Strong edge-coloring of planar graphs with girth at least seven

Jiaxin Yuan
Department of Mathematics
School of Science
Wuhan University of Technology
Wuhan, 430070
China
2461634998@qq.com
Mingfang Huang*
Department of Mathematics
School of Science
Wuhan University of Technology
Wuhan, 430070
China
ds_hmf@126.com

Abstract

A strong edge-coloring of a graph G is that two edges e_{1} and e_{2} that are adjacent to each other or adjacent to the same edge must be colored with distinct colors. In this paper we prove that every planar graph G with girth $g \geq 7$ and maximum degree $\Delta \geq 5$ has a strong edge-coloring using at most $3 \Delta-1$ colors. In addition, we prove that every planar graph G without adjacent 7 - cycles, with girth $g \geq 7$ and the maximum degree $\Delta \geq 4$ has a strong edge-coloring using at most $3 \Delta-1$ colors. Keywords: strong edge-coloring, planar graph, discharging method. MSC 2020: 05C15

1. Introduction

All graphs considered in this paper are finite, loopless and undirected. Let G be a simple undirected graph. A vertex of degree k, at least k or at most k is denoted by a k - vertex, a k^{+}- vertex or a k^{-}- vertex respectively. A neighbor of v of degree k, at most k or at least k is denoted by a k-neighbor, a $k^{-}-n e i g h b o r$ or a $k^{+}-n e i g h b o r$, respectively.

A strong edge-coloring of a graph G is that two edges e_{1} and e_{2} that are adjacent to each other or adjacent to the same edge must be colored with distinct colors. The strong chromatic index of G is denoted by $\chi_{s}^{\prime}(G)$, which is the minimum number of colors for a strong edge-coloring of G.

We denote the minimum and maximum degree of vertices in G by $\delta(G)$ and $\Delta(G)$ (δ and Δ for short), respectively. The degree of vertex v in G is denoted by $d_{G}(v)$. The girth of a graph G, denoted by $g(G)$ (g for short),
*. Corresponding author
is the length of its shortest cycle. Define that the maximum average degree of a graph G is the largest average degree of its subgraphs and is denoted by $\operatorname{mad}(G)=\max _{H \subseteq G}\left\{\frac{2|E(H)|}{|V(H)|}\right\}$. The distance of two edges e_{1} and e_{2} refers to the length of the shortest path from u to v, where u is an arbitrary endvertice of e_{1} and v is an arbitrary endvertice of e_{2}. So, equivalently, a strong edge-coloring is an assignment of colors to all edges such that every two edges with distance at most 1 receive distinct colors.

Using greedy algorithm, we may easily see that $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta+1$ for every graph G. In 1989, Erdős and Nešetril [3] conjectured the following upper bounds.

Conjecture $1.1([2],[3])$. For every graph G with maximum degree Δ,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { if } \Delta \text { is odd }\end{cases}
$$

These bounds would be tight, as Erdős and Nešetřil [3] gave examples of graphs that get these bounds. For the case when $\Delta=2$, this conjecture is clearly true. For the case of $\Delta=3$, Andersen [1] and Horák et al.[5] proved this conjecture to be correct, independently. Moreover, for subcubic graph G, that is, maximum degree is at most 3, Faudree et al.[4] proposed some conjectures. Steger and $\mathrm{Yu}[10]$ showed that $\chi_{s}^{\prime}(G) \leq 9$ for every subcubic bipartite graph G. For subcubic planar graph G with girth at least 6 , Hudák et al.[8] proved the same result above. This conjecture is still open for $\Delta \geq 4$. For $\Delta=4$, the best bound is 21 , which was recently established by Huang, Santana, and Yu [9]. The bound of 21 is still one larger than the conjectured bound of 20. For every planar graph G with $\Delta=4$, Wang et al. [11] proved that $\chi_{s}^{\prime}(G) \leq 19$ and Jian-Bo Lv et al.[13] proved that if $\operatorname{mad}(G)<\frac{61}{18}\left(\right.$ resp. $\left.\frac{7}{2}, \frac{18}{5}, \frac{15}{4}, \frac{51}{13}\right)$, then $\chi_{s}^{\prime}(G) \leq 16($ resp. 17, 18, 19, 20).

Recently, a great deal of research has been done on planar graphs with different values of girth. In 2014, Hudák et al. [8] proved that $\chi_{s}^{\prime}(G) \leq 3 \Delta$ for every planar graph G with $g \geq 7$. For every planar graph G with $g \geq 10 \Delta-4$, Wang et al.[12] further reduced this bound and proved that $\chi_{s}^{\prime}(G) \leq 2 \Delta-1$. By maximum degree restriction, Choi et al.[6] showed two results, namely, $\chi_{s}^{\prime}(G) \leq$ 3Δ for every planar graph G with $g \geq 6$ and $\Delta \geq 7$, and $\chi_{s}^{\prime}(G) \leq 3 \Delta-3$ for every graph G with $g \geq 8$ and $\Delta \geq 9$. Guo et al.[7] also came to two conclusions that $\chi_{s}^{\prime}(G) \leq 3 \Delta-2$ for every planar graph G with $g \geq 8$ and $\Delta \geq 4$, and $\chi_{s}^{\prime}(G) \leq 3 \Delta-3$ for every planar graph G with $g \geq 10$ and $\Delta \geq 5$.

In this paper, we take into account the girth and the maximum degree of planar graphs and prove the following results.
Theorem 1.2. If G is a planar graph with $g \geq 7$ and $\Delta \geq 5$, then $\chi_{s}^{\prime}(G) \leq$ $3 \Delta-1$.

Theorem 1.3. If G is a planar graph without adjacent 7 - cycles, with $g \geq 7$ and $\Delta \geq 4$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta-1$.

Note that $\operatorname{mad}(G)<\frac{2 g}{g-2}$ for every planar graph. Thus, when $g \geq 7$, we have that $\operatorname{mad}(G)<\frac{14}{5}$. Therefore, there is the following corollary.
Corollary 1.4. If G is a planar graph with $\operatorname{mad}(G)<\frac{14}{5}$ and $\Delta \geq 5$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta-1$.

By adding the condition that $\Delta \geq 5$, our results improve the bound of Hudák et al. $[8]$ and are reduce by one color.

Let G^{*} be obtained by removing all vertices of degree one in graph G. The paper is organized as follows. In Section 2, we assume that G is a minimal counterexample with the fewest edges to Theorem 1.2. We first prove some structural properties of the minimal counterexample G and its subgraph G^{*}. Next, we use the discharging method to show that G^{*} cannot exist. In Section 3, with a weaker maximum degree restriction and a stronger cycle constraint, we still obtain the same bound.

2. Proof of Theorem 1.2

In this section, G is a counterexample to Theorem 1.2 with the $|V(G)|$ minimized, subject to that, assume that $|E(G)|$ is as small as possible. It is obvious that G and G^{*} are connected. A strong partial edge-coloring of a graph G is a proper edge-coloring of a proper subgraph G^{\prime} such that every two edges of G^{\prime} with distance at most 1 in G receive different colors. Suppose that G has a strong partial edge-coloring. For every uncolored edge e of G, we use $A(e)$ to denote the set of colors that are available at the edge e. The 2 - neighborhood of an edge e refers to the set of edges whose distance at most 2 from e.

We first state some structural properties regarding G and G^{*} as follows.
Lemma 2.1. $\delta\left(G^{*}\right) \geq 2$. Moreover, $d_{G^{*}}(v)=2$ if and only if $d_{G}(v)=2$.
Proof. Suppose to the contrary that $\delta\left(G^{*}\right) \leq 1$. If $\delta\left(G^{*}\right)=0$, then G is a star since G and G^{*} are connected. Clearly, G has a strong edge-coloring with Δ colors, a contradiction. If $\delta\left(G^{*}\right)=1$, then there must be $d_{G^{*}}(v)=1$. Then, there must be $d_{G}(v)>d_{G^{*}}(v)=1$, otherwise v will not appear in G^{*}. Therefore, v must have at least one 1 -neighbor in G, denoted by v_{1}, as shown in Fig.1(1). By the minimality of $G, G-v_{1}$ has a strong edge-coloring ϕ with $(3 \Delta-1)$ colors. Note that there are at most $2 \Delta-2$ colored edges in the $2-$ neighborhood of the edge $v v_{1}$. Therefore, $\left|A\left(v v_{1}\right)\right| \geq \Delta+1 \geq 6$. Thus, we can extend ϕ to G, a contradiction. So, $\delta\left(G^{*}\right) \geq 2$.

If $d_{G}(v)=2$, then $d_{G^{*}}(v)=2$ since $d_{G}(v) \geq d_{G^{*}}(v)$. Suppose that $d_{G^{*}}(v)=$ 2. We assume that $d_{G}(v)>2$. Then, v has at least one $1-$ neighbor v_{1} in G, as shown in Fig.1(2). By the minimality of $G, G-v_{1}$ has a strong edge-coloring ϕ using $(3 \Delta-1)$ colors. Clearly, there are at most $3 \Delta-3$ colored edges in the 2 -neighborhood of the edge $v v_{1}$. Hence, $\left|A\left(v v_{1}\right)\right| \geq 2$, which means that we can extend ϕ to G, a contradiction. So $d_{G}(v) \leq 2$. Since $d_{G}(v) \geq d_{G^{*}}(v)$, $d_{G}(v)=2$.

Fig. 1
(The solid lines represent the edges that exist in G.
The dashed lines represent the edges that might exist in G.)

Lemma 2.2. Let v be a 2 -vertex in G^{*}. Then, both of neighbors of v in G^{*} are $3^{+}-$neighbor.

Proof. Suppose otherwise that v has a $2-$ neighbor, say u, in G^{*}. Since $d_{G^{*}}(v)=$ $d_{G^{*}}(u)=2$, by Lemma 2.1, $d_{G}(v)=d_{G}(u)=2$, as shown in Fig.1(3). By the minimality of $G, G-u v$ has a strong $(3 \Delta-1)$-edge-coloring ϕ. Since there are at most 2Δ colored edges in the $2-$ neighborhood of the edge $u v$, $|A(u v)| \geq \Delta-1 \geq 4$. Then, we can color $u v$ with one of the available colors, a contradiction.

Lemma 2.3. Letv be a 3 -vertex in G^{*}. Then, v has at least two 3^{+}-neighbors in G^{*}.

Proof. Suppose otherwise that v has at most a $3^{+}-$neighbor in G^{*}. Let u_{1}, u_{2} be two $2-$ neighbors of v in G^{*}. By Lemma 2.1, $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2$. Assume that $d_{G}(v)>d_{G^{*}}(v)$. Then, v has at least one $1-$ neighbor v_{1} in G, as shown in Fig.2(1). By the minimality of $G, G-v_{1}$ has a strong ($3 \Delta-1$)-edge-coloring ϕ. It is easy to see that $v v_{1}$ has at most 2Δ colored edges within distance one. Thus, $\left|A\left(v v_{1}\right)\right| \geq \Delta-1 \geq 4$. Then, we can color $v v_{1}$ with one of the available colors, a contradiction. Therefore, $d_{G}(v)=d_{G^{*}}(v)=3$, as shown in Fig.2(2). Let ϕ be a strong $(3 \Delta-1)$-edge-coloring of $G-v u_{1}$. Note that $v u_{1}$ in G has at most $2 \Delta+2$ colored edges in its $2-$ neighborhood. Hence, $\left|A\left(v u_{1}\right)\right| \geq \Delta-3 \geq 2$, which implies that $v u_{1}$ has at least one available color, a contradiction.

By Lemma 2.3, a 3 -vertex v in G^{*} is adjacent to at most one $2-n e i g h b o r$ in G^{*}. We call a $3-v e r t e x ~ v e a k$ if it is adjacent to a 2 - vertex, otherwise we call it strong.

Lemma 2.4. Let v be a weak 3 - vertex in G^{*}. Then, $d_{G}(v)=d_{G^{*}}(v)=3$.

Proof. Suppose to the contrary that $d_{G}(v)>d_{G^{*}}(v)$. Then, v has at least one $1-$ neighbor in G, denoted by v_{1}. Let u be a $2-$ neighbor of v in G^{*}. By Lemma 2.1, $d_{G}(u)=2$, as shown in Fig.2(3). By the minimality of $G, G-v_{1}$ has a strong ($3 \Delta-1$)-edge-coloring ϕ. Note that $v v_{1}$ in G has at most $3 \Delta-2$ colored edges in its 2 -neighborhood. So $\left|A\left(v v_{1}\right)\right| \geq 3 \Delta-1-(3 \Delta-2)=1$, which implies that $v v_{1}$ has at least one available color, a contradiction.

Lemma 2.5. Assume that v is a weak 3 -vertex in G^{*}. Then, v is not adjacent to a weak 3 -vertex.

Proof. Suppose otherwise that v has a weak 3 -neighbor, say v_{1}, in G^{*}. By Lemma 2.4, $d_{G}(v)=d_{G^{*}}(v)=3$ and $d_{G}\left(v_{1}\right)=d_{G^{*}}\left(v_{1}\right)=3$. Let u be the $2-$ neighbor of v in G^{*}, as shown in Fig.2(4). By the minimality of $G, G-u v$ has a strong $(3 \Delta-1)$-edge-coloring ϕ. Then, $u v$ in G has at most $2 \Delta+3$ colored edges in its 2 -neighborhood. So, $|A(u v)| \geq 3 \Delta-1-(2 \Delta+3)=\Delta-4 \geq 1$. Thus, we can extend ϕ to a strong ($3 \Delta-1$)-edge-coloring of G, a contradiction.

Fig. 2

Lemma 2.6. Let v be a strong 3 -vertex in G^{*}. Then, v has at most two weak $3-$ neighbors in G^{*}.

Proof. Suppose otherwise that the three neighbors of v are all weak 3-neighbors in G^{*}. Let u_{1}, u_{2}, u_{3} be three weak $3-$ neighbors of v in G^{*}. By Lemma 2.4, $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=d_{G}\left(u_{3}\right)=3$. Assume that $d_{G}(v)>d_{G^{*}}(v)$. Then, v has at least one 1 -neighbor v_{1} in G, as shown in Fig.2(5). By the minimality of G,
$G-v_{1}$ has a strong ($3 \Delta-1$)-edge-coloring ϕ. It is easy to see that $v v_{1}$ has at most $\Delta+5$ colored edges in its 2 -neighborhood. Thus, $\left|A\left(v v_{1}\right)\right| \geq 2 \Delta-6 \geq 4$. Then, we can color $v v_{1}$ with one of the available colors, a contradiction. Therefore, $d_{G}(v)=d_{G^{*}}(v)=3$, as shown in Fig.2(6). Let ϕ be a strong (3 $3-1$)-edgecoloring of $G-v u_{1}$. Note that $v u_{1}$ in G has at most $\Delta+8$ colored edges in its 2 -neighborhood. Hence, $\left|A\left(v u_{1}\right)\right| \geq 2 \Delta-9 \geq 1$, which implies that $v u_{1}$ has at least one available color, a contradiction.

Lemma 2.7. Every 4 -vertex v in G^{*} has at most three $2-$ neighbors.
Proof. Suppose otherwise that the four neighbors of v are all $2-$ vertices. Let u be one of neighbors of v in G^{*}, as shown in Fig.3(1). By the minimality of G, $G-u v$ has a strong $(3 \Delta-1)$-edge-coloring ϕ. Note that $u v$ in G has at most $2 \Delta+2$ colored edges in its $2-$ neighborhood. Thus, $|A(u v)| \geq 3 \Delta-1-(2 \Delta+2)=$ $\Delta-3 \geq 2$. So, ϕ can be extended to a strong ($3 \Delta-1$)-edge-coloring of G, a contradiction.

If a 4 -vertex has just three 2 -neighbors, we call it a 4_{3}-vertex. Otherwise, if a 4 -vertex has at most two 2 - neighbors, we call it a 4_{2}-vertex.

Lemma 2.8. If v is a 4_{3}-vertex in G^{*}, then $d_{G}(v)=d_{G^{*}}(v)=4$.
Proof. Suppose otherwise that that $d_{G}(v)>4$. Then, v has at least one 1 -neighbor in G, denoted by v_{1}. Let u be a $2-$ neighbor of v in G^{*}. By Lemma 2.1, all three 2 -neighbors of v have degree 2 in G, as shown in Fig.3(2). By the minimality of $G, G-v_{1}$ has a strong ($3 \Delta-1$)-edge-coloring ϕ. Note that $v v_{1}$ in G has at most $2 \Delta+1$ colored edges in its $2-$ neighborhood. So $\left|A\left(v v_{1}\right)\right| \geq \Delta-2 \geq 3$, which implies that $v v_{1}$ has at least one available color, a contradiction.

Fig. 3

Lemma 2.9. Assume that v is a 4_{3}-vertex in G^{*}. Then, v is not adjacent to a weak 3 -vertex.

Proof. Suppose otherwise that v has a weak 3 -neighbor, say v_{1}, in G^{*}. By Lemma 2.7, $d_{G}(v)=d_{G^{*}}(v)=4$. Let u be one of $2-$ neighbors of v in G^{*}, as shown in Fig.3(3). By the minimality of $G, G-u v$ has a strong (3 $\Delta-1$)-edgecoloring ϕ. Then, $u v$ in G has at most $\Delta+7$ colored edges in its $2-$ neighborhood. So, $|A(u v)| \geq 3 \Delta-1-(\Delta+7)=2 \Delta-8 \geq 2$. Thus, we can extend ϕ to a strong ($3 \Delta-1$)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between vertices and faces. Now we will use discharging method and Euler's formula to get a contradiction and complete the proof of Theorem 1.2. We assign the initial charge $\rho(v)=\frac{1}{2} d_{G^{*}}(v)-3$ for each vertex $v \in V\left(G^{*}\right)$ and $\rho(f)=d_{G^{*}}(f)-3$ for each face $f \in F\left(G^{*}\right)$.

By Euler's formula, we have the following equality.

$$
\sum_{v \in V\left(G^{*}\right)} \rho(v)+\sum_{f \in F\left(G^{*}\right)} \rho(f)=\sum_{v \in V\left(G^{*}\right)}\left(\frac{1}{2} d(v)-3\right)+\sum_{f \in F\left(G^{*}\right)}(d(f)-3)=-6
$$

We will design appropriate discharging rules and redistribute charges among vertices and faces so that the final charges of every vertex and every face are non-negative. The discharging rules are shown as follows.
(R1) Every vertex receives $\frac{4}{7}$ from the incident face.
(R2) Every weak 3 - vertex sends $\frac{3}{7}$ to the adjacent 2 - vertex.
(R3) Every 4^{+}- vertex sends $\frac{3}{7}$ to the adjacent 2 - vertex.
(R4) Every $4^{+}-$vertex sends $\frac{3}{28}$ to the adjacent weak 3 - vertex.
(R5) Every strong 3 - vertex sends $\frac{3}{28}$ to the adjacent weak 3 - vertex.
Let $\rho^{\prime}(x)$ denote the finial charge of each element x in $V\left(G^{*}\right) \cup F\left(G^{*}\right)$ after the discharging process. We first consider the final charge of each face. By (R1), $\rho^{\prime}(f)=d_{G^{*}}(f)-3-\frac{4}{7} \times d_{G^{*}}(f)=\frac{3}{7} \times d_{G^{*}}(f)-3 \geq 0$. So, the final charge of each face is at least 0 .

Next, we consider the final charge of each vertex v. Let $d_{G^{*}}(v)=k$. By (R1), it can get $\frac{4}{7} \times d_{G^{*}}(v)=\frac{4}{7} \times k$ from faces incident to v.

Assume that $d_{G^{*}}(v)=2$. By Lemma 2.2, (R2) and (R3), we have that $\rho^{\prime}(v)=\frac{1}{2} \times 2-3+\frac{4}{7} \times 2+\frac{3}{7} \times 2=0$.

Assume that $d_{G^{*}}(v)=3$. If v is a weak $3-$ vertex, by Lemma 2.5, (R4) and (R5), we have that $\rho^{\prime}(v)=\frac{1}{2} \times 3-3+\frac{4}{7} \times 3+\frac{3}{28} \times 2-\frac{3}{7}=0$. If v is a strong $3-$ vertex, then $\rho^{\prime}(v) \geq \frac{1}{2} \times 3-3+\frac{4}{7} \times 3-\frac{3}{28} \times 2=0$ by Lemma 2.6 and (R5).

Assume that $d_{G^{*}}(v)=4$. If v is a $4_{2}-v e r t e x$, then by (R3) and (R4), we have that $\rho^{\prime}(v) \geq \frac{1}{2} \times 4-3+\frac{4}{7} \times 4-\frac{3}{7} \times 2-\frac{3}{28} \times 2=\frac{3}{14}>0$. If v is a $4_{3}-$ vertex, then $\rho^{\prime}(v)=\frac{1}{2} \times 4-3+\frac{4}{7} \times 4-\frac{3}{7} \times 3=0$ by Lemma 2.8 and (R3).

Assume that $d_{G^{*}}(v)=k \geq 5$. By (R3) and (R4), we have $\rho^{\prime}(v) \geq \frac{1}{2} \times k-$ $3+\frac{4}{7} \times k-\frac{3}{7} \times k=\frac{9}{14} \times k-3 \geq \frac{9}{14} \times 5-3=\frac{3}{14}>0$.

Hence, the final charge of each vertex is at least 0 .
By Euler's formula, we can obtain the following contradiction:

$$
0 \leq \sum_{v \in V\left(G^{*}\right)}\left(\frac{1}{2} d(v)-3\right)+\sum_{f \in F\left(G^{*}\right)}(d(f)-3)=-6
$$

Therefore, such a minimal counterexample to Theorem 1.2 does not exist.

3. Proof of Theorem 1.3

In this section, we still assume that G is a counterexample to Theorem 1.3 with the $|V(G)|$ minimized, subject to that, assume that $|E(G)|$ is as small as possible. We use the same method as Theorem 1.2 to prove Theorem 1.3. It is obvious that G satisfies the following structures.

Lemma 3.1. (1) $\delta\left(G^{*}\right) \geq 2$. Moreover, $d_{G^{*}}(v)=2$ if and only if $d_{G}(v)=2$.
(2) Let v be a $2-$ vertex in G^{*}. Then, both of neighbors of v in G^{*} are $3^{+}-$ neighbor.
(3) Let v be a 3 -vertex in G^{*}. Then, v has at least two $3^{+}-$neighbors in G^{*}.
(4) Let v be a weak $3-$ vertex in G^{*}. Then, $d_{G}(v)=d_{G^{*}}(v)=3$.
(5) Every 4 - vertex v in G^{*} has at most three $2-n e i g h b o r s$.

Lemma 3.2. Assume that v is a weak $3-$ vertex in G^{*}. Then, v has at least one $4^{+}-$neighbor or one strong $3-n e i g h b o r$ in G^{*}.

Proof. Suppose otherwise that the other two neighbors of v in G^{*} are weak $3-$ vertices, denoted by v_{1}, v_{2}. By Lemma 3.1(4), $d_{G}(v)=d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=3$. Let u be the $2-$ neighbor of v in G^{*}. By the minimality of $G, G-u v$ has a strong ($3 \Delta-1$)-edge-coloring ϕ. Then, $u v$ in G has at most $\Delta+6$ colored edges in its $2-$ neighborhood. So, $|A(u v)| \geq 3 \Delta-1-(\Delta+6)=2 \Delta-7 \geq 1$. Thus, we can extend ϕ to a strong ($3 \Delta-1$)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between vertices and faces. Now we assign the initial charge $\rho(v)=\frac{1}{2} d_{G^{*}}(v)-3$ for each vertex $v \in V\left(G^{*}\right)$ and $\rho(f)=d_{G^{*}}(f)-3$ for each face $f \in F\left(G^{*}\right)$. The discharging rules are shown as follows.
(R1) Every vertex receives $\frac{4}{7}$ from the incident 7 -face.
(R2) Every vertex receives $\frac{5}{8}$ from the incident 8^{+}- face.
(R3) Every $4^{+}-$vertex sends $\frac{3}{7}$ to the adjacent $2-$ vertex.
(R4) Every $4^{+}-$vertex sends $\frac{3}{28}$ to the adjacent weak 3 - vertex.
(R5) Every strong 3 - vertex sends $\frac{3}{28}$ to the adjacent weak 3 - vertex.
(R6) Every weak 3 - vertex sends $\frac{3}{7}$ to the adjacent $2-$ vertex.
Let $\rho^{\prime}(x)$ denote the finial charge of each element x in $V\left(G^{*}\right) \cup F\left(G^{*}\right)$ after the discharging process. We first consider the final charge of each face.

If $d_{G^{*}}(f)=7$, then by (R1), we have that $\rho^{\prime}(f) \geq d_{G^{*}}(f)-3-\frac{4}{7} \times 7=0$. If $d_{G^{*}}(f) \geq 8$, then we have that $\rho^{\prime}(f) \geq d_{G^{*}}(f)-3-\frac{5}{8} \times d_{G^{*}}(f)=\frac{3}{8} \times d_{G^{*}}(f)-3 \geq$ 0 by (R2). Obviously, the final charge of each face is at least 0 .

Next, we consider the final charge of each vertex. Let $d_{G^{*}}(v)=k$. Since there is no adjacent $7-$ faces in G, by (R1) and (R2), it can at least get $\frac{4}{7} \times\left\lfloor\frac{k}{2}\right\rfloor+\frac{5}{8} \times\left\lceil\frac{k}{2}\right\rceil$ from 7^{+}-faces incident to v.

Assume that $d_{G^{*}}(v)=2$. By Lemma 3.1, (R3) and (R6), $\rho^{\prime}(v) \geq \frac{1}{2} \times 2-$ $3+\frac{5}{8}+\frac{4}{7}+\frac{3}{7} \times 2=\frac{3}{56}>0$.

Assume $d_{G^{*}}(v)=3$. If v is a weak $3-$ vertex, then by Lemma 3.2, (R4) and (R6), we have that $\rho^{\prime}(v) \geq \frac{1}{2} \times 3-3+\frac{5}{8} \times 2+\frac{4}{7}-\frac{3}{7}+\frac{3}{28}=0$. If v is a strong $3-$ vertex, then $\rho^{\prime}(v) \geq \frac{1}{2} \times 3-3+\frac{5}{8} \times 2+\frac{4}{7}-\frac{3}{28} \times 3=0$ by (R5).

Assume that $d_{G^{*}}(v)=4$. By Lemma 3.1, (R3) and (R4), $\rho^{\prime}(v) \geq \frac{1}{2} \times 4-$ $3+\frac{5}{8} \times 2+\frac{4}{7} \times 2-\frac{3}{7} \times 3-\frac{3}{28}=0$.

Assume that $d_{G^{*}}(v)=k \geq 5$. By (R3) and (R4), $\rho^{\prime}(v) \geq \frac{1}{2} \times k-3+\frac{5}{8} \times$ $\left\lceil\frac{k}{2}\right\rceil+\frac{4}{7} \times\left\lfloor\frac{k}{2}\right\rfloor-\frac{3}{7} \times k \geq \frac{75}{112} \times k-3 \geq \frac{39}{112}>0$.

Hence, the final charge of each vertex is at least 0 .
By Euler's formula, we can obtain the following contradiction:

$$
0 \leq \sum_{v \in V\left(G^{*}\right)}\left(\frac{1}{2} d(v)-3\right)+\sum_{f \in F\left(G^{*}\right)}(d(f)-3)=-6
$$

Therefore, such a minimal counterexample to Theorem 1.3 does not exist.

Acknowledgements

Supported by the National Natural Science Foundation of China (12261094).

References

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math., 108 (1992), 231-252.
[2] P. Erdös, Problems and results in combinatorial analysis ang graph theory, Discrete Math., 72 (1988), 81-92.
[3] P. Erdös, J. Nešetřil, [Problem], in: G. Halász, V.T. Sós(Eds.), Irregularities of partitions, Algorithms and Combinatorics: Study and Research Texts, vol. 8, Springer-Verlag, Berlin, 1989, 162-163.
[4] R.J. Faudree, A. Gyárfás, R.H. Schelp, Z. Tuza, The strong chromatic index of graphs, Ars Combin., 29(B) (1990), 205-211.
[5] P. Horák, Q. He, W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory, 17 (1993), 151-160.
[6] I. Choi, J. Kim, A.V. Kostochka, A. Raspaud, Strong edge-colorings of sparse graphs with large maximum degree, European J. Combin., 67 (2018), 21-39.
[7] Y. Guo, X. Zhang, X. Zhang, Strong edge-colorings of planar graphs with small girth, Appl. Math. Comput., 394 (2021), 125796.
[8] D. Hudák, B. Lužar, R. Soták, R. Škrekovski, Strong edge-coloring of planar graphs, Discrete Math., 324 (2014), 41-49.
[9] M. Huang, M. Santana, G. Yu, Strong chromatic index of graphs with maximum degree four, Electron. J. Combin., 25 (2018), P3.31.
[10] A. Steger, M. Yu, On induced matchings, Discrete Math., 120 (1993), 291295.
[11] Y. Wang, W.C. Shiu, W. Wang, M. Chen, Planar graphs with maximum degree 4 are strongly 19-edge-colorable, Discrete Math., 341 (2018), 16291635.
[12] T. Wang, X. Zhao, Odd graph and its applications to the strong edge coloring, Appl. Math. Comput., 325 (2018), 246-251.
[13] J.B. Lv, X. Li, G. Yu, On strong edge-coloring of graphs with maximum degree 4, Discrete Appl. Math., 235 (2018), 142-153.

Accepted: May 31, 2023

