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Abstract. In a layered thermal conductor, the inaccessible interface could be dam-
aged by mechanical solicitation, chemical infiltration, aging. In this case, the original
thermal properties of the specimen are modified. The defect occurs typically in form of
delamination. The present paper deals with nondestructive evaluation of interface ther-
mal conductance h from the knowledge of the surface temperature when the specimen
is heated in some controlled way. The goal is achieved by expanding h in powers of the
thickness of the upper layer. The mathematical analysis of the model produces exact
formulas for the first coefficients of h which are tested on simulated and real data. The
evaluation of interface flaws comes from reliable approximation of h.

Keywords: imperfect interface, thermal contact conductance, heat equation, inverse
problem.

MSC 2020: 35F51 41A99 80A23

1. Introduction

In a layered conductor, the inaccessible interface Σ̃ could be damaged by me-
chanical solicitation, chemical infiltration, aging. In this case, the original ther-
mal properties of the specimen are modified. The present paper deals with
nondestructive evaluation of defects in Σ̃ from the knowledge of the surface
temperature when the specimen is heated by applying a voltage or by means
of a lamp system or a laser. Temperature is measured with an infrared cam-
era in the typical framework of Active Thermography [19]. The mathematical
model consists of a system of two Boundary Value Problems (BVPs) for the
Laplace-transformed heat equation. The evaluation of defects affecting the inter-
face requires the approximate solution of a non linear Inverse Heat Conduction
Problem.
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1.1 Layered domains

Consider a composite body made up of two thermally conducting layers B̃+

and B̃−divided by a very thin and irregular interspace S̃ filled up with air or
other poorly conductive materials (see Figure 1 (a)). As long as B̃− is heated
by an external source, heat flows through S̃ mainly in correspondence to pos-
sible contact spots between the conducting layers. As strong as the layers are
pressed together, their contact area depends on nonflatness and roughness of
the contacting surfaces. Assume that the effect of S̃ on heat transfer between
the two layers B̃− and B̃+ is equivalent to the effect of a smooth thin interspace
S of constant thickness dS and virtual thermal conductivity κS . In this case
a model with three layers is obtained (B+ ∪ S ∪ B− see Figure 1 (b)) where
the opposite sides of S have different temperature but there is no thermal gap
between adjacent layers B+, S and S,B−. It is shown in [10] that heat conduc-
tion in B+ ∪ S ∪ B− is correctly modeled in terms of transmission conditions
on a two-dimensional interface Σ̃ that separates the conducting layers. Indeed,
the thin domain S shrinks to the surface Σ̃ (a rigorous analysis of limits of the
form limdS→0

kS
dS

in a similar geometry is in [8], Sect 7) so that the specimen is,

finally, Ω̃ = Ω̃+ ∪ Σ̃ ∪ Ω̃− (see, Figure 1 (c)).

Figure 1: layered domain: from the interspace S̃ to the interface Σ̃
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1.2 Types of interfaces and thermal parameters

Interfaces can be classified as perfect or imperfect according to their thermal
properties [16]. In case of perfect interfaces, temperature and normal heat
flux are continuous in Σ̃ while the model of Low Conductivity Imperfect (LCI)
interface allows for a temperature jump with continuous heat flux.

The Thermal Contact Resistance (TCR) r̄ (see for example [12] Ch 3) is a
non negative parameter proportional to the temperature gap between the two
sides of Σ̃. Its inverse h̄ = 1

r̄ is referred to as Thermal Contact Conductance
(TCC).

In perfect interfaces the parameter r̄ is zero (very small in practice) and h̄
is infinite (actually large).

In LCIs, the resistance is r̄ >> 0. In the limit case of infinite r̄ the interface
is perfectly insulating and h̄ = 0.

A defect affecting Σ̃ gives rise to anomalies in the thermal behavior of the
interface. We focus on the case in which the undamaged interface is perfect (r̄
is very small) and the defect is an inclusion between the layers (see for example
[23]). The occurrence of a similar defect produces locally a larger TCR r =
r̄ + δr (δr > 0 non constant on Σ̃). The extension of TCR and TCC to the
perturbed non constant case is not rigorously founded but it is in agreement
with experimental data and widely used among practitioners (see for example
[1, 26, 2]). Hence, h = 1

r̄+δr = h̄ + δh (δh < 0 non constant on Σ̃) plays
the role of exchange coefficient in Robin transmission conditions (5) and (6)
in section 2. In this case, there is no appreciable temperature gap between
the opposite sides of Σ̃ except on the damaged area where we expect that the
numerical value of κa

h (κa is the thermal conductivity of the inclusion) gives a
good approximation of the thickness of the defect [7]. We can reasonably simplify
the problem by assuming that the defect is actually a delamination described
by the graph of a function of two variables whose level sets are convex. More
precisely, in applicative literature, ”the delamination zone is often taken as a
square, circular or elliptical domain so as to confirm a satisfactory compromise
between the realistic representation of the geometry of the real delamination
and the simple insertion of the artificial damage” [9]. We apply this concept in
section 7.2. A detailed analysis of nondestructive inspection of impact-damaged
composite structures is in [25]. The interface is usually filled with air. Treating
the interface in terms of thermal conductance only is anyhow justified because
its size is small enough to prevent the occurrence of convective motions which
would require a mixed thermal/fluid model.

1.3 The direct model and the inverse problem

In this section, we describe briefly the specific model and the approach used
here to solve the inverse problem. The lower layer Ω̃− is heated by means of
thermal flux coming from below, e.g. by a lamp, kept on for a time interval
of τmax seconds. Heat passes through the interface Σ̃ so that the temperature
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of Ω̃+ changes during heating. Heat transfer through the interface is modeled
by means of Robin transmission boundary conditions (see for example [21, 6]).
A sequence ψ̃ of temperature maps is taken, in the meanwhile, on the external
surface of Ω̃+. This setting is usually referred to as transmission mode [5] in
Long Pulse Thermography. Details of this mathematical model, based on the
heat equation in normalized dimensionless variables, are in section 3. In the new
variables, layers are named Ω+ and Ω− while the interface is Σ and the whole
specimen is Ω = Ω+ ∪ Σ ∪ Ω−.

It is remarkable that h is independent of time (at least in the time scale
of tmax) so that it is convenient to apply Laplace’s transform to equations and
boundary conditions (see section 4). In this way we obtain a system of two
BVPs for elliptic equations in Ω+ and Ω− (connected by Robin transmission
conditions) whose solutions U+ and U− are the Laplace transform of the tem-
peratures of the two layers. At this point, since our specimen is composed by
thin layers, we introduce the formal expansion of h, U+ and U− in even powers
of the normalized thickness γ of Ω̃+. Our goal is to write the coefficients hk
(of the expansion in γ2k) in terms of the available data (incomplete thermal
boundary data). We accomplish this task by means of a generalization of Thin
Plate Approximation (TPA). In particular, we show that the coefficients of the
expansion of the trace of U− on Σ fulfills a family of Neumann problems for
elliptic PDEs at least for k = 0, 1 (see (30) and (53) ). In this way, transmis-
sion conditions for k = 0, 1 on the positive side of Σ become ordinary Robin
conditions for BVPs in Ω+ so that we are in a position to derive the explicit
expressions of h0 and h1 in terms of ψ̃. A similar model has been studied in [3]
where a flaw (of unknown depth) is evaluated from the knowledge of a complete
set of thermal data at the boundary. A stationary two-dimensional case is stud-
ied in [1] using reciprocity functional approach. A problem of reflection mode
[5] in Long Pulse Thermography of a single layer specimen is solved in [14].

We recall that TPA is a perturbative technique for the computational solu-
tion of some inverse problems on thin domains, borrowed from [18]. In [13], TPA
is compared with pre-existing methods based on reciprocity functional approach,
optimization and regularization [4].

1.4 Simulations and experiments

We apply the method described in section 6 to the nondestructive evaluation
of defects affecting the interface of a coated iron slab. We test the first order
approximation (i.e. h ≈ h0 + γ2h1) both in 2D simulations and in case of real
data in a full 3D model. The approximation of h (real data are processed) shown
in figure 6 improves the reconstruction obtained in [24] where the trace of U−

on Σ is heuristically overwritten by its background temperature.
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2. Geometry, notation, direct model and inverse problem

Let Ω̃ be the parallelepiped (0, D)× (0, D)× (−a−, a+) in the 3D space (ξ, η, ζ).
Let Ω̃+ be (0, D)× (0, D)× (0, a+) and Ω̃− be (0, D)× (0, D)× (−a−, 0).
Let Σ̃ = {(ξ, η) ∈ (0, D)× (0, D) , ζ = 0}. Clearly Ω̃ = Ω̃+ ∪ Σ̃ ∪ Ω̃−.

To fix ideas, assume that a++a−

D << 1. The geometry of the problem is

summarized in Figure 2. The thermal behavior of each layer Ω̃± is determined
by its conductivity κ̃±, density ρ± and specific heat c±. Heat transfer through
the interface Σ̃ depends on its thermal contact conductance h̃(ξ, η).

Let v±(ξ, η, ζ, τ) with (ξ, η, ζ) ∈ Ω̃± and τ > 0 the temperature increase
(with respect to an initial and surrounding temperature V0) in Ω̃± obtained
by applying, for a time interval (0, τmax), a heat flux ϕ̃(ξ, η, τ) to Ω̃− (more
precisely, ϕ̃(ξ, η, τ) = 0 for τ > τmax) . Clearly, v(ξ, η, ζ, 0) = 0. Assume that
the vertical sides of the composite domain are insulated while the horizontal
sides exchange heat with the environment. The thermal contact conductances
of top (ζ = a+) and bottom side (ζ = −a−) are the positive constants h̃+ and
h̃− respectively.

2.1 The direct model

Given the constant parameters a±, D, κ̃±, ρ± , c± and h̃± and given interface
thermal conductance h̃(ξ, η), the functions v± fulfill an Initial Boundary Value
Problem (IBVP) for the heat equation in the composite domain Ω̃ (we write
down this IBVP later in dimensionless variables).

ρ−c−v−τ = κ̃−(v−ξξ + v−ηη + v−ζζ) , (ξ, η, ζ) ∈ Ω̃−, τ > 0,(1)

− κ̃−v−ζ (ξ, η,−a
−) + h̃−v−(ξ, η,−a−) = ϕ̃(ξ, η, τ),(2)

ρ+c+v+τ = κ̃+(v+ξξ + v+ηη + v+ζζ) , (ξ, η, ζ) ∈ Ω̃+, τ > 0,(3)

κ̃+v+ζ (ξ, η, a
+, τ) + h̃+v+(ξ, η, a+, τ) = 0(4)

and v±ν = 0 on the vertical sides of Ω̃±, with transmission conditions

κ̃−v−ζ (ξ, η, 0, τ) + h̃(ξ, η)(v−(ξ, η, 0, τ)− v+(ξ, η, 0, τ)) = 0,(5)

κ̃−v−ζ (ξ, η, 0, τ) = κ̃+v+ζ (ξ, η, 0, τ)(6)

Initial data are

v−(ξ, η, ζ, 0) = 0 , (ξ, η, ζ) ∈ Ω̃−,(7)

v+(ξ, η, ζ, 0) = 0 , (ξ, η, ζ) ∈ Ω̃+.(8)

2.2 The interface inverse problem

Assumed that h̃(ξ, η) is unknown, the goal is to approximate h̃ by using the
knowledge of ϕ̃ and the available additional (boundary) dataset ψ̃(ξ, η, τ) =
v+(ξ, η, a+, τ) for τ ∈ (0, τmax).
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3. Dimensionless variables

We introduce the standard set of dimensionless variables z = ζ
a+

, x = ξ
D , y = η

D

and t = τ
T where T = ρ+c+D2

κ̃+ . We set also κ± = κ̃±

D2 and β = α−

α+ where the
numbers α± = κ±

ρ±c±
are the diffusivities of upper and lower slabs respectively.

Rewrite the geometry of the problem in the new variables. Here b = a−

a+
.

Let Ω be the parallelepiped (0, 1)× (0, 1)× (−b, 1) in the 3D space (x, y, z).

Let Ω+ be (0, 1)× (0, 1)× (0, 1) and Ω− be (0, 1)× (0, 1)× (−b, 0).
Let Σ = {(x, y) ∈ (0, 1)× (0, 1) , z = 0}. Clearly Ω = Ω+ ∪ Σ ∪ Ω−.

Define

u±(x, y, z, t) ≡ v±(Dx,Dy, a+z, T t),

ψ(x, y, t) = ψ̃(Dx,Dy, T t),

γϕ(x, y, t) = ϕ̃(Dx,Dy, T t),

γh(x, y) = h̃(Dx,Dy).

(9)

As for the (known a priori) constant thermal conductances of top and bottom
sides of Ω, we set h̃+ = γh+ and h̃− = γh− respectively. The scaling factor γ
(defined at the end of section 2.1) is functional to the power expansions of u±

and h in what follows.

In dimensionless variables and taking into account (9), system (1)-(8) be-
comes

IBV P−

γ2u−t = βγ2(u−xx + u−yy) + βu−zz , (x, y, z) ∈ Ω−, t > 0,(10)

−Dκ−u−z (x, y,−b, t) + γ2h−u−(x, y,−b, t) = γ2ϕ(x, y, t)(11)

(uν = 0 on the vertical sides of Ω−)

IBV P+

γ2u+t = γ2(u+xx + u+yy) + u+zz , (x, y, z) ∈ Ω+, t > 0,(12)

Dκ+u+z (x, y, 1) + γ2h+u+(x, y, 1) = 0(13)

(uν = 0 on the vertical sides of Ω+)

with transmission conditions

Dκ−u−z (x, y, 0) + γ2h(x, y)(u−(x, y, 0)− u+(x, y, 0)) = 0(14)

κ−u−z (x, y, 0) = κ+u+z (x, y, 0).(15)
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Initial data are

u−(x, y, z, 0) = 0 , (x, y, z) ∈ Ω−,(16)

u+(x, y, z, 0) = 0 , (x, y, z) ∈ Ω+.(17)

Remark. If ϕ and h are continuous functions and H1(Ω) is a product Hilbert
space equipped with a suitable norm, the system (10)-(16) admits a unique
solution (u+, u−) ∈ L2(0, T ;H1(Ω)), stable with respect to error on h (see [15]).

4. Laplace transform of the direct problem

First, define (for all real positive numbers s) the Laplace transform of u±(x, y, z, t)
as

(18) U s±(x, y, z) =

∫ ∞

0
u±(x, y, z, t)e−stdt

while

Φs(x, y) =

∫ ∞

0
ϕ(x, y, t)e−stdt.

We know that the bounded function u(x, y, 0, t) is decreasing for t > tmax +
δt where δt > 0 depends on thickness and diffusivity of the specimen. The
temperature data ψ(x, y, t) can be extended formally for t > tmax to a bounded
function ψ∞ decreasing to zero without any sensitive effect in the calculation of
the Laplace transform of ψ∞ (in a suitable range of s). Hence, in what follows
it is

Ψs(x, y) =

∫ ∞

0
ψ∞(x, y, t)e−stdt.

Standard calculations change (10)-(16) into the following system of elliptic BVPs

BV P−

γ2sU s− = βγ2(U s−
xx + U−

yy) + βU s−
zz , (x, y, z) ∈ Ω−,(19)

−Dκ−U s−
z (x, y,−b) + γ2h−U s−(x, y,−b) = γ2Φs(x, y)(20)

and U s−
ν = 0 on the vertical sides of Ω−

BV P+

γ2sU s+ = γ2(U s+
xx + U s+

yy) + U s+
zz , (x, y, z) ∈ Ω+,(21)

Dκ+U s+
z (x, y, 1) + γ2h+U s+(x, y, 1) = 0(22)

and U s+
ν = 0 on the vertical sides of Ω+ with transmission conditions

Dκ−U s−
z (x, y, 0) + γ2h(x, y)(U s−(x, y, 0)− U s+(x, y, 0)) = 0,(23)

κ−U s−
z (x, y, 0) = κ+U s+

z (x, y, 0).(24)

In what follows U s±, Ψs and Φs are written simply U±, Ψ and Φ. The
dependence on the parameter s is implicit. The actual choice of values of s is
discussed in section 7.1.
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5. The inverse problem

After introducing dimensionless variables and applying Laplace’s transform, the
inverse problem defined in the end of section 2 is formulated the following way:

Interface Inverse Problem Assumed that the coefficient h(x, y) in (23) is
unknown, it must be recovered from the knowledge of Φ and the available ad-
ditional (boundary) data Ψ(x, y) = U+(x, y, 1)).

Mathematical remark It is immediate to realize that the external flux U±
ν is

known on the whole boundary of Ω while U± is given only on the top boundary
of Ω+ (incomplete Neumann to Dirichlet (NTD) map). A wide mathematical
literature about uniqueness and stability of solutions of inverse problems for
parabolic and elliptic PDEs is available, but we did not find any theorem fitting
our Interface Inverse Problem in presence of incomplete NTD map. A rigorous
solution of this aspect of the problem is out of the goal of the present research.
Actually, this is a work in progress starting from the useful suggestions in [22]
(a single domain instead of a layered one) and [11] (full NTD map, continuous
temperature and discontinuous flux at the interface).

6. Thin plate approximation

First, we stress that, when h is given, the solutions U+ and U− of (19)-(23)
depend on γ2. If also h is unknown, any approximation based on the direct
model (19)-(23) also depends on γ2. Since the parameter γ is assumed small,
we introduce the following formal expansions:

U−(x, y, z) = U−
0 (x, y, z) + γ2U−

1 (x, y, z) + ...,

U+(x, y, z) = U+
0 (x, y, z) + γ2u+1 (x, y, z) + ...,

h(x, y) = h0(x, y) + γ2h1(x, y) + ....

(25)

6.1 Order zero of the expansion of h

Consider the terms of order zero:

U−
0zz = 0,

for all (x,y,z), and

U−
0z(x, y,−b) = U−

0z(x, y, 0) = U+
0z(x, y, 0) = U+

0z(x, y, 1) = 0.

It means that U−
0 and U+

0 do not depend on z.
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First order terms are:

U−
1z(x, y, 0) = −h0(x, y)

Dκ−
(U−

0 (x, y)− U+
0 (x, y)),

U+
1z(x, y, 0) =

κ−

κ+
U−
1z(x, y, 0),

U−
1z(x, y,−b) =

h−

Dκ−
U−
0 (x, y)− Φ

Dκ−
,

U+
1z(x, y, 1) = − h+

Dκ+
U+
0 (x, y),

U−
1zz =

s

β
U−
0 − (U−

0xx + U−
0yy),

U+
1zz = sU+

0 − (U+
0xx + U+

0yy).

(26)

Since fz(a2) = fz(a1) +
∫ a2
a1
fzz(s)ds, we have

(27) −h0(U−
0 − U+

0 ) + h+U+
0 +Dκ+sU+

0 −Dκ+∆U+
0 = 0

and

(28) h0(U
−
0 − U+

0 ) + h−U−
0 − Φ+Dκ−

bs

β
U−
0 − bDκ−∆U−

0 = 0.

The sum of the last two equation does not depend on the unknown h0(x, y) .
Hence, if we assume

(29) U+
0 (x, y) = Ψ(x, y)

(i.e. U+
k (x, y, 1) = 0 for k > 0) we have the following elliptic PDE in U−

0 (x, y, t)

(30) (
h−

Dκ−
+
bs

β
)U−

0 − b∆U−
0 = F0

where

(31) F0(x, y) =
Φ(x, y)

Dκ−
− (

h+

Dκ−
+
κ+

κ−
s)Ψ(x, y) +

κ+

κ−
∆Ψ

with Neumann boundary conditions

(32) U−
0x(0, y) = U−

0x(1, y) = U−
0y(x, 0) = U−

0y(x, 1) = 0.

Hence, solving (27), we obtain

(33) h0(x, y) =
(h+ +Dκ+s)Ψ(x, y)−Dκ+∆Ψ(x, y)

U−
0 −Ψ

.
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6.2 First order of the expansion of h

In what follows, Lf = fxx + fyy. We derive the following first order relation in
Ω+:

(34) U+
1zz = A+

0 (x, y),

where

(35) A+
0 (x, y) = sΨ(x, y)− LΨ(x, y)

so, that

U+
1z(x, z) = A+

0 (x, y)z +B+
0 (x, y),

U+
1 (x, z) = A+

0 (x, y)
z2

2
+B+

0 (x, y)z + C+
0 (x, y),

(36)

where

(37) B+
0 (x, y) = −h0(x, y)

Dκ+
(U−

0 (x, y)−Ψ(x, y)).

Since we assumed U+
0 (x, y) = U+(x, y, 1) = Ψ(x, y) (see (29), it is U+

1 (x, y, 1) ≡
0 so that

(38) C+
0 (x, y) = −A+

0 (x, y)
1

2
−B+

0 (x, y)

and

(39) U+
1 (x, y, z) = A+

0 (x, y)
z2 − 1

2
+B+

0 (x, y)(z − 1).

Analogously, in Ω− we have

(40) U−
1zz = A−

0 (x, y)

with

(41) A−
0 (x, y) =

s

β
U−
0 (x, y)− LU−

0 (x, y).

so, that

U−
1z = A−

0 (x, y)z +B−
0 (x, y),

U−
1 (x, y, z) = A−

0 (x, y)
z2

2
+B−

0 (x, y)z + C−
0 (x, y),

(42)

where

(43) B−
0 (x, y) = −h0(x, y)

Dκ−
(U−

0 (x, y)−Ψ(x, y)).

Observe that the term U−
1 (x, y, 0) = C−

0 (x, y) is still undetermined and it will
be obtained by solving an equation having the same form of (30).
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6.3 An equation for C−
0

Second order terms in equations (19) and (21) are

(44) U+
2zz = A+

1 (x, y, z)

and

(45) U−
2zz = A−

1 (x, y, z),

where

(46) A+
1 (x, y, z) = sU+

1 (x, y, z)− LU+
1 (x, y, z)

and

(47) A−
1 (x, y, z) =

s

β
U−
1 (x, y, z)− LU−

1 (x, y, z).

As for boundary conditions, we have

U+
2,z(x, y, 1) = − h+

Dκ+
U+
1 (x, y, 1) ≡ 0 from (29),

U−
2,z(x, y,−b) =

h−

Dκ−
U−
1 (x, y,−b),

U−
2,z(x, y, 0) = −h1(x, y)

Dκ−
(U−

0 (x, y)−Ψ(x, y))

− h0(x, y)

Dκ−
(U−

1 (x, y, 0)− U+
1 (x, y, 0)),

U+
2,z(x, y, 0) = −h1(x, y)

Dκ+
(U−

0 (x, y)−Ψ(x, y))

− h0(x, y)

Dκ+
(U−

1 (x, y, 0)− U+
1 (x, y, 0)).

(48)

In order to lighten the notation, in what follows we stress the dependance on
the variable z only. Since

U+
2z(1) = U+

2z(0) +

∫ 1

0
U+
2zz(z)dz

and

U−
2z(0) = U−

2z(−b) +
∫ 0

−b
U−
2zz(z)dz,

we have (recall that we assumed U+
1 (x, y, 1) = 0)

(49) −h1(U−
0 −Ψ)−h0(C−

0 +A+
0

1

2
+B+

0 )+Dκ
+

∫ 1

0
(sU+

1 (z)−LU+
1 (z))dz = 0
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and

− h1(U
−
0 −Ψ)− h0(C

−
0 +

A+
0

2
+B+

0 )

= h−U−
1 (−b) +Dκ−

∫ 0

−b
(
s

β
U−
1 (z)− LU−

1 (z))dz.(50)

A substitution gives

h−U−
1 (−b) +Dκ−

∫ 0

−b
(
s

β
U−
1 (z)− LU−

1 (z))dz

+Dκ+
∫ 1

0
(sU+

1 (z)− LU+
1 (z))dz = 0.(51)

We plug in (51) the expressions (derived in previous section)

U+
1 (x, y, z) = A+

0 (x, y)
z2 − 1

2
+B+

0 (x, y)(z − 1),

U−
1 (x, y, z) = A−

0 (x, y)
z2

2
+B−

0 (x, y)z + C−
0 (x, y),

(52)

where A±
0 and B±

0 are known . We get the following equation in C−
0 :

(53) (
h−

Dκ−
+
bs

β
)C−

0 − bLC−
0 = F1

where

(54) F1(x, y) =
κ+

κ−
N3 +N2 +

h−

Dκ−
N1

where

N1 = −A+
0 (x, y)

b2

2
+B+

0 (x, y)b,

N2 = − s

β
(
−b3

6
A−

0 (x, y)−
b2

2
B−

0 (x, y)) + (
b3

6
LA−

0 (x, y)−
b2

2
LB−

0 (x, y)),

N3 = +
s

3
A+

0 +
s

2
B+

0 − LA+
0

3
− LB+

0

2

with Neumann boundary conditions

(55) C−
0x(0, y) = C−

0x(1, y) = C−
0y(x, 0) = C−

0y(x, 1) = 0.

Finally, we get

(56) h1 =
−h0(C−

0 +
A+

0
2 +B+

0 )−Dκ+s(
A+

0
3 +

B+
0
2 )−Dκ+(

LA+
0

3 +
LB+

0
2 )

U−
0 −Ψ

and, consequently, we have the first order thin plate approximation of h

(57) h(x, y) ≈ h0(x, y) + γ2h1(x, y).
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7. Simulations and inversion of real data

Figure 2 shows the geometry of the two-dimensional model used for testing the
TPA solution (57), i.e. equations (33) and (56).

Figure 2: 2D model

A slab of (non-expanded) polystyrene, having thermal conductivity κ̃+ =
0.12Wm−1K−1, density ρ+ = 1050 kg m3 and specific heat c+ = 1100 J kg−1K−1,
is superimposed to an iron slab (κ̃− = 80 Wm−1K−1, ρ− = 7800 kg m3,
c− = 500 J kg−1K−1). The imperfect contact in the central region is simulated
by a thermal resistance among the slabs, i.e. by an heat exchange coefficient
h(x) whose value is high (1000 W m2 K−1) where the resistance is negligible and
low (10 W m2 K−1) where the contact is bad. This kind of representation has
been demonstrated to approximate reasonably well, for example, a detachment
creating an air gap between the two slabs. The assumed shape of h̃(ξ) is:

h̃(ξ) = Ha −Hbe
−θ(ξ−D/2)4

with Ha = 1000, Hb = 990, θ = 107, this last to obtain an extension of the
detachment region of the order of 2 cm.

The 2D model is used to simulate the production of “experimental” data
on the upper surface ζ = a+, when the bottom surface ζ = −a− is uniformly
heated by a constant flux ϕ̃. On that surface is also h− = 0, because ϕ̃ is the
net flux across it. The direct problem is solved by the finite element method
(FEM).
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7.1 Reconstruction procedure

After the transformation into dimensionless variables, we fix a real value of the
frequency parameter s and compute the Laplace transform of the data. The
choice of s does not appear to be critical at all. In fact, a reasonable approach is
to choose s high enough to make the product ψ(x, t) exp (−st) close to zero for
any value of the coordinate x, but not too high to lose the information in the
data. If, in the transformed t variable, s is such that the exponential becomes,
say, 5 × 10−6 for t = tmax, this means that: s = 6 log 10−log 5

tmax
or, in terms of

the actual time τ , s = D2(6 log 10−log 5)
a+τmax

. If τmax = 300 s, as in the simulation,
s ≈ 4000. With such an s value, for instance, the product Ψ(x, t) exp (−st) far
from the damage (i.e. in values of x corresponding to higher temperatures) is
like in Figure 3.

Figure 3: Test of Laplace transform

The numerical procedure involves the following steps.

1. Laplace transformation of the time-dependent data. ψ̃(ξ, τ), defined on
the line ξ ∈ [0, D] for τ > 0 is transformed into ψ(x, t) in the dimension-
less variables introduced in section 3. Furthermore, Ψ(x) is the Laplace
transformation of ψ at the chosen s value. In this phase, the derivative Ψxx

is also computed, by performing a smoothing on the first-order derivative
Ψx.



268 GABRIELE INGLESE and ROBERTO OLMI

2. Ψ and Ψxx are used to compute the function F (x), allowing the computa-
tional solution of the differential equation for U−

0 : bs
β U

−
0 − bU−

0xx = F (x),

where h− has been taken 0 as in the direct problem. The result, U−
0 , is

stored and used to compute the zero-order heat exchange by (33).

3. The third steps computes the coefficients A±
0 , B

±
0 , C

+
0 , A±

0xx and B±
0xx,

necessary to obtain the function F1(x) needed to solve the unidimensional
equation in C−

0 .

4. The last step numerically solves bs
β C

−
0 − bC−

0xx = F1(x) and allows to
compute the first-order heat exchange coefficient.

At the end of the procedure, we are able to compute h(x) by means of (57) and,
eventually, h̃(x) = γh(x). The result is shown in Figure 4.

Figure 4: Reconstructed thermal resistance: zero-order h̃−1
0 (dashed line) and

first-order (h̃0 + γ2h̃1)
−1 (solid line)

Figure 4 superimposes the true, unknown thermal resistance at the interface
ζ = 0 (dotted line) with those computed at zero and first order (dashed and
solid line, respectively).
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7.2 Experimental data

The inversion procedure outlined in the previous sections has been applied to
real experimental data taken from [24] where zero order TPA had been com-
puted starting from a rough heuristic evaluation of the temperature of the lower
face of the interface. A composite solid consisting in the superposition of two
parallelepipeds of square section are heated from below while a thermographic
camera acquires thermal shots from above, at a rate of two photograms per
second. The lower plate is made of iron (κ− = 80 W

m ◦K , c− = 500 J
Kg ◦K ,

ρ− = 7800 Kg
m3 ) while the upper one is realized in non expanded polystyrene

(κ+ = 0.12 W
m ◦K , c+ = 1100 J

Kg ◦K , ρ+ = 1050 Kg
m3 ). The side of the squares

is D = 10 cm. The thicknesses of the lower and upper plates are a+ = 0.4 cm
and a− = 1.0 cm, respectively.

A square dig of side 2.0 cm and thickness δ = 0.2 cm was made in the center
of the iron plate to simulate the imperfect contact at the metal/plastic interface.
Heating was provided by fixing a thermal wire electrical resistance on the iron
bottom surface by means of aluminium tape. The resistance is connected to a
DC power supply that provided 18 W (3.6 V × 5.0 A). Such a condition can
be simply simulated by a constant flux ϕ̃ at z = −a−, i.e. mathematically by a
Neumann condition there. Such a simplification does not affect the temperature
behavior with the exception of very early times.

The procedure for computing ϕ̃ is the following.

1. Record the temperature values versus time on a number of positions “far”
from the damaged region (easily visible, although qualitatively, from ther-
mal images at a suitable time). Those temperatures should, in principle,
be very close to one another. Compute the average value as a function of
time.

2. Obtain ϕ̃ in the unidimensional problem to obtain a good agreement
among ũ(a+, t) and the experimental values of the previous item.

The other parameters involved in the TPA formula are known, or readily
available, being the measured temperature, the thermo-physical characteristics
of the materials involved and the geometric quantities. The heat exchange h+ at
the surface z = a+ can be guessed or obtained experimentally [20] but, anyway,
it is not a critical one.

Figure 5 compares, on a section η = 0, the actual thickness of the rectangular
defect (dotted line) with those obtained by the TPA procedure at order zero
(dashed line) and one (solid line). The curves actually represent a smooth
fitting of the quantity obtained by the inversion. It clearly appears that two
terms of the expansion are sufficient to have a good quantitative estimate of the
damage depth. The width of the square dig is also reasonably obtained, with
soft sides (instead of sharp ones) as commonly happens in problems involving
heat diffusion.
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Figure 6 shows a 3D reconstruction of the defect.

Figure 5: Reconstructed thickness: actual value (dotted line), zero-order
(dashed line) and first-order (solid line)

Figure 6: 3D reconstruction of the defect thickness
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Remark. The dimensionless parameter γ = a+

D gives a measure of how much

Ω̃+ is “geometrically thin”. The slabs Ω̃+ and Ω̃− can be considered “thermally

thin” when their Biot numbers Bi± = a±(h̃±)
κ̃± are much smaller than one. A

value Bi ≈ 0.1 is often assumed as a limit value for thermal thinness [12], in
the context of the applicability of the well known lumped capacitance method
used to approximated the temperature behavior in a solid where the spatial
uniformity of the temperature is not violated at any time instant. Here, the
meaning of the Biot number is somewhat different: it can be easily demonstrated
by a Taylor expansion of the temperature on the domain Ω̃+ that if Bi << 1
the zero-order term of the TPA is sufficient to obtain an approximation for the
exchange coefficient h at the interface. In the case at hand is Bi+ ≈ 0.17, so at
least one more term of the TPA is needed.

7.3 A remark on Laplace transformation

The recourse to Laplace transformation of the data and, consequently, of the
equations involved in the inversion has several practical advantages. As the
investigated quantity (damage thickness, thermal resistance, or equivalent heat
exchange at the interface) is inherently not time dependent, a time-domain
approach should require to identify a characteristic time, or a time range, where
such quantity appears to be nearly time-independent. This means that we are
forced to solve the problem for all experimental times with a view to discard the
most of them. In other words, we do not exploit all the information available in
the data.

Laplace transformation, on the other hand, uses the whole available data, by
performing a sort of weighted average with exponential weights. Indeed, once
the Laplace parameter s has been chosen as discussed in section 7.1, data can be
truncated at a previous time, say 200 seconds instead of 300, with a negligible
effect on the final result. That is perfectly consistent with the weighted-average
interpretation just introduced.

8. Conclusions

This paper deals with nondestructive evaluation of detachment-like defects af-
fecting highly conductive inaccessible interface in the layered specimen Ω. Such
defects give rise locally to a thermal resistance r whose imaging gives the re-
quired evaluation of the flaw.

The method proposed is based on the expansion

h =
1

r
= h0 + γ2h1 +O(γ4),

where γ is the normalized thickness of the upper layer of the specimen Ω. The co-
efficients h0 and h1 are explicitly calculated by means of a perturbative method
extending to layered objects a technique, known as Thin Plate Approximation,
widely used to solve inverse problems in slabs.
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The mathematical novelty consists in the setting of the elliptic BVPs (30)
and (53) on the interface whose solutions are the coefficients of the expansion

(58) U−(x, y, 0) = U−
0 (x, y) + γ2U−

1 (x, y) +O(γ4).

Once we know U−(x, y, 0), the problem should be reduced to the determination
of the Robin coefficient in the inaccessible side of a slab. As for computation,
a quite challenging step is the numerical evaluation of the derivatives of data
function Ψ required to get h0 and h1.

Future work is mainly in the following two directions:

(i) to obtain a better theoretical foundation of the inverse problem (stability
estimates, existence and uniqueness);

(ii) to fit the method to different real objects (curved geometries, failures of
insulating interfaces)
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