
sal, and is used to model kinesis, as can be observed in [42]. For those kinesis
models, the diffusion is dependent on only localized information rather than
including non-localized information. The local information, which is to be con-
sidered in cases such as taxis movement. A connection between the reproduction
rate and diffusion coefficient has been established in which the reproduction co-
efficient can be presented as Darwinian Fitness; increase in migration should
increase Darwinian Fitness [47], [54], and [41]. In this work, we aim to explore a
predator-prey diffusion model of plankton with kinesis using partial differential
equations (PDEs). [64] analytically explained the random population disper-
sal mechanics for living organisms by introducing the diffusion law, enabling
an understanding of the spatial distribution of population density in linear and
two-dimensional forms. Over the years, many scientists have studied diffusion to
model biological, chemical, and physical processes. In particular, Alan Turing
determined the causes of d-patterns in a variety of non-equilibrium situations
when dealing with reaction-diffusion [4]. The classical predator-prey model was
defined by Lotka and Volterra in 1920. In n our study, we investigate five key
aspects related to the kinesis-diffusion terms, which provide a parameterisation
of small-scale distribution. These terms account for horizontal movement in two
dimensions, primarily influenced by the circular distribution and flows observed
in plankton. Here’s an overview of the sections covered in our study:

� General Description and Mathematical Model: The first section provides
an introduction and outlines the mathematical model used in our research.

� Equilibrium Location and Analysis: The second section focuses on the
location and analysis of equilibrium points within the model.

� Time-Series Behavior: Section three delves into the time-series behavior
of the system, examining its dynamic evolution over time.

� Bifurcation Behavior at Different Carrying Capacity Levels: In the fourth
section, we explore how the system’s behavior changes at various carrying
capacity levels, particularly focusing on bifurcation phenomena.

� Hydra Effect of Both Predator and Prey: Section five discusses the ”hydra
effect” observed in both predator and prey populations and its implications
for the ecosystem.

� Analysis of Kinesis in the Reaction-Diffusion System: The sixth section
provides an in-depth analysis of kinesis within the reaction-diffusion sys-
tem and its impact on the overall equilibrium.

� Discussion of Findings and Conclusion: The final section offers a compre-
hensive discussion of our research findings. We conclude by discussing how
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a small growth rate can lead to reduced phytoplankton density and po-
tentially destabilize the model. Additionally, we explore the role of rapid
responses to increases in fast-growing prey, which can contribute to the
emergence of limit cycles in the dynamical system.

2. Mathematical model

The core goal of our work is to analyze the qualitative behavior of two micro-
organism species (phytoplankton, grazing zooplankton) interacting on two tro-
phic levels exposed to a predator (meso-zooplankton copepod) and to examine
the interaction between this trophic. The analysis will focus on a comparison be-
tween the latest obtained results and the current available results in an attempt
to understand the main difference among two different functional response types
in the predator-prey model and to illustrate how grazing induced by Dimethyl
sulphide has a stabilizing effect on the modelled system.

2.1 General model and description

The model used is described using PDEs which include a horizontal diffusion
term as shown below:

∂P

∂t
= F∆(P,M) := DP

∂2P

∂x2
+ rP

(
1− P

K

)
− aPM

EM + P + b
,(1)

∂M

∂t
= G∆(P,M) := DM

∂2M

∂x2
+

γaPM

EM + P + b
−mM − ν

aPM2

EM + P + b
,(2)

In the given model (Eq. 2), P and M represent the densities of phytoplankton
and zooplankton within a closed homogeneous system. Similar to the approach
taken by [52], the model assumes logistic growth for phytoplankton, character-
ized by an intrinsic growth rate denoted as r and a carrying capacity represented
by K. This carrying capacity reflects the limits imposed by nutrient avail-
ability and self-shading effects on phytoplankton growth. Zooplankton in this
model feed on phytoplankton based on the Beddington DeAngelis functional
response, a mathematical framework used to describe predator-prey interac-
tions. This functional response is employed to provide more detailed insights
into predator-prey dynamics and how they influence predator feeding behavior.
The Beddington DeAngelis functional response has been used in various eco-
logical studies to elucidate the impact of changes in prey density on predator
density over time. For instance, [26] applied this concept to illustrate mutual
interference among predators in an ecosystem, while [25] examined how alter-
ations in prey density affect the per capita feeding rates of predators. Haque [21]
demonstrated that the Beddington DeAngelis functional response is suitable for
conducting a comprehensive mathematical analysis of intra-specific competition
among predators. This response model reflects the saturation of grazing rates
at higher phytoplankton densities, with phytoplankton biomass converted into
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zooplankton biomass with an efficiency factor denoted as γ. Additionally, the
parameter E accounts for predator interference within the system. The param-
eter m represents zooplankton mortality, primarily caused by copepods, but it
also considers mortality due to processes such as sinking and additional pre-
dation by other zooplankton or higher trophic levels. The parameter ν has a
slightly different interpretation compared to its usage in [1] and [52]. It reflects
an increase in copepod predation on zooplankton in response to the immediate
release of info-chemicals when phytoplankton are grazed. Thus, ν can repre-
sent both heightened copepod sensitivity and response to chemical cues and
improved copepod search efficiency at higher chemical concentrations. Impor-
tantly, copepods and info-chemicals are not explicitly modeled as variables but
are incorporated into the system through the interaction term involving ν. The
parameters a and b respectively represent the clearance rate of zooplankton at
low food densities and its half-saturation density. Typical parameter values are
summarized in Table(2.1). Notably, this model differs from the one presented
by [1] and [52] primarily in the choice of functional response type. Additionally,
Laplacian terms, represented by DP and DM , are included in the model, reflect-
ing the diffusion of phytoplankton and zooplankton, respectively, with strengths
defined as DP and DM . These terms account for the spatial movement of these
populations, and this aspect of the model is consistent with the previous work
in [1].

Table 1: Model Parameter Values
Parameter Value Unit Source

r 0− 5 day−1 [8]

K 0− 1000 µg C
I−1

[9, 10]

a 0.3 µg
CI−1

day−1

[11, 12]

b 0.05 µg C
I−1

[11, 12]

γ 0.3 day−1 [13]

m 0.3 day−1

ν 0.01− 0.2 day−1

E 0.2 day−1

2.2 Location of equilibria

The equilibrium points P (t) = Pe and M(t) = Me ofEq.(1-2), corresponding to
dP/dt = dM/dt = 0, can be shown to include the trivial state (Pe,0,Me,0) =
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(0, 0), the zooplankton-free equilibrium (Pe,mf ,Me,mf ) = (K, 0), and the co-
existence state that satisfies the polynomial.

(3) rνP 3
e +(−Eγr−Kνr+νbr)P 2

e +(EγKr−Kν180br−γKa+K∗m)Pe−mkb

and

(4) Me = γr

νrP 3
e + (−Eγr −Kνr
+ νbr)P 2

e + (Eγ187Kr −Kνbr − γKa+Km)

ak

In general, Eq.(3) will have three roots. Following [6], they are given by

Pe,j+1 =
Kb− 1

3b

+
2

3b

√
(KEGb− 1)2 − 3EGK

rν
(γa−mb− νr) cos

(
θ + 2jπ

3

)
, j = 0, 1, 2,(5)

where θ = cos−1
(yN

h

)
,

yN = −rν
(Kb− 1)3

9b2
+

rν(Kb− 1)2

27b2
+

K(γa−mEGK − νr)(Kb− 1)

3b
−mK,

and

h =
2νrb

27

(
(−EGr −Kνr + νbr)2 − 3νr(EGKr −Kνbr −GKs+Km)

ν2r2

) 3
2

.

The phenomenon of two roots merging into one occurs when the condition y2N =
h2 is satisfied, leading to the emergence of a complex-valued root. This cubic
nature of the solution, as described byEq.(5), is clearly depicted in Fig. 2 for the
case where K = 120, r = 1.5, and other parameters maintain values as specified
in Table. 2.1. The presence and number of coexistence equilibria in the system
are notably influenced by the parameter values of K and ν. For instance, when
K = 70, as illustrated in Fig. (2) (c), there exists only a single real root of Eq.
(5) for all values of ν. However, when K ≈ 70.78, a significant event known as
a saddle-saddle bifurcation occurs. This corresponds to the moment when the
two saddle node bifurcation points converge or collide.

3. Analysis of equilibrium points in the non-spatial model

In this section, we delve into the dynamics of plankton populations and engage
in a discussion centered on our comprehension of the non-spatial interactions,
often referred to as local interactions, within the marine ecosystem. Our fo-
cus revolves around examining the complex interactions among multiple trophic
levels that take place in aquatic environments. To accomplish this, we employ
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a reaction-diffusion model as a tool for our investigation.

(
P (t)
M(t)

)
=

(
Pe

Me

)
+

(
ϵ1
ϵ2

)
eλt.(6)

FromEq.(6), a uniform solution is said to be linearly stable when λ ≤ 0 and
unstable otherwise. Substituting (6) into (2) and linearising about ϵ1 = ϵ2 = 0,
we obtain the linear eigenvalue problem

λ

(
ϵ1
ϵ2

)
=

(
a11 a12
a21 a22

)(
ϵ1
ϵ2

)
,(7)

where

a11 = r(1− 2rPe

K
)− abMe + EaM2

e

(b+ Pe + EM)
,

a12 = −aPe
2EMe + Pe + b

(EMe + Pe + b)
,

a21 = 2
(EMe + b)

(EMe + Pe + b)2
,

a22 = −m− (Pe+b)γaPe

(EMe+Pe+b)
−EM2

e νaPe−2MeνaP
2
e−2MebνaPe

(EMe + Pe + b)
.

(8)

The eigenvalues can then be readily obtained

(9) λ± =
1

2

[
a11 + a22 ±

√
(a11 − a22)

2 + 4a12a21

]
.

The model in Eq.(2) posses three different equilibria; Table. (2) provides a
description of the stability of each equilibria. The mathematical model presented
in Eq.(2) in the absence of diffusion is firstly considered by us, i.e. DP = DM =
0, which is similar to the first approach by [1]. The summary of the equilibrium
stability is given in Table. (2): Note that Eq.(3) is a cubic polynomial, and all its

Table 2: Biologically Relevant Possible Equilibria of the System given by Eq.
(2)

Equilibrium Definition Value in
parametrized
system

Description Hyperbolic
Eigenvalues

E0 (Pe,Me) (0, 0) Trivial (extinct) stable node point
E1 (Pe,Me) (K, 0) The carrying capacity of phytoplankton stable node
E3 (Pe,Me) Eq.3 and 4 equilibrium Coexistence point different stability

behaviours

roots can be found by using Cardan’s method [6]. Consequently, the obtained
roots are utilized to determine the roots of the second species in Eq.(4). The
stability of the coexistence point determines the behavior of the system given
in Eq.(2).
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4. Numerical exploration of the model

his section of the study will delve into the impact of varying parameters such as
K, ν, and r on the stability of the system. In the subsequent subsection, we will
introduce and define these parameters more explicitly, elucidating the specific
ranges and values that could result in distinct system behaviors. This will be
detailed further in the bifurcation and stability analysis section. Moreover, we
will present the system’s phase portrait and the equilibrium values associated
with each intersection of the nullclines. The plane is inherently divided by
several nullclines into distinct regions, each of which provides information about
how the system behaves at different points within the plane [32]. These regions
and their descriptions collectively offer a comprehensive understanding of how
the system changes across various points in the plane.

(a) (b)

Figure 1: The time series behavior and phase portrait of the system are repre-
sentative of the parameter setting where ν = 0.145.

4.1 Bifurcation analysis of the phytoplankton-zooplankton model
across various carrying capacity (K) and info-chemical (ν) levels

It is evident that the carrying capacity plays a crucial role in determining the
maximum population density for plankton in each model [1]. In this work, an
interesting finding relates the carrying capacity to the info-chemical parame-
ter DMS, effectively introducing two control parameters instead of one. Fig.
(2) illustrates four cases for different values of the carrying capacity (K), while
keeping all other parameters fixed at the values provided in Table. (2.1). In Fig.
(2(a)), (2(b)), and (2(c)), the system exhibits hysteresis behavior. Specifically,
when K = 1000, there is an overlapping Hopf bifurcation at ν = 0.036. Initially,
as the info-chemical interaction parameter ν decreases from 1000 to 70, a super-
critical Hopf bifurcation (Hp) occurs. During this phase, the system transitions
from a stable limit cycle around the unstable coexistence state to a single stable
coexistence state. Subsequently, a saddle-node bifurcation results in a region
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with bi-stability, where two stable coexistence states coexist alongside one un-
stable (saddle) coexistence state. The local stability of the stable equilibria shifts
from a focus to a node, and the eigenvalues change from complex to real val-
ues. At this point, the system acquires the monotonicity property, meaning that
the solution approaches a stable equilibrium in a monotonous manner, referred
to as over-damped oscillations [14]. Finally, a second saddle-node bifurcation
takes place, leaving only the larger stable coexistence state in the system. This
outcome aligns with the findings of [1] and has been interpreted by [52] as the
threshold at which persistent phytoplankton bloom formation becomes possible.
In this context, persistent bloom formation implies that Pe (the phytoplankton
equilibrium point) remains stable and approaches K. In Fig. (2(d)), the system
exhibits less hysteresis behavior, with only one stable focus root type across all
ν values. This variation is attributed to the influence of DMS on the predation
of grazers. The bifurcation analysis for the behavior of zooplankton was con-

(a) (b)

(c) (d)

Figure 2: Bifurcation diagram correspond to different values of K in prey (phy-
toplankton) analysed system

ducted while keeping all other parameters fixed at the values specified in Table
21.1. In Fig. (3(a)), there is an overlap in the bifurcation behavior, specifically,
a Hopf bifurcation occurs within the same range, with a value of approximately
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0.036. Additionally, the two limit points correspond to a saddle-node bifurca-
tion. In the case of Fig. (3(b)), both Hopf and saddle-node bifurcations can be
observed. Fig. (3(c)) demonstrates that the system undergoes a Hopf bifurca-
tion at ν = 0.01934, after which the system’s roots indicate a stable sink/node
behavior. Lastly, in Fig. (3(d)), which examines the influence of DMS on grazer
predation, the equilibrium type remains a ’stable focus’ for all values of ν. The
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Figure 3: Bifurcation Diagram corresponding to Different Values of K in Preda-
tor (zooplankton).

model described inEq. (2) demonstrates the presence of a limit cycle for vari-
ous values of K, as depicted in Figures 2 and 3. These findings align with the
expected essential characteristics of the system.

4.2 Phytoplankton and zooplankton heat-maps

A phytoplankton bloom is characterized by a significant increase in the concen-
tration of phytoplankton in a specific area. This phenomenon typically occurs
when environmental conditions are favorable for enhanced reproduction, such as
a continuous nutrient supply and suitable survival conditions. The formation of
a phytoplankton bloom can occur within a specific range of parameter combina-
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tions involving K and ν. When copepod predation on zooplankton intensifies,
it reduces the grazing pressure on phytoplankton, creating conditions conducive
to bloom formation. The solution to Eq. (3) provides the roots for the saddle-
node bifurcation and identifies the bifurcation position. It’s essential to note
that the region between the area with one real root and the area with three
real and distinct roots is defined by satisfying Cardan’s third condition, namely
y2N = h2, effectively separating these regions as outlined in Eq. (3). Phyto-
plankton blooms can have a lasting impact on ecosystems [22, 23], and such
occurrences have been referred to as the ”hydra effect.” The outcomes displayed
in Fig. (4) depict the maximum population density of phytoplankton concerning
variations in the carrying capacity. Generally, a phytoplankton bloom is char-
acterized by a rapid proliferation of phytoplankton populations. These blooms
tend to occur when there’s an abundance of sunlight and nutrients available, cre-
ating favorable conditions for plant growth and reproduction. In such scenarios,
the plants proliferate to the point where they become widespread, altering the
water’s color in which they reside [24]. Fig. (4) investigates two independent
parameters: the carrying capacity and the infochemical concentration, deter-
mined using the polynomial in Eq. (3). This analysis suggests the potential
occurrence of a phytoplankton bloom. A small, dark region on the left side of
the saddle-node curves depicted in Fig. (2) (a) corresponds to a low phyto-
plankton population. Fig. (4) (a) readily illustrates the low values of Pe (the
phytoplankton equilibrium point) for various combinations of K and ν, while
the area to the right of the curve indicates higher phytoplankton populations,
signifying the potential for a phytoplankton bloom.

0 0.05 0.1 0.15 0.2

0

200

400

600

800

1000

50

100

150

200

250

(a)

0 5 10 15

10
-3

0

100

200

300

400

500

600

50

100

150

200

250

(b)

Figure 4: The heatmap in panel (a) pertains to the population of phytoplankton
when subjected to the grazing pressure exerted by zooplankton. Panel
(b) illustrates the population of zooplankton.
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5. Analysis of predator-prey diffusion model with kinesis

In this section, we analyse the predator-prey diffusion model with kinesis that
was first defined by [42] as follows:

(10) ∂tui = D0i∇ ·
(
e−αiri(u1,...,uk,s)∇ui

)
+ ri(u1, . . . , uk, s)ui,

where:

ui is the ith species-population density,

s is the abiotic characteristics of the living conditions,

ri is the reproduction coefficient,

D0i > 0 is the equilibrium diffusion coefficient which is defined when the
reproduction coefficient is 0,

αi > 0 defines the relation between the diffusion coefficient on the repro-
duction coefficient.

We can define Di = D0ie
−αri as the diffusion depending on reproduction coeffi-

cient. It has been shown in [42] that, the diffusion depends on well-being and it
can be measured by the reproduction coefficient. In this section, we will present
the new predator-prey plankton model with kinesis and compare the results
with basic Kinesis model. The PDE model for population with constant diffu-
sion coefficient without kinesis has been presented by (Kolmogorov, Petrovsky
and Piskunov, 1937) (KPP) [50] as follows:

(11) ∂tu(t, x) = D∇2u(t, x) + (1− u(t, x))u(t, x).

We will consider the predator-prey model presented Eq.(2) to define plankton-
kinesis model as in Eq. (??).

∂P

∂t
= F∆(P,M) := DP∇ ·

(
e−α(r(1− P

K )− aM
EM+P+b

)∇P
)

+ rP

(
1− P

K

)
− aPM

EM + P + b
,

∂M

∂t
= G∆(P,M) := DM∇ ·

(
e−α( γaP

EM+P+b
−m−ν aPM

EM+P+b
)∇M

)
(12)

+
γaPM

EM + P + b
−mM − ν

aPM2

EM + P + b
,

Figure 5 indicates that kinesis movement has no effect on the predator model.
On the contrary, kinesis does affect prey population. Kinesis movement prevents
extinction of prey population for a time. The MATLAB [59] function was used
in this study to solve the one-dimensional system of PDE. The space interval
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(a) a (b) b

Figure 5: Predator-prey mobility under the effect of kinesis model.

was selected to be [−50, 50] with zero-flux boundary conditions and with the
initial conditions given below:

(13) P (x, 0) = Pe + σ cos(wP ),M(x, 0) = Me + σ sin(wM)

The values of the constants are: D = 1, α = 1.

In Fig.6 gives an account of the population size differences between the pop-
ulation with and without kinesis over time. Due to predatory causes, the prey
population faces extinction within a small amount of time. The prey population
without kinesis survives better than the one with kinesisin time 10, after in a
while (time20), the population tends to survive better with kinesis movement
over time. There is no time difference in the time profile of predator popula-
tion with and without kinesis.Thus, there will be no difference in population
size if we were to compare P with kinesis and without kinesis. Alternatively,
kinesis decreases the size of prey population P with kinesis. This suggests that,
initially, kinesis is not beneficial for the prey population in space. However, it
starts to become beneficial and the population survives when the prey popula-
tion without kinesis is dying (see Fig.6). In Fig.7, the travelling wave behaviour
can be seen in the predator population in space. Initially, the predator popu-
lation decreases in time and then it starts to increase and stabilizes over time.
The kinesis movement affects prey population in a negative manner; it leades to
population death in both conditions exponentially, and to an accelerated death
in kinesis condition.

At the time 20, it can be clearly seen in space that both predator and prey
population exhibit travelling wave behaviour (Fig.8). Figure 9 illustrates how
the predator population dies over time in the spatial distribution, yet predators
survive for a long time. M with kinesis decreases a faster, but survives better
over time.
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(a) (b)

(c) (d)

Figure 6: Prey mobility without and with kinesis.
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(a) (b)

(c) (d)

Figure 7: Predator mobility without and with kinesis.
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(a) (b)

(c) (d)

Figure 8: Predator and prey population without and with kinesis movement

(a) (b)

Figure 9: Predator prey population without and with kinesis movement
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6. Conclusion

We gained insight into the behavior of the system described by equations Eqs.
(2) by conducting a mathematical analysis involving phase plane investigations,
stability assessments, and bifurcation examinations. Since we assume a uni-
form environment, we opted to employ the Beddington-DeAngelis functional
response. This choice was motivated by the fact that it exhibits a broader spec-
trum of dynamic behaviors, as documented in previous studies [21]. This aligns
with existing literature, which generally favors the utilization of the Beddington-
DeAngelis functional response, particularly when examining interactions be-
tween two species, such as microzooplankton grazers like Oxyrrhis marina [17],
[18]. In our numerical approach, we investigated the impact of the control pa-
rameter ν on the system’s qualitative behavior. This investigation was made
possible through the use of the phase plane tool, as demonstrated in Figs. 1(a)
and 1(b). To illustrate, when setting ν to zero, we effectively transform the
system into the Rosenzweig-MacArthur model [2]. In this scenario, the system
becomes unstable, and we observe periodic cycles in the microzooplankton and
phytoplankton population densities. This phenomenon is akin to the predator-
prey interactions explored by [19] and [20], where the system exhibits a stable
equilibrium, but the solution trajectories undergo substantial oscillations be-
fore returning to that equilibrium. As the control parameter increases, it leads
to various stability scenarios, as depicted in the bifurcation diagram (Fig. 2)
and its specific instances illustrated in Figs. 2(a), 2(b), and 2(c). This varia-
tion elucidates how infochemical signaling serves as a mechanism for enhancing
copepod predation on microzooplankton. This article provides a comprehen-
sive analysis of the system’s behavior, including an examination of the location,
number, and type of roots, determined using Cardan’s method. Notably, this
analysis helps identify crucial system parameters, particularly when K = 70.34,
marking the point of a cusp bifurcation, where two equilibrium points merge
and vanish in a saddle-node bifurcation [16]. The investigation extends to the
(ν,K) plane, uncovering the phenomenon of a microzooplankton ”hydra effect”
on copepod predation. Additionally, the model allows for predictions regarding
the occurrence and locations of phytoplankton blooms, as depicted in Fig. 3.
An examination of Fig. 2 reveals that the system exhibits five distinct stability
states, all of which are elaborated upon in Section 4. The text also discusses the
implications of altering the growth rate and phytoplankton carrying capacity
on phytoplankton behaviors, as illustrated in Figs. 4(a) and 4(b). It empha-
sizes how lower growth rates can shift the model’s stability towards its current
configuration. Furthermore, a relationship between both K and ν is identified,
suggesting that both species can thrive in environments abundant with nutri-
ents, as shown in Fig. 2. This outcome exemplifies the ”hydra effect” within
the predator-prey model, as mentioned in [15]. However, the primary objective
of this article is to establish coherence between the model presented in Eq. 2
and the one examined in [1], both analytically and numerically.
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The concept of population dispersion within a partial differential equation
(PDE) model was initially introduced by [58] and further developed by [48]. The
diffusion model, incorporating kinesis, has been the subject of prior research by
[42]. In this context, kinesis movement influences the reproduction rate, and
an interesting relationship emerges between the diffusion coefficient and the re-
production coefficient. Specifically, when reproduction rates increase over time,
the diffusion coefficient decreases in contrast. This phenomenon aligns with the
overarching principle that populations inherently strive for prolonged existence.
Conversely, when population reproduction declines, indicating a population de-
cline, individuals seek to disperse through kinesis movement. This behavior
is driven by the imperative to escape unfavorable conditions and pursue more
favorable ones. This notion of population dynamics can be likened to the con-
cept of Darwinian fitness, as proposed by [47], [54], and [41]. According to this
perspective, migration is a strategy employed to enhance Darwinian fitness, ul-
timately ensuring the population’s survival. Consequently, populations tend to
remain within beneficial areas while actively avoiding perilous conditions. To
encapsulate our model’s discoveries, we can outline them as follows:

� The eigenvalue problem of the predator-prey model, utilizing the Bedding-
ton DeAngelis functional response and incorporating the second condition
of Cardan’s method, played a crucial role in establishing a comprehensive
stability analysis. This analysis is depicted in Figs. 2 and 3. The construc-
tion of these diagrams enabled us to conduct stability assessments for each
value of K, corresponding to various ν values. Through this analysis, we
arrived at the same conclusion as [1] concerning the case when K = 120.
However, our study encompassed multiple scenarios for bifurcation within
the system, contingent on different values of K. In all instances, it was
evident that the presence of infochemicals had a stabilizing effect on what
would otherwise be an unstable food web.

� By examining the behavior of the predator, denoted as M , and system-
atically varying the value of K as a secondary control parameter while
keeping infochemicals as the primary parameter, we demonstrated the in-
fluence of DMS (dimethyl sulfide) on the predation of grazers. This anal-
ysis revealed that the populations of both species, namely phytoplankton
and microzooplankton, can experience substantial simultaneous increases.
This phenomenon is visually represented in Figs. 3(a), 3(b), 3(c), and
3(d).

� By investigating the growth rate of phytoplankton, we uncovered the fol-
lowing insights: A low growth rate results in diminished phytoplankton
density, ultimately destabilizing the model, as depicted in Fig. 2(d). Con-
versely, a high potential growth rate enables heterotrophic protists to per-
sist even during phases of elevated predation. However, this system is
highly responsive to increases in fast-growing prey, and this heightened
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responsiveness may explain the existence of a limit cycle within the dy-
namical system.

� We examined how the inclusion of a kinesis model within a predator-prey
model utilizing the Beddington DeAngelis functional response influenced
the system. Fig. (5) illustrates that the predator model remained largely
unaffected by kinesis movement. In contrast, kinesis had a noticeable
impact on the prey population. Specifically, kinesis movement played a
role in preventing the extinction of the prey population over time.

� The prey population faces a rapid risk of extinction due to predation.
Initially, without the kinesis model, the prey population exhibits better
survival up to time 10. However, an opposite trend emerges over time,
such as at time 20, where the prey population with the kinesis model
displays improved survival compared to the scenario without it.

� The size of predator populations, whether with or without kinesis, remains
essentially unchanged. In contrast, the prey population with kinesis expe-
riences an initial decrease in population size. This indicates that initially,
having kinesis is not advantageous for the prey population in that partic-
ular space. However, it becomes beneficial, and the population manages
to survive when the prey population without kinesis starts to decline, as
illustrated in Fig. 6.

� In the model we have constructed and analyzed in this study, the predator
population exhibits spatial behavior characterized by traveling waves.
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