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Refinements of unitary invariant norm inequalities for matrices
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Abstract. In this paper, we first establish an arithmetic-geometric mean inequality
of unitary invariant norm for matrices, which is an improvement of the result proposed
by Zou and He [Linear Algebra Appl., 436(2012), 3354-3361]. Then, we use it to refine
the existing inequality. Moreover, we derive two unitarily invariant norm inequalities
for matrices, which refine the result of Cao and Wu.
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1. Introduction

Let M, be the space of n x n complex matrices. A norm || - || is called unitarily

invariant norm, if |[UAV|| = ||A]| for all A € M,, and for all unitary matrices

U,V € M,. The singular values s;(A4)(j =1,2,--- ,n) of A are the eigenvalues

of |[A| = (A*A)%7 arranged in a decreasing order. The Ky Fan k-norm || - [|() is

defined as || Al|x) = 2521 sj(A),k=1,--- ,n and the Schatten p-norm || - ||, is
1

1
defined as [|Al|, = (2?21 s?(A)) "= (tr]A]P)?,1 < p < cc.

*. Corresponding author
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In what follows, || - || always denotes unitarily invariant norms including
Schatten p-norm || - [|, and Ky Fan k-norm || - || ).

For A,B,X € M,, and A, B are positive semidefinite, Bhatia and Davis [1]
presented

A'XBY7Y 4+ Al-v X BY
2

< HAX;XBH’

(L) aixs<||

where 0 < v < 1. Letting
plv) = || A"X B + ATV XBY|
inequality (1.1) can be rewritten as

¢(3) =90 <00,

For A,B,X € M, and A, B are positive semidefinite, the function ¢(v) is a
continuous convex function on [0,1], attains its minimum at v = 3 and maximum
at v = 0 and v = 1. Consequently, it is decreasing on [0, %] and increasing on
[, 1], moreover, p(v) = (1 —v) for v € [0,1] (see[2]). Using the convexity of
the function ¢(v), Zou and He [3] obtained a strengthening of the arithmetic-
geometric mean inequality ¢ (%) < (0) as follows:

(1.2) <p<;> +2</01<p(v)dv—g0<;>> < (0),0 < v < 1.

Bhatia and Kittaneh [4] derived if A, B € M,, are positive semidefinite, then
1
(1.3) HABHSZH(AJFB)QH-

Zou and He [3] gave a stronger version of inequality (1.3) as follows:
1 1 )
(1.4) 48]+ ( [ atw)do ~ 201451 ) < 14+ B

where g(v) = HA%‘H’B%_” + A%_”B%”H.
Kaur and Singh [5] proved that for A, B, X € M,, if A and B are positive
definite, then for any unitarily invariant norm

1 AX + XB
(1.5) §\|A"XBI_” + A XBY|| < H(1 —a)AzXB? +a (;) H
where 2 <v < 3 and o € [3, ).
Replacing A, B by A2, B? in (1.5) and taking u = 2v, we can obtain

)

2 2
(1.6) %HA"XB?*“ 4 AZXBY|| < H(1 _a)AXB + a<AX+XB>

2
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where % <u< % and o € [%,oo).
Let A, B, X € M, such that A and B are positive semidefinite. Then, for
every unitarily invariant norm, the function

Plu) = |A"X B> 4 AP XBY|

is convex on [%, %] and attains its minimum at v = 1. So, it is decreasing on
[£,1] and increasing on [1, 3]( see[2]). Using the convexity of the function ¢ (u),

Cao and Wu [6] obtained a refinement of inequality (1.6)
||[A“X B?>* + A2"“X BY|| < 2(4ro — 1)||AX B
+2(1— 2ro)||A X BE + A3 X B3|
(1.7) < 2(4rg — 1)||AX B||

+ 4(1 — 27“0)

)

AZX + XBQ)
2

’(1 —a)AXB+a<

where £ <u < 3, a € [3,00) and 1o = min{¥,1 — %}.

For more information on this topic, the reader is referred to [7-9] and the
references therein. In this paper, we first improve the inequality (1.2). As an
application of our result, we refine the inequality (1.4). Finally, we establish
improved versions of inequality (1.7) by using the convexity of function v (u).

2. Main results

In this section, we show four lemmas which will turn out to be useful in the
proof of our results.

Lemma 2.1 ([10]). Let A, B, X € M,, such that A and B are positive semidef-
inite, then for every unitarily invariant norm

o0 <200 (¢ () = #0)) +900)

where 0 < v <1 and rp = min{v, 1 — v}.

Lemma 2.2 ([10]). Let f be a real valued convex function on the interval [a, b],

Lemma 2.3 ([4]). Let A, B € M, be positive semidefinite, then

1
142(A+ B)Bz|| < S|I(A+ B)[|.
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Lemma 2.4 ([10]). Let f be a real valued convex function on an interval [a, b]
which contains (x1,x32), then

flaz) = flar) =~ 21f(z2) — 22f(21)

T2 — X1 T2 — X1

f(z) <

,x € (1,22).

Theorem 2.1. Let A, B, X € M, such that A and B are positive semidefine,
then for any unitarily invariant norm

1) ¢(3)+2 (/Olso@)dv -0 (3))+2 (/Olso(wdv ~¢(3)) v

where p(v) = ||[AVX B + A" XB"|| and 0 < v < 1.

Proof. For 0 <wv < i, by Lemma 2.1, we have

o) <10 (3) =) v+ 0.

Thus,

1 1 1

/04 o(v)dv < 4 (¢ (i) _ (p(())) /0 vdv + /0 £(0)dv.

By a small calculation, we have

(2.2) / Cpwydn < - (so (i) n w(O)) .

For i <v< %, by Lemma 2.1, we obtain

wsi(o () o () () o)

Consequently

somsa(o(2) -+ () (- f o3

which implies

M»—A\
=

o o(0) 4 (2)

For % <wv< %, by Lemma 2.1, we obtain

(o)) (-3) -+ (1)

(2.3)

.
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Thus,

3

floo () (o f o)

2

IS

-

by a small calculation, we have

” [ < (o () 0 ().

For % <wv <1, by Lemma 2.1, we obtain

s () -2+
1@(U)d1;§4<g0(1)—g0<i>> /; (v—i) dv—i—/;g0<i> dv,

which implies

(2.5) /; p(v)dv < é («P(l) +¢ (Z)) :

It follows from (2.2)-(2.5) and ¢(0) = ¢(1),¢ (3) = ¢ (3) that

/01 p(v)dv = /O4 o(v)dv + [2 o(v)dv + [4 o(v)dv + /31 o(v)dv

]

-

Thus,

e

N

and so

which is equivalent to

o(3)+2([ o= (3)) +2([ vrn—s(3)) <

This completes the proof. ]

Remark 2.1. Theorem 2.1 is sharper than inequality (1.2).
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By Lemma 2.2, we have

(2.6) - Cl) < 2/05 o(v)dv
and
(2.7) - (i) < 2/; o(v)do.

that is

/01 p(v)dv > ¢ (i) :
/01 o(0)dv — <i) > 0.

Obviously, Theorem 2.1 is also an improvement of arithmetic-geometric
mean inequality ¢ (3) < ¢(0).

Thus,

Theorem 2.2. Let A, B € M, be positive semidefinite, then for any unitarily
tnvariant norm

1 1
||AB||+(/ g(v)dv—2||AB||>+</ g(v)dv—||AiBi+A:’iBZ,|>
0 0

<Y+ my,

W

where g(v) = [| A" B2 4+ A2 " BT,

Proof. By (2.1), taking X = A%B%, we have

1 1 . .
2| AB||+2 (/ g(v)dv—2HABH> +2 (/ g(v)dv—HAiBi—i—AiBiH)
0 0
(2.8) < |[|A2(A+ B)Bz||.

By Lemma 2.3, it easily follows from (2.8) that

1 1
2||AB\|+2</ g(v)dv—2]|ABH)+2(/ g(v)dv—uAiBi+AiBi||>
0 0

1
< SllA+ By

This completes the proof. O
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Remark 2.2. Obviously, Theorem 2.2 is a refinement of inequality (1.4).

In the following, we utilize the convexity of the function 1 (u) = ||A*X B>~ %+
A%7v X BY|| to present two matrix inequalities for unitarily invariant norms that
lead to improved versions of inequality (1.7).

Theorem 2.3. Let A, X, B € M,, such that A and B are positive semidefinite,
then for any unitarily invariant norm

|A“X B2~ 4+ A2 U X BY|| < 2(dro — 1)||AT X BT + AT XBi||

A2X 4+ X B?
+2(3 = 8rp) ’(1 _W)AXB+ a<;> ,
13 53
u € [57 1] U [175]
and
A’X + XB?
|A“X B?™* 4 A27“X BY|| < 8(1 — 2r9)||(1 — a)AX B + a(_|2_> H
35
+2(8ro — 3)[|AX B[, u € (1: Z)’

where % <u< %, o€ [%,oo) and ro = min{g,1 — §}.

Proof. For 1 <u < 2, by the convexity of the function ¢(u) = [|A*X B> +
A%~ X B%|| and Lemma 2.4, we obtain

wi) < @) 1 W), zv(E) . 1)
4 4
which is equivalent to
(2.9) W) < (du — 2)0) (i) + (3= du)y (;) .

Combining (1.6) with (2.9), we get

|A“X B2 + A “XBY|| < (4u— 2)||[ATX B + A1 XBi||

A2X + XB?
23— 4u)||(1 - a)AXBJra(;) H
Hence
|A“X B2 4+ A2 “X B|| < 2(4r — 1)||AT X B1 + A1 X Bi||
A’X + XB?
(2.10) +2(3 — 8rp) ‘(1—a)AXB+a<_|2—>H.
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For 3 < u <1, by the convexity of the function 1(u) and Lemma 2.4, we have

(1) —w(d)  FU) - 19(3)

w(u) S 1 % U — 1— % )
which is equivalent to
3
(2.11) P(u) < (du—3)Y(1) + (4 — 4u)y <4> )

Combining (1.6) with (2.11), we get
HAuXB2—u + AQ—uXBuH

A2X + X B?
< 8(1—u) ‘(1 — a)AXB + a<—;> H +2(4u — 3)||AX B||.
Hence
||[A“X B?7% 4 A>7“X BY|
A2X+ X B?
(2.12) < 8(1—2rp) (1—a)AXB—|—a<—;> H +2(8rg — 3)||AX B]|.
For 1 <u< %, similarly, we have
5
00 < (=0 () + G- 4w ().
that is
||[A“X B*7% 4 A>7“X BY||
A2X + X B?
< 2(4u — 4)H(1 _ 0)AXB ~|—a<—;> H +2(5 — 4u)||[AXB]|.
Consequently
||A“X B*7" + A" X BY||
A2X 4+ X B?
(213) < 8(1—2r) (1—a)AXB+oz<;> H +2(8rg — 3)||AX B||.

For % <u< %, we have

v < (=50 (3 ) + 6~ a0 (3.

that is

2 2
||A*X B> 4 A2"“X BY|| < 2(4u — 5)”(1 —a)AXB + OZ(AX;XB> H

+ (6 — 4u)||ATXBT + AT XBi||.



REFINEMENTS OF UNITARY INVARIANT NORM INEQUALITIES FOR MATRICES 251

Consequently

|A“X B2 4+ A2 “X BY|| < 2(4r — 1)||AT X B1 + A1 X Bi||
A2X +XB2> H

(2.14) +2(3 — 8r) .

’(1 a)AXB+a(

It follows from (2.10),(2.12),(2.13),(2.14) and 3 < u < 3, a € [3,00), 1y =
min{§,1 — §} that

|A“X B2~ + A2 U X BY|| < 2(dro — 1)||AT X BT + AT XBi||
AZX + XB2)

+2(3 — 8r) 5

)

’(1 —a)AXB—i—a(

33063

C

u e
and

|A“XB?™* + A>"*X BY|| < 8(1 — 2rq)

A2X+XBQ>H
2

(1—a)AXB+Oz<

35
+2(8rg — 3)||AXB||, u € (Z’ 1).

This completes the proof. O

Remark 2.3. Theorem 2.3 is sharper than inequality (1.7).
Note that, inequality (1.7) is equivalent to

(2.15) W) < 201 — u)y <;> +(2u— (1), % <u<1
and

(2.16) D) < (3= 2u)b(1) + 2(u — 1)) <§) l<u< g
For 3 <u < 2, compared with inequality (2.15), then

2(1 - u) () 2u—1w<1>—((4u—2>w(i)+<3—4u>w<;>)
(o) +(() )

Since ¢(u) = ||A“X B*~* + A2"“X BY|| is convex on [3, 3], it follows by a slope
argument that
—¥(3)

)

<
—
—_
SN—
|
hsS
N[J%)
SN—
<
—
IN[J%)
N—
(SO S



252 XINGKAI HU, YUAN YI anpD WUSHUANG LIU

that
" (;) Y (i) (1) > 0.
S
217) 201 — u)) G) +(2u— D)p(1) > (du — 2)p <i> + (3 — du)) (;) .
For 3 <u<1

(2.18) 21 —w)y <;> + 2u—1)y(1) > (du — 3)(1) + (4 — 4u)y (Z) .

For 1 <u< %, compared with inequality (2.16), then we have

(3 — 2u)(1) + 2(u — 1)) (2’) - (<4u — 4y (Z) +(5- 4u>w<1>>

—o(u-1) <w (2) 2y (i) n w(1>> -

Since 9 (u) = [|A"X B2~ + A2"“X BY|| is convex on [3, 3], it follows by a slope
argument that

»(3

~—
|
SRSS
—~
NI
~—

that is

So,

219) (- 200+ 20— 1 (3) = o= 00 () + 6 - )
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So,

(2.20) (3 — 2u)0(1) + 2(u — 1) (3) > (du — 5)0 <;’> (6 — du)w (i) .

By (2.17)-(2.20), we can conclude that Theorem 2.3 is better than inequality
(1.7).
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