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Strong edge-coloring of planar graphs with girth at least seven
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Abstract. A strong edge-coloring of a graph G is that two edges e1 and e2 that are
adjacent to each other or adjacent to the same edge must be colored with distinct colors.
In this paper we prove that every planar graph G with girth g ≥ 7 and maximum degree
∆ ≥ 5 has a strong edge-coloring using at most 3∆−1 colors. In addition, we prove that
every planar graph G without adjacent 7− cycles, with girth g ≥ 7 and the maximum
degree ∆ ≥ 4 has a strong edge-coloring using at most 3∆− 1 colors.
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1. Introduction

All graphs considered in this paper are finite, loopless and undirected. Let G
be a simple undirected graph. A vertex of degree k, at least k or at most k
is denoted by a k − vertex, a k+ − vertex or a k− − vertex respectively. A
neighbor of v of degree k, at most k or at least k is denoted by a k − neighbor,
a k− − neighbor or a k+ − neighbor, respectively.

A strong edge-coloring of a graph G is that two edges e1 and e2 that are
adjacent to each other or adjacent to the same edge must be colored with distinct
colors. The strong chromatic index of G is denoted by χ′

s(G), which is the
minimum number of colors for a strong edge-coloring of G.

We denote the minimum and maximum degree of vertices in G by δ(G)
and ∆(G) (δ and ∆ for short), respectively. The degree of vertex v in G is
denoted by dG(v). The girth of a graph G, denoted by g(G) (g for short),
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is the length of its shortest cycle. Define that the maximum average degree
of a graph G is the largest average degree of its subgraphs and is denoted by
mad(G) = maxH⊆G{2|E(H)|

|V (H)| }. The distance of two edges e1 and e2 refers to the
length of the shortest path from u to v, where u is an arbitrary endvertice of e1
and v is an arbitrary endvertice of e2. So, equivalently, a strong edge-coloring
is an assignment of colors to all edges such that every two edges with distance
at most 1 receive distinct colors.

Using greedy algorithm, we may easily see that χ′
s(G) ≤ 2∆2 − 2∆ + 1 for

every graph G. In 1989, Erdős and Nešetřil [3] conjectured the following upper
bounds.

Conjecture 1.1 ([2],[3]). For every graph G with maximum degree ∆,

χ′
s(G) ≤

{
5
4∆

2, if ∆ is even,
5
4∆

2 − 1
2∆+ 1

4 , if ∆ is odd.

These bounds would be tight, as Erdős and Nešetřil [3] gave examples of
graphs that get these bounds. For the case when ∆ = 2, this conjecture is
clearly true. For the case of ∆ = 3, Andersen [1] and Horák et al.[5] proved this
conjecture to be correct, independently. Moreover, for subcubic graph G, that
is, maximum degree is at most 3, Faudree et al.[4] proposed some conjectures.
Steger and Yu [10]showed that χ′

s(G) ≤ 9 for every subcubic bipartite graph
G. For subcubic planar graph G with girth at least 6, Hudák et al.[8] proved
the same result above. This conjecture is still open for ∆ ≥ 4. For ∆ = 4,
the best bound is 21, which was recently established by Huang, Santana, and
Yu [9]. The bound of 21 is still one larger than the conjectured bound of 20.
For every planar graph G with ∆ = 4, Wang et al.[11] proved that χ′

s(G) ≤ 19
and Jian-Bo Lv et al.[13] proved that if mad(G) < 61

18 (resp. 7
2 ,

18
5 ,

15
4 ,

51
13), then

χ′
s(G) ≤ 16 (resp. 17, 18, 19, 20).
Recently, a great deal of research has been done on planar graphs with

different values of girth. In 2014, Hudák et al.[8] proved that χ′
s(G) ≤ 3∆ for

every planar graph G with g ≥ 7. For every planar graph G with g ≥ 10∆− 4,
Wang et al.[12] further reduced this bound and proved that χ′

s(G) ≤ 2∆−1. By
maximum degree restriction, Choi et al.[6] showed two results, namely, χ′

s(G) ≤
3∆ for every planar graph G with g ≥ 6 and ∆ ≥ 7, and χ′

s(G) ≤ 3∆ − 3 for
every graph G with g ≥ 8 and ∆ ≥ 9. Guo et al.[7] also came to two conclusions
that χ′

s(G) ≤ 3∆ − 2 for every planar graph G with g ≥ 8 and ∆ ≥ 4, and
χ′
s(G) ≤ 3∆− 3 for every planar graph G with g ≥ 10 and ∆ ≥ 5.
In this paper, we take into account the girth and the maximum degree of

planar graphs and prove the following results.

Theorem 1.2. If G is a planar graph with g ≥ 7 and ∆ ≥ 5, then χ′
s(G) ≤

3∆− 1.

Theorem 1.3. If G is a planar graph without adjacent 7 − cycles, with g ≥ 7
and ∆ ≥ 4, then χ′

s(G) ≤ 3∆− 1.
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Note that mad(G) < 2g
g−2 for every planar graph. Thus, when g ≥ 7, we

have that mad(G) < 14
5 . Therefore, there is the following corollary.

Corollary 1.4. If G is a planar graph with mad(G) < 14
5 and ∆ ≥ 5, then

χ′
s(G) ≤ 3∆− 1.

By adding the condition that ∆ ≥ 5, our results improve the bound of Hudák
et al.[8] and are reduce by one color.

Let G∗ be obtained by removing all vertices of degree one in graph G. The
paper is organized as follows. In Section 2, we assume that G is a minimal
counterexample with the fewest edges to Theorem 1.2. We first prove some
structural properties of the minimal counterexample G and its subgraph G∗.
Next, we use the discharging method to show that G∗ cannot exist. In Section 3,
with a weaker maximum degree restriction and a stronger cycle constraint, we
still obtain the same bound.

2. Proof of Theorem 1.2

In this section, G is a counterexample to Theorem 1.2 with the |V (G)| mini-
mized, subject to that, assume that |E(G)| is as small as possible. It is obvious
that G and G∗ are connected. A strong partial edge-coloring of a graph G is
a proper edge-coloring of a proper subgraph G′ such that every two edges of
G′ with distance at most 1 in G receive different colors. Suppose that G has a
strong partial edge-coloring. For every uncolored edge e of G, we use A(e) to
denote the set of colors that are available at the edge e. The 2− neighborhood
of an edge e refers to the set of edges whose distance at most 2 from e.

We first state some structural properties regarding G and G∗ as follows.

Lemma 2.1. δ(G∗) ≥ 2. Moreover, dG∗(v) = 2 if and only if dG(v) = 2.

Proof. Suppose to the contrary that δ(G∗) ≤ 1. If δ(G∗) = 0, then G is a star
since G and G∗ are connected. Clearly, G has a strong edge-coloring with ∆
colors, a contradiction. If δ(G∗) = 1, then there must be dG∗(v) = 1. Then,
there must be dG(v) > dG∗(v) = 1, otherwise v will not appear in G∗. Therefore,
v must have at least one 1−neighbor in G, denoted by v1, as shown in Fig.1(1).
By the minimality of G, G−v1 has a strong edge-coloring ϕ with (3∆−1) colors.
Note that there are at most 2∆− 2 colored edges in the 2−neighborhood of the
edge vv1. Therefore, |A(vv1)| ≥ ∆ + 1 ≥ 6. Thus, we can extend ϕ to G, a
contradiction. So, δ(G∗) ≥ 2.

If dG(v) = 2, then dG∗(v) = 2 since dG(v) ≥ dG∗(v). Suppose that dG∗(v) =
2. We assume that dG(v) > 2. Then, v has at least one 1−neighbor v1 in G, as
shown in Fig.1(2). By the minimality of G, G − v1 has a strong edge-coloring
ϕ using (3∆ − 1) colors. Clearly, there are at most 3∆ − 3 colored edges in
the 2−neighborhood of the edge vv1. Hence, |A(vv1)| ≥ 2, which means that
we can extend ϕ to G, a contradiction. So dG(v) ≤ 2. Since dG(v) ≥ dG∗(v),
dG(v) = 2.
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Fig.1
(The solid lines represent the edges that exist in G.

The dashed lines represent the edges that might exist in G.)

Lemma 2.2. Let v be a 2− vertex in G∗. Then, both of neighbors of v in G∗

are 3+ − neighbor.

Proof. Suppose otherwise that v has a 2−neighbor, say u, inG∗. Since dG∗(v) =
dG∗(u) = 2, by Lemma 2.1, dG(v) = dG(u) = 2, as shown in Fig.1(3). By
the minimality of G, G − uv has a strong (3∆ − 1)-edge-coloring ϕ. Since
there are at most 2∆ colored edges in the 2−neighborhood of the edge uv,
|A(uv)| ≥ ∆− 1 ≥ 4. Then, we can color uv with one of the available colors, a
contradiction.

Lemma 2.3. Let v be a 3−vertex in G∗. Then, v has at least two 3+−neighbors
in G∗.

Proof. Suppose otherwise that v has at most a 3+−neighbor in G∗. Let u1, u2
be two 2−neighbors of v in G∗. By Lemma 2.1, dG(u1) = dG(u2) = 2. Assume
that dG(v) > dG∗(v). Then, v has at least one 1−neighbor v1 in G, as shown in
Fig.2(1). By the minimality of G, G − v1 has a strong (3∆ − 1)-edge-coloring
ϕ. It is easy to see that vv1 has at most 2∆ colored edges within distance one.
Thus, |A(vv1)| ≥ ∆ − 1 ≥ 4. Then, we can color vv1 with one of the available
colors, a contradiction. Therefore, dG(v) = dG∗(v) = 3, as shown in Fig.2(2).
Let ϕ be a strong (3∆− 1)-edge-coloring of G− vu1. Note that vu1 in G has at
most 2∆+2 colored edges in its 2−neighborhood. Hence, |A(vu1)| ≥ ∆−3 ≥ 2,
which implies that vu1 has at least one available color, a contradiction.

By Lemma 2.3, a 3− vertex v in G∗ is adjacent to at most one 2−neighbor
in G∗. We call a 3 − vertex v weak if it is adjacent to a 2 − vertex, otherwise
we call it strong.

Lemma 2.4. Let v be a weak 3− vertex in G∗. Then, dG(v) = dG∗(v) = 3.
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Proof. Suppose to the contrary that dG(v) > dG∗(v). Then, v has at least one
1−neighbor in G, denoted by v1. Let u be a 2−neighbor of v in G∗. By Lemma
2.1, dG(u) = 2, as shown in Fig.2(3). By the minimality of G, G − v1 has a
strong (3∆− 1)-edge-coloring ϕ. Note that vv1 in G has at most 3∆− 2 colored
edges in its 2−neighborhood. So |A(vv1)| ≥ 3∆ − 1 − (3∆ − 2) = 1, which
implies that vv1 has at least one available color, a contradiction.

Lemma 2.5. Assume that v is a weak 3−vertex in G∗. Then, v is not adjacent
to a weak 3− vertex.

Proof. Suppose otherwise that v has a weak 3−neighbor, say v1, in G∗. By
Lemma 2.4, dG(v) = dG∗(v) = 3 and dG(v1) = dG∗(v1) = 3. Let u be the
2−neighbor of v in G∗, as shown in Fig.2(4). By the minimality of G, G − uv
has a strong (3∆−1)-edge-coloring ϕ. Then, uv in G has at most 2∆+3 colored
edges in its 2−neighborhood. So, |A(uv)| ≥ 3∆−1−(2∆+3) = ∆−4 ≥ 1. Thus,
we can extend ϕ to a strong (3∆− 1)-edge-coloring of G, a contradiction.

Fig.2

Lemma 2.6. Let v be a strong 3−vertex in G∗. Then, v has at most two weak
3− neighbors in G∗.

Proof. Suppose otherwise that the three neighbors of v are all weak 3−neighbors
in G∗. Let u1, u2, u3 be three weak 3−neighbors of v in G∗. By Lemma 2.4,
dG(u1) = dG(u2) = dG(u3) = 3. Assume that dG(v) > dG∗(v). Then, v has at
least one 1−neighbor v1 in G, as shown in Fig.2(5). By the minimality of G,
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G−v1 has a strong (3∆−1)-edge-coloring ϕ. It is easy to see that vv1 has at most
∆+5 colored edges in its 2−neighborhood. Thus, |A(vv1)| ≥ 2∆−6 ≥ 4. Then,
we can color vv1 with one of the available colors, a contradiction. Therefore,
dG(v) = dG∗(v) = 3, as shown in Fig.2(6). Let ϕ be a strong (3∆ − 1)-edge-
coloring of G− vu1. Note that vu1 in G has at most ∆ + 8 colored edges in its
2−neighborhood. Hence, |A(vu1)| ≥ 2∆− 9 ≥ 1, which implies that vu1 has at
least one available color, a contradiction.

Lemma 2.7. Every 4− vertex v in G∗ has at most three 2− neighbors.

Proof. Suppose otherwise that the four neighbors of v are all 2−vertices. Let
u be one of neighbors of v in G∗, as shown in Fig.3(1). By the minimality of G,
G − uv has a strong (3∆ − 1)-edge-coloring ϕ. Note that uv in G has at most
2∆+2 colored edges in its 2−neighborhood. Thus, |A(uv)| ≥ 3∆−1−(2∆+2) =
∆ − 3 ≥ 2. So, ϕ can be extended to a strong (3∆ − 1)-edge-coloring of G, a
contradiction.

If a 4−vertex has just three 2−neighbors, we call it a 43−vertex. Otherwise,
if a 4− vertex has at most two 2− neighbors, we call it a 42 − vertex.

Lemma 2.8. If v is a 43 − vertex in G∗, then dG(v) = dG∗(v) = 4.

Proof. Suppose otherwise that that dG(v) > 4. Then, v has at least one
1−neighbor in G, denoted by v1. Let u be a 2−neighbor of v in G∗. By
Lemma 2.1, all three 2−neighbors of v have degree 2 in G, as shown in Fig.3(2).
By the minimality of G, G − v1 has a strong (3∆ − 1)-edge-coloring ϕ. Note
that vv1 in G has at most 2∆ + 1 colored edges in its 2−neighborhood. So
|A(vv1)| ≥ ∆− 2 ≥ 3, which implies that vv1 has at least one available color, a
contradiction.

Fig.3
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Lemma 2.9. Assume that v is a 43 − vertex in G∗. Then, v is not adjacent to
a weak 3− vertex.

Proof. Suppose otherwise that v has a weak 3−neighbor, say v1, in G∗. By
Lemma 2.7, dG(v) = dG∗(v) = 4. Let u be one of 2−neighbors of v in G∗, as
shown in Fig.3(3). By the minimality of G, G− uv has a strong (3∆− 1)-edge-
coloring ϕ. Then, uv inG has at most ∆+7 colored edges in its 2−neighborhood.
So, |A(uv)| ≥ 3∆ − 1 − (∆ + 7) = 2∆ − 8 ≥ 2. Thus, we can extend ϕ to a
strong (3∆− 1)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between
vertices and faces. Now we will use discharging method and Euler’s formula to
get a contradiction and complete the proof of Theorem 1.2. We assign the initial
charge ρ(v) = 1

2dG∗(v)− 3 for each vertex v ∈ V (G∗) and ρ(f) = dG∗(f)− 3 for
each face f ∈ F (G∗).

By Euler’s formula, we have the following equality.∑
v∈V (G∗)

ρ(v) +
∑

f∈F (G∗)

ρ(f) =
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

We will design appropriate discharging rules and redistribute charges among
vertices and faces so that the final charges of every vertex and every face are
non-negative. The discharging rules are shown as follows.

(R1) Every vertex receives 4
7 from the incident face.

(R2) Every weak 3− vertex sends 3
7 to the adjacent 2− vertex.

(R3) Every 4+ − vertex sends 3
7 to the adjacent 2− vertex.

(R4) Every 4+ − vertex sends 3
28 to the adjacent weak 3− vertex.

(R5) Every strong 3− vertex sends 3
28 to the adjacent weak 3− vertex.

Let ρ′(x) denote the finial charge of each element x in V (G∗)∪ F (G∗) after the
discharging process. We first consider the final charge of each face. By (R1),
ρ′(f) = dG∗(f) − 3 − 4

7 × dG∗(f) = 3
7 × dG∗(f) − 3 ≥ 0. So, the final charge of

each face is at least 0.

Next, we consider the final charge of each vertex v. Let dG∗(v) = k. By
(R1), it can get 4

7 × dG∗(v) = 4
7 × k from faces incident to v.

Assume that dG∗(v) = 2. By Lemma 2.2, (R2) and (R3), we have that
ρ′(v) = 1

2 × 2− 3 + 4
7 × 2 + 3

7 × 2 = 0.

Assume that dG∗(v) = 3. If v is a weak 3− vertex, by Lemma 2.5, (R4) and
(R5), we have that ρ′(v) = 1

2 × 3− 3 + 4
7 × 3 + 3

28 × 2− 3
7 = 0. If v is a strong

3− vertex, then ρ′(v) ≥ 1
2 × 3− 3+ 4

7 × 3− 3
28 × 2 = 0 by Lemma 2.6 and (R5).
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Assume that dG∗(v) = 4. If v is a 42 − vertex, then by (R3) and (R4), we
have that ρ′(v) ≥ 1

2 ×4−3+ 4
7 ×4− 3

7 ×2− 3
28 ×2 = 3

14 > 0. If v is a 43−vertex,
then ρ′(v) = 1

2 × 4− 3 + 4
7 × 4− 3

7 × 3 = 0 by Lemma 2.8 and (R3).

Assume that dG∗(v) = k ≥ 5. By (R3) and (R4), we have ρ′(v) ≥ 1
2 × k −

3 + 4
7 × k − 3

7 × k = 9
14 × k − 3 ≥ 9

14 × 5− 3 = 3
14 > 0.

Hence, the final charge of each vertex is at least 0.

By Euler’s formula, we can obtain the following contradiction:

0 ≤
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

Therefore, such a minimal counterexample to Theorem 1.2 does not exist.

3. Proof of Theorem 1.3

In this section, we still assume that G is a counterexample to Theorem 1.3
with the |V (G)| minimized, subject to that, assume that |E(G)| is as small as
possible. We use the same method as Theorem 1.2 to prove Theorem 1.3. It is
obvious that G satisfies the following structures.

Lemma 3.1. (1) δ(G∗) ≥ 2. Moreover, dG∗(v) = 2 if and only if dG(v) = 2.

(2) Let v be a 2 − vertex in G∗. Then, both of neighbors of v in G∗ are 3+ −
neighbor.

(3) Let v be a 3−vertex in G∗. Then, v has at least two 3+−neighbors in G∗.

(4) Let v be a weak 3− vertex in G∗. Then, dG(v) = dG∗(v) = 3.

(5) Every 4− vertex v in G∗ has at most three 2− neighbors.

Lemma 3.2. Assume that v is a weak 3 − vertex in G∗. Then, v has at least
one 4+ − neighbor or one strong 3− neighbor in G∗.

Proof. Suppose otherwise that the other two neighbors of v in G∗ are weak
3−vertices, denoted by v1, v2. By Lemma 3.1(4), dG(v) = dG(v1) = dG(v2) = 3.
Let u be the 2−neighbor of v in G∗. By the minimality of G, G − uv has a
strong (3∆−1)-edge-coloring ϕ. Then, uv in G has at most ∆+6 colored edges
in its 2−neighborhood. So, |A(uv)| ≥ 3∆ − 1 − (∆ + 6) = 2∆ − 7 ≥ 1. Thus,
we can extend ϕ to a strong (3∆− 1)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between
vertices and faces. Now we assign the initial charge ρ(v) = 1

2dG∗(v) − 3 for
each vertex v ∈ V (G∗) and ρ(f) = dG∗(f) − 3 for each face f ∈ F (G∗). The
discharging rules are shown as follows.

(R1) Every vertex receives 4
7 from the incident 7− face.
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(R2) Every vertex receives 5
8 from the incident 8+ − face.

(R3) Every 4+ − vertex sends 3
7 to the adjacent 2− vertex.

(R4) Every 4+ − vertex sends 3
28 to the adjacent weak 3− vertex.

(R5) Every strong 3− vertex sends 3
28 to the adjacent weak 3− vertex.

(R6) Every weak 3− vertex sends 3
7 to the adjacent 2− vertex.

Let ρ′(x) denote the finial charge of each element x in V (G∗)∪ F (G∗) after the
discharging process. We first consider the final charge of each face.

If dG∗(f) = 7, then by (R1), we have that ρ′(f) ≥ dG∗(f)− 3− 4
7 × 7 = 0. If

dG∗(f) ≥ 8, then we have that ρ′(f) ≥ dG∗(f)−3− 5
8×dG∗(f) = 3

8×dG∗(f)−3 ≥
0 by (R2). Obviously, the final charge of each face is at least 0.

Next, we consider the final charge of each vertex. Let dG∗(v) = k. Since
there is no adjacent 7 − faces in G, by (R1) and (R2), it can at least get
4
7 × ⌊k2⌋+

5
8 × ⌈k2⌉ from 7+−faces incident to v.

Assume that dG∗(v) = 2. By Lemma 3.1, (R3) and (R6), ρ′(v) ≥ 1
2 × 2 −

3 + 5
8 + 4

7 + 3
7 × 2 = 3

56 > 0.

Assume dG∗(v) = 3. If v is a weak 3− vertex, then by Lemma 3.2, (R4) and
(R6), we have that ρ′(v) ≥ 1

2 × 3− 3 + 5
8 × 2 + 4

7 − 3
7 + 3

28 = 0. If v is a strong
3− vertex, then ρ′(v) ≥ 1

2 × 3− 3 + 5
8 × 2 + 4

7 − 3
28 × 3 = 0 by (R5).

Assume that dG∗(v) = 4. By Lemma 3.1, (R3) and (R4), ρ′(v) ≥ 1
2 × 4 −

3 + 5
8 × 2 + 4

7 × 2− 3
7 × 3− 3

28 = 0.

Assume that dG∗(v) = k ≥ 5. By (R3) and (R4), ρ′(v) ≥ 1
2 × k − 3 + 5

8 ×
⌈k2⌉+

4
7 × ⌊k2⌋ −

3
7 × k ≥ 75

112 × k − 3 ≥ 39
112 > 0.

Hence, the final charge of each vertex is at least 0.

By Euler’s formula, we can obtain the following contradiction:

0 ≤
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

Therefore, such a minimal counterexample to Theorem 1.3 does not exist.
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