Strong edge-coloring of planar graphs with girth at least seven

Jiaxin Yuan

Department of Mathematics School of Science Wuhan University of Technology Wuhan, 430070 China 2461634998@qq.com

Mingfang Huang^{*}

Department of Mathematics School of Science Wuhan University of Technology Wuhan, 430070 China ds_hmf@126.com

Abstract. A strong edge-coloring of a graph G is that two edges e_1 and e_2 that are adjacent to each other or adjacent to the same edge must be colored with distinct colors. In this paper we prove that every planar graph G with girth $g \ge 7$ and maximum degree $\Delta \ge 5$ has a strong edge-coloring using at most $3\Delta - 1$ colors. In addition, we prove that every planar graph G without adjacent 7 - cycles, with girth $g \ge 7$ and the maximum degree $\Delta \ge 4$ has a strong edge-coloring using at most $3\Delta - 1$ colors.

Keywords: strong edge-coloring, planar graph, discharging method. MSC 2020: 05C15

1. Introduction

All graphs considered in this paper are finite, loopless and undirected. Let G be a simple undirected graph. A vertex of degree k, at least k or at most k is denoted by a k - vertex, a k^+ - vertex or a k^- - vertex respectively. A neighbor of v of degree k, at most k or at least k is denoted by a k - neighbor, a k^- - neighbor, respectively.

A strong edge-coloring of a graph G is that two edges e_1 and e_2 that are adjacent to each other or adjacent to the same edge must be colored with distinct colors. The strong chromatic index of G is denoted by $\chi'_s(G)$, which is the minimum number of colors for a strong edge-coloring of G.

We denote the minimum and maximum degree of vertices in G by $\delta(G)$ and $\Delta(G)$ (δ and Δ for short), respectively. The degree of vertex v in G is denoted by $d_G(v)$. The girth of a graph G, denoted by g(G) (g for short),

^{*.} Corresponding author

is the length of its shortest cycle. Define that the maximum average degree of a graph G is the largest average degree of its subgraphs and is denoted by $mad(G) = \max_{H \subseteq G} \{\frac{2|E(H)|}{|V(H)|}\}$. The distance of two edges e_1 and e_2 refers to the length of the shortest path from u to v, where u is an arbitrary endvertice of e_1 and v is an arbitrary endvertice of e_2 . So, equivalently, a strong edge-coloring is an assignment of colors to all edges such that every two edges with distance at most 1 receive distinct colors.

Using greedy algorithm, we may easily see that $\chi'_s(G) \leq 2\Delta^2 - 2\Delta + 1$ for every graph G. In 1989, Erdős and Nešetřil [3] conjectured the following upper bounds.

Conjecture 1.1 ([2],[3]). For every graph G with maximum degree Δ ,

$$\chi'_s(G) \leq \begin{cases} \frac{5}{4}\Delta^2, & \text{if } \Delta \text{ is even,} \\ \frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}, & \text{if } \Delta \text{ is odd.} \end{cases}$$

These bounds would be tight, as Erdős and Nešetřil [3] gave examples of graphs that get these bounds. For the case when $\Delta = 2$, this conjecture is clearly true. For the case of $\Delta = 3$, Andersen [1] and Horák *et al.*[5] proved this conjecture to be correct, independently. Moreover, for subcubic graph G, that is, maximum degree is at most 3, Faudree *et al.*[4] proposed some conjectures. Steger and Yu [10]showed that $\chi'_s(G) \leq 9$ for every subcubic bipartite graph G. For subcubic planar graph G with girth at least 6, Hudák et al.[8] proved the same result above. This conjecture is still open for $\Delta \geq 4$. For $\Delta = 4$, the best bound is 21, which was recently established by Huang, Santana, and Yu [9]. The bound of 21 is still one larger than the conjectured bound of 20. For every planar graph G with $\Delta = 4$, Wang *et al.*[11] proved that $\chi'_s(G) \leq 19$ and Jian-Bo Lv *et al.*[13] proved that if $mad(G) < \frac{61}{18}$ (*resp.* $\frac{7}{2}, \frac{18}{5}, \frac{15}{4}, \frac{51}{13}$), then $\chi'_s(G) \leq 16$ (*resp.* 17, 18, 19, 20).

Recently, a great deal of research has been done on planar graphs with different values of girth. In 2014, Hudák *et al.*[8] proved that $\chi'_s(G) \leq 3\Delta$ for every planar graph G with $g \geq 7$. For every planar graph G with $g \geq 10\Delta - 4$, Wang *et al.*[12] further reduced this bound and proved that $\chi'_s(G) \leq 2\Delta - 1$. By maximum degree restriction, Choi *et al.*[6] showed two results, namely, $\chi'_s(G) \leq$ 3Δ for every planar graph G with $g \geq 6$ and $\Delta \geq 7$, and $\chi'_s(G) \leq 3\Delta - 3$ for every graph G with $g \geq 8$ and $\Delta \geq 9$. Guo *et al.*[7] also came to two conclusions that $\chi'_s(G) \leq 3\Delta - 2$ for every planar graph G with $g \geq 8$ and $\Delta \geq 4$, and $\chi'_s(G) \leq 3\Delta - 3$ for every planar graph G with $g \geq 10$ and $\Delta \geq 5$.

In this paper, we take into account the girth and the maximum degree of planar graphs and prove the following results.

Theorem 1.2. If G is a planar graph with $g \ge 7$ and $\Delta \ge 5$, then $\chi'_s(G) \le 3\Delta - 1$.

Theorem 1.3. If G is a planar graph without adjacent 7 – cycles, with $g \ge 7$ and $\Delta \ge 4$, then $\chi'_s(G) \le 3\Delta - 1$. Note that $mad(G) < \frac{2g}{g-2}$ for every planar graph. Thus, when $g \ge 7$, we have that $mad(G) < \frac{14}{5}$. Therefore, there is the following corollary.

Corollary 1.4. If G is a planar graph with $mad(G) < \frac{14}{5}$ and $\Delta \geq 5$, then $\chi'_s(G) \leq 3\Delta - 1$.

By adding the condition that $\Delta \geq 5$, our results improve the bound of Hudák et al.[8] and are reduce by one color.

Let G^* be obtained by removing all vertices of degree one in graph G. The paper is organized as follows. In Section 2, we assume that G is a minimal counterexample with the fewest edges to Theorem 1.2. We first prove some structural properties of the minimal counterexample G and its subgraph G^* . Next, we use the discharging method to show that G^* cannot exist. In Section 3, with a weaker maximum degree restriction and a stronger cycle constraint, we still obtain the same bound.

2. Proof of Theorem 1.2

In this section, G is a counterexample to Theorem 1.2 with the |V(G)| minimized, subject to that, assume that |E(G)| is as small as possible. It is obvious that G and G^* are connected. A strong partial edge-coloring of a graph G is a proper edge-coloring of a proper subgraph G' such that every two edges of G' with distance at most 1 in G receive different colors. Suppose that G has a strong partial edge-coloring. For every uncolored edge e of G, we use A(e) to denote the set of colors that are available at the edge e. The 2 - neighborhoodof an edge e refers to the set of edges whose distance at most 2 from e.

We first state some structural properties regarding G and G^* as follows.

Lemma 2.1. $\delta(G^*) \geq 2$. Moreover, $d_{G^*}(v) = 2$ if and only if $d_G(v) = 2$.

Proof. Suppose to the contrary that $\delta(G^*) \leq 1$. If $\delta(G^*) = 0$, then G is a star since G and G^* are connected. Clearly, G has a strong edge-coloring with Δ colors, a contradiction. If $\delta(G^*) = 1$, then there must be $d_{G^*}(v) = 1$. Then, there must be $d_G(v) > d_{G^*}(v) = 1$, otherwise v will not appear in G^* . Therefore, v must have at least one 1-neighbor in G, denoted by v_1 , as shown in Fig.1(1). By the minimality of G, $G - v_1$ has a strong edge-coloring ϕ with $(3\Delta - 1)$ colors. Note that there are at most $2\Delta - 2$ colored edges in the 2-neighborhood of the edge vv_1 . Therefore, $|A(vv_1)| \geq \Delta + 1 \geq 6$. Thus, we can extend ϕ to G, a contradiction. So, $\delta(G^*) \geq 2$.

If $d_G(v) = 2$, then $d_{G^*}(v) = 2$ since $d_G(v) \ge d_{G^*}(v)$. Suppose that $d_{G^*}(v) = 2$. 2. We assume that $d_G(v) > 2$. Then, v has at least one 1-neighbor v_1 in G, as shown in Fig.1(2). By the minimality of G, $G - v_1$ has a strong edge-coloring ϕ using $(3\Delta - 1)$ colors. Clearly, there are at most $3\Delta - 3$ colored edges in the 2-neighborhood of the edge vv_1 . Hence, $|A(vv_1)| \ge 2$, which means that we can extend ϕ to G, a contradiction. So $d_G(v) \le 2$. Since $d_G(v) \ge d_{G^*}(v)$, $d_G(v) = 2$.

Fig.1 (The solid lines represent the edges that exist in G.) The dashed lines represent the edges that might exist in G.)

Lemma 2.2. Let v be a 2 – vertex in G^* . Then, both of neighbors of v in G^* are 3^+ – neighbor.

Proof. Suppose otherwise that v has a 2-neighbor, say u, in G^* . Since $d_{G^*}(v) = d_{G^*}(u) = 2$, by Lemma 2.1, $d_G(v) = d_G(u) = 2$, as shown in Fig.1(3). By the minimality of G, G - uv has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Since there are at most 2Δ colored edges in the 2-neighborhood of the edge uv, $|A(uv)| \ge \Delta - 1 \ge 4$. Then, we can color uv with one of the available colors, a contradiction.

Lemma 2.3. Let v be a 3-vertex in G^* . Then, v has at least two 3^+ -neighbors in G^* .

Proof. Suppose otherwise that v has at most a 3^+ -neighbor in G^* . Let u_1, u_2 be two 2-neighbors of v in G^* . By Lemma 2.1, $d_G(u_1) = d_G(u_2) = 2$. Assume that $d_G(v) > d_{G^*}(v)$. Then, v has at least one 1-neighbor v_1 in G, as shown in Fig.2(1). By the minimality of G, $G - v_1$ has a strong $(3\Delta - 1)$ -edge-coloring ϕ . It is easy to see that vv_1 has at most 2Δ colored edges within distance one. Thus, $|A(vv_1)| \ge \Delta - 1 \ge 4$. Then, we can color vv_1 with one of the available colors, a contradiction. Therefore, $d_G(v) = d_{G^*}(v) = 3$, as shown in Fig.2(2). Let ϕ be a strong $(3\Delta - 1)$ -edge-coloring of $G - vu_1$. Note that vu_1 in G has at most $2\Delta + 2$ colored edges in its 2-neighborhood. Hence, $|A(vv_1)| \ge \Delta - 3 \ge 2$, which implies that vu_1 has at least one available color, a contradiction. \Box

By Lemma 2.3, a 3 - vertex v in G^* is adjacent to at most one 2 - neighbor in G^* . We call a 3 - vertex v weak if it is adjacent to a 2 - vertex, otherwise we call it strong.

Lemma 2.4. Let v be a weak 3 - vertex in G^* . Then, $d_G(v) = d_{G^*}(v) = 3$.

Proof. Suppose to the contrary that $d_G(v) > d_{G^*}(v)$. Then, v has at least one 1-neighbor in G, denoted by v_1 . Let u be a 2-neighbor of v in G^* . By Lemma 2.1, $d_G(u) = 2$, as shown in Fig.2(3). By the minimality of G, $G - v_1$ has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Note that vv_1 in G has at most $3\Delta - 2$ colored edges in its 2-neighborhood. So $|A(vv_1)| \geq 3\Delta - 1 - (3\Delta - 2) = 1$, which implies that vv_1 has at least one available color, a contradiction.

Lemma 2.5. Assume that v is a weak 3-vertex in G^* . Then, v is not adjacent to a weak 3-vertex.

Proof. Suppose otherwise that v has a weak 3-neighbor, say v_1 , in G^* . By Lemma 2.4, $d_G(v) = d_{G^*}(v) = 3$ and $d_G(v_1) = d_{G^*}(v_1) = 3$. Let u be the 2-neighbor of v in G^* , as shown in Fig.2(4). By the minimality of G, G - uv has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Then, uv in G has at most $2\Delta + 3$ colored edges in its 2-neighborhood. So, $|A(uv)| \ge 3\Delta - 1 - (2\Delta + 3) = \Delta - 4 \ge 1$. Thus, we can extend ϕ to a strong $(3\Delta - 1)$ -edge-coloring of G, a contradiction. \Box

Lemma 2.6. Let v be a strong 3 – vertex in G^* . Then, v has at most two weak 3 – neighbors in G^* .

Proof. Suppose otherwise that the three neighbors of v are all weak 3-neighbors in G^* . Let u_1, u_2, u_3 be three weak 3-neighbors of v in G^* . By Lemma 2.4, $d_G(u_1) = d_G(u_2) = d_G(u_3) = 3$. Assume that $d_G(v) > d_{G^*}(v)$. Then, v has at least one 1-neighbor v_1 in G, as shown in Fig.2(5). By the minimality of G, $G-v_1$ has a strong $(3\Delta-1)$ -edge-coloring ϕ . It is easy to see that vv_1 has at most $\Delta+5$ colored edges in its 2-neighborhood. Thus, $|A(vv_1)| \geq 2\Delta-6 \geq 4$. Then, we can color vv_1 with one of the available colors, a contradiction. Therefore, $d_G(v) = d_{G^*}(v) = 3$, as shown in Fig.2(6). Let ϕ be a strong $(3\Delta - 1)$ -edge-coloring of $G - vu_1$. Note that vu_1 in G has at most $\Delta + 8$ colored edges in its 2-neighborhood. Hence, $|A(vu_1)| \geq 2\Delta - 9 \geq 1$, which implies that vu_1 has at least one available color, a contradiction.

Lemma 2.7. Every 4 - vertex v in G^* has at most three 2 - neighbors.

Proof. Suppose otherwise that the four neighbors of v are all 2-vertices. Let u be one of neighbors of v in G^* , as shown in Fig.3(1). By the minimality of G, G - uv has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Note that uv in G has at most $2\Delta + 2$ colored edges in its 2-neighborhood. Thus, $|A(uv)| \ge 3\Delta - 1 - (2\Delta + 2) = \Delta - 3 \ge 2$. So, ϕ can be extended to a strong $(3\Delta - 1)$ -edge-coloring of G, a contradiction.

If a 4-vertex has just three 2-neighbors, we call it a 4_3 -vertex. Otherwise, if a 4-vertex has at most two 2-neighbors, we call it a 4_2 -vertex.

Lemma 2.8. If v is a 4_3 - vertex in G^* , then $d_G(v) = d_{G^*}(v) = 4$.

Proof. Suppose otherwise that that $d_G(v) > 4$. Then, v has at least one 1-neighbor in G, denoted by v_1 . Let u be a 2-neighbor of v in G^* . By Lemma 2.1, all three 2-neighbors of v have degree 2 in G, as shown in Fig.3(2). By the minimality of G, $G - v_1$ has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Note that vv_1 in G has at most $2\Delta + 1$ colored edges in its 2-neighborhood. So $|A(vv_1)| \geq \Delta - 2 \geq 3$, which implies that vv_1 has at least one available color, a contradiction.

Fig.3

Lemma 2.9. Assume that v is a 4_3 – vertex in G^* . Then, v is not adjacent to a weak 3 – vertex.

Proof. Suppose otherwise that v has a weak 3-neighbor, say v_1 , in G^* . By Lemma 2.7, $d_G(v) = d_{G^*}(v) = 4$. Let u be one of 2-neighbors of v in G^* , as shown in Fig.3(3). By the minimality of G, G - uv has a strong $(3\Delta - 1)$ -edgecoloring ϕ . Then, uv in G has at most $\Delta + 7$ colored edges in its 2-neighborhood. So, $|A(uv)| \geq 3\Delta - 1 - (\Delta + 7) = 2\Delta - 8 \geq 2$. Thus, we can extend ϕ to a strong $(3\Delta - 1)$ -edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between vertices and faces. Now we will use discharging method and Euler's formula to get a contradiction and complete the proof of Theorem 1.2. We assign the initial charge $\rho(v) = \frac{1}{2}d_{G^*}(v) - 3$ for each vertex $v \in V(G^*)$ and $\rho(f) = d_{G^*}(f) - 3$ for each face $f \in F(G^*)$.

By Euler's formula, we have the following equality.

$$\sum_{v \in V(G^*)} \rho(v) + \sum_{f \in F(G^*)} \rho(f) = \sum_{v \in V(G^*)} (\frac{1}{2}d(v) - 3) + \sum_{f \in F(G^*)} (d(f) - 3) = -6$$

We will design appropriate discharging rules and redistribute charges among vertices and faces so that the final charges of every vertex and every face are non-negative. The discharging rules are shown as follows.

- (R1) Every vertex receives $\frac{4}{7}$ from the incident face.
- (R2) Every weak 3 vertex sends $\frac{3}{7}$ to the adjacent 2 vertex.
- (R3) Every $4^+ vertex$ sends $\frac{3}{7}$ to the adjacent 2 vertex.
- (R4) Every $4^+ vertex$ sends $\frac{3}{28}$ to the adjacent weak 3 vertex.
- (R5) Every strong 3 vertex sends $\frac{3}{28}$ to the adjacent weak 3 vertex.

Let $\rho'(x)$ denote the finial charge of each element x in $V(G^*) \cup F(G^*)$ after the discharging process. We first consider the final charge of each face. By (R1), $\rho'(f) = d_{G^*}(f) - 3 - \frac{4}{7} \times d_{G^*}(f) = \frac{3}{7} \times d_{G^*}(f) - 3 \ge 0$. So, the final charge of each face is at least 0.

Next, we consider the final charge of each vertex v. Let $d_{G^*}(v) = k$. By (R1), it can get $\frac{4}{7} \times d_{G^*}(v) = \frac{4}{7} \times k$ from faces incident to v.

Assume that $d_{G^*}(v) = 2$. By Lemma 2.2, (R2) and (R3), we have that $\rho'(v) = \frac{1}{2} \times 2 - 3 + \frac{4}{7} \times 2 + \frac{3}{7} \times 2 = 0$.

Assume that $d_{G^*}(v) = 3$. If v is a weak 3 - vertex, by Lemma 2.5, (R4) and (R5), we have that $\rho'(v) = \frac{1}{2} \times 3 - 3 + \frac{4}{7} \times 3 + \frac{3}{28} \times 2 - \frac{3}{7} = 0$. If v is a strong 3 - vertex, then $\rho'(v) \ge \frac{1}{2} \times 3 - 3 + \frac{4}{7} \times 3 - \frac{3}{28} \times 2 = 0$ by Lemma 2.6 and (R5).

Assume that $d_{G^*}(v) = 4$. If v is a $4_2 - vertex$, then by (R3) and (R4), we have that $\rho'(v) \ge \frac{1}{2} \times 4 - 3 + \frac{4}{7} \times 4 - \frac{3}{7} \times 2 - \frac{3}{28} \times 2 = \frac{3}{14} > 0$. If v is a $4_3 - vertex$, then $\rho'(v) = \frac{1}{2} \times 4 - 3 + \frac{4}{7} \times 4 - \frac{3}{7} \times 3 = 0$ by Lemma 2.8 and (R3).

Assume that $d_{G^*}(v) = k \ge 5$. By (R3) and (R4), we have $\rho'(v) \ge \frac{1}{2} \times k - 3 + \frac{4}{7} \times k - \frac{3}{7} \times k = \frac{9}{14} \times k - 3 \ge \frac{9}{14} \times 5 - 3 = \frac{3}{14} > 0$.

Hence, the final charge of each vertex is at least 0.

By Euler's formula, we can obtain the following contradiction:

$$0 \le \sum_{v \in V(G^*)} \left(\frac{1}{2}d(v) - 3\right) + \sum_{f \in F(G^*)} \left(d(f) - 3\right) = -6$$

Therefore, such a minimal counterexample to Theorem 1.2 does not exist.

3. Proof of Theorem 1.3

In this section, we still assume that G is a counterexample to Theorem 1.3 with the |V(G)| minimized, subject to that, assume that |E(G)| is as small as possible. We use the same method as Theorem 1.2 to prove Theorem 1.3. It is obvious that G satisfies the following structures.

Lemma 3.1. (1) $\delta(G^*) \geq 2$. Moreover, $d_{G^*}(v) = 2$ if and only if $d_G(v) = 2$.

- (2) Let v be a 2 vertex in G^* . Then, both of neighbors of v in G^* are 3^+ neighbor.
- (3) Let v be a 3-vertex in G^* . Then, v has at least two 3^+ -neighbors in G^* .
- (4) Let v be a weak 3 vertex in G^* . Then, $d_G(v) = d_{G^*}(v) = 3$.
- (5) Every $4 vertex \ v$ in G^* has at most three 2 neighbors.

Lemma 3.2. Assume that v is a weak 3 - vertex in G^* . Then, v has at least one $4^+ - neighbor$ or one strong 3 - neighbor in G^* .

Proof. Suppose otherwise that the other two neighbors of v in G^* are weak 3-vertices, denoted by v_1, v_2 . By Lemma 3.1(4), $d_G(v) = d_G(v_1) = d_G(v_2) = 3$. Let u be the 2-neighbor of v in G^* . By the minimality of G, G - uv has a strong $(3\Delta - 1)$ -edge-coloring ϕ . Then, uv in G has at most $\Delta + 6$ colored edges in its 2-neighborhood. So, $|A(uv)| \ge 3\Delta - 1 - (\Delta + 6) = 2\Delta - 7 \ge 1$. Thus, we can extend ϕ to a strong $(3\Delta - 1)$ -edge-coloring of G, a contradiction. \Box

The total charge remains unchanged when we transfer the charge between vertices and faces. Now we assign the initial charge $\rho(v) = \frac{1}{2}d_{G^*}(v) - 3$ for each vertex $v \in V(G^*)$ and $\rho(f) = d_{G^*}(f) - 3$ for each face $f \in F(G^*)$. The discharging rules are shown as follows.

(R1) Every vertex receives $\frac{4}{7}$ from the incident 7 – face.

- (R2) Every vertex receives $\frac{5}{8}$ from the incident $8^+ face$.
- (R3) Every $4^+ vertex$ sends $\frac{3}{7}$ to the adjacent 2 vertex.
- (R4) Every $4^+ vertex$ sends $\frac{3}{28}$ to the adjacent weak 3 vertex.
- (R5) Every strong 3 vertex sends $\frac{3}{28}$ to the adjacent weak 3 vertex.
- (R6) Every weak 3 vertex sends $\frac{3}{7}$ to the adjacent 2 vertex.

Let $\rho'(x)$ denote the finial charge of each element x in $V(G^*) \cup F(G^*)$ after the discharging process. We first consider the final charge of each face.

If $d_{G^*}(f) = 7$, then by (R1), we have that $\rho'(f) \ge d_{G^*}(f) - 3 - \frac{4}{7} \times 7 = 0$. If $d_{G^*}(f) \ge 8$, then we have that $\rho'(f) \ge d_{G^*}(f) - 3 - \frac{5}{8} \times d_{G^*}(f) = \frac{3}{8} \times d_{G^*}(f) - 3 \ge 1$ 0 by (R2). Obviously, the final charge of each face is at least 0.

Next, we consider the final charge of each vertex. Let $d_{G^*}(v) = k$. Since there is no adjacent 7 - faces in G, by (R1) and (R2), it can at least get $\frac{4}{7} \times \lfloor \frac{k}{2} \rfloor + \frac{5}{8} \times \lfloor \frac{k}{2} \rfloor$ from 7⁺-faces incident to v.

Assume that $d_{G^*}(v) = 2$. By Lemma 3.1, (R3) and (R6), $\rho'(v) \ge \frac{1}{2} \times 2 - \frac{1}{2}$ $3 + \frac{5}{8} + \frac{4}{7} + \frac{3}{7} \times 2 = \frac{3}{56} > 0.$

Assume $d_{G^*}(v) = 3$. If v is a weak 3 - vertex, then by Lemma 3.2, (R4) and (R6), we have that $\rho'(v) \ge \frac{1}{2} \times 3 - 3 + \frac{5}{8} \times 2 + \frac{4}{7} - \frac{3}{7} + \frac{3}{28} = 0$. If v is a strong 3 - vertex, then $\rho'(v) \ge \frac{1}{2} \times 3 - 3 + \frac{5}{8} \times 2 + \frac{4}{7} - \frac{3}{28} \times 3 = 0$ by (R5). Assume that $d_{G^*}(v) = 4$. By Lemma 3.1, (R3) and (R4), $\rho'(v) \ge \frac{1}{2} \times 4 - \frac{5}{8} \times 2 + \frac{4}{7} - \frac{3}{28} \times 3 = 0$.

 $3 + \frac{5}{8} \times 2 + \frac{4}{7} \times 2 - \frac{3}{7} \times 3 - \frac{3}{28} = 0.$ Assume that $d_{G^*}(v) = k \ge 5$. By (R3) and (R4), $\rho'(v) \ge \frac{1}{2} \times k - 3 + \frac{5}{8} \times \left\lceil \frac{k}{2} \right\rceil + \frac{4}{7} \times \left\lfloor \frac{k}{2} \right\rfloor - \frac{3}{7} \times k \ge \frac{75}{112} \times k - 3 \ge \frac{39}{112} > 0.$

Hence, the final charge of each vertex is at least 0.

By Euler's formula, we can obtain the following contradiction:

$$0 \le \sum_{v \in V(G^*)} \left(\frac{1}{2}d(v) - 3\right) + \sum_{f \in F(G^*)} \left(d(f) - 3\right) = -6$$

Therefore, such a minimal counterexample to Theorem 1.3 does not exist.

Acknowledgements

Supported by the National Natural Science Foundation of China (12261094).

References

- [1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math., 108 (1992), 231-252.
- [2] P. Erdös, Problems and results in combinatorial analysis and graph theory, Discrete Math., 72 (1988), 81-92.

- [3] P. Erdös, J. Nešetřil, [Problem], in: G. Halász, V.T. Sós(Eds.), Irregularities of partitions, Algorithms and Combinatorics: Study and Research Texts, vol. 8, Springer-Verlag, Berlin, 1989, 162-163.
- [4] R.J. Faudree, A. Gyárfás, R.H. Schelp, Z. Tuza, The strong chromatic index of graphs, Ars Combin., 29(B) (1990), 205-211.
- [5] P. Horák, Q. He, W.T. Trotter, *Induced matchings in cubic graphs*, J. Graph Theory, 17 (1993), 151-160.
- [6] I. Choi, J. Kim, A.V. Kostochka, A. Raspaud, Strong edge-colorings of sparse graphs with large maximum degree, European J. Combin., 67 (2018), 21-39.
- [7] Y. Guo, X. Zhang, X. Zhang, Strong edge-colorings of planar graphs with small girth, Appl. Math. Comput., 394 (2021), 125796.
- [8] D. Hudák, B. Lužar, R. Soták, R. Skrekovski, Strong edge-coloring of planar graphs, Discrete Math., 324 (2014), 41-49.
- [9] M. Huang, M. Santana, G. Yu, Strong chromatic index of graphs with maximum degree four, Electron. J. Combin., 25 (2018), P3.31.
- [10] A. Steger, M. Yu, On induced matchings, Discrete Math., 120 (1993), 291-295.
- [11] Y. Wang, W.C. Shiu, W. Wang, M. Chen, Planar graphs with maximum degree 4 are strongly 19-edge-colorable, Discrete Math., 341 (2018), 1629-1635.
- [12] T. Wang, X. Zhao, Odd graph and its applications to the strong edge coloring, Appl. Math. Comput., 325 (2018), 246-251.
- [13] J.B. Lv, X. Li, G. Yu, On strong edge-coloring of graphs with maximum degree 4, Discrete Appl. Math., 235 (2018), 142-153.

Accepted: May 31, 2023