A study on co-intersection graphs of rings

S. Jaber Hoseini^{*}

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran, Babolsar Iran Sj.hosseini@stu.umz.ac.ir

Yahya Talebi

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran Babolsar Iran talebi@umz.ac.ir

Abstract. Let R be a ring and $\mathcal{I}^{\star}(R)$ be the set of all nontrivial left ideals of R. The Co-intersection graph of ideals of R, denoted by $\Omega(R)$, is an undirected simple graph with the vertex set $\mathcal{I}^{\star}(R)$, and two distinct vertices I and J are adjacent if and only if $I + J \neq R$.

This paper derives a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. We characterize the values of n for which the graph $\Omega(\mathbb{Z}_n)$ is Eulerian and Hamiltonian. Furthermore, the bad (and nice) decision number of $\Omega(\mathbb{Z}_n)$ are studied in the paper.

Keywords: co-intersection graph, connectivity, decision number, bad function. **MSC 2020:** 05C25, 05C40, 05C45, 05C69

1. Introduction

The idea to associate a graph to a ring first appeared in [5]. He let all elements of the ring be vertices of the graph and was interested mainly in coloring. In [4], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the nonzero zero-divisors. There are many papers on assigning a graph to a ring R, for instance, see [4, 3, 12, 11, 2, 1]. Also, the intersection graphs and co-intersection graphs of some algebraic structures such as groups, rings, and modules have been studied by several authors, see [2, 9, 7, 10]. The co-intersection graph of submodules is introduced in [9].

The paper is organized as follows. Some definitions and preliminaries are introduced in Section 2. We devote Section 3 to study for connectivity of the co-intersection graph. Also, we characterize all the values of n for which $\Omega(\mathbb{Z}_n)$

^{*.} Corresponding author

is Eulerian and characterize some values of n for which $\Omega(\mathbb{Z}_n)$ is Hamiltonian in this section. Finally, the bad decision number, and the nice decision number of $\Omega(\mathbb{Z}_n)$ are studied in Section 4.

2. Preliminaries

This section gives some definitions of ring theory and graph theory. Also, we introduce the Co-intersection graph of a ring R and give some basic concepts about rings and maximal left ideals.

We mean from a nontrivial ideal of R is a nonzero proper left ideal of R. The set $\mathcal{I}^*(R)$ is a set of all nontrivial left ideals of R. A nonzero ring R is called *simple* if it has no nontrivial two-sided ideal. The term *null ring* is used to refer a ring R, in which $x \times y = 0$, for all $x, y \in R$.

By Max(R) and Min(R), we denote the set of all nonzero maximal left ideals of R and all nonzero minimal left ideals of R respectively.

A graph G is an ordered pair G = (V, E), consisting of a nonempty set V of vertices, and a set $E \subseteq [V]^2$ of edges, where $[V]^2$ is the set of all 2-element subsets of V. Two vertices $u, v \in V$ are *adjacent* if $uv \in E$ (for simplicity we use uv instead of subset $\{u, v\}$). The neighbourhood of a vertex $u \in V$ is $N(u) = \{v \in V | uv \in E\}$, and the closed neighbourhood of u is $N[u] = N(u) \cup \{u\}$. The degree of a vertex u in a graph G is the size of set N(u), which is denoted by deq(u). We denote by $\delta(G)$ the minimum degree of the vertices of G. The complete graph with n vertices is denoted by K_n , which is a graph with n vertices in which any two distinct vertices are adjacent. A null graph is a graph containing no edges. Let G be a graph, suppose that $x, y \in V(G)$, a walk between u and v is a sequence $u = v_0 - v_1 - \cdots - v_k = v$ of vertices of G such that for every i with $1 \leq i \leq k$, the vertices v_{i-1} and v_i are adjacent. A (u, v)-path between u and v is a walk between u and v without repeated vertices. Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. A graph G is called *connected* if every pair of its vertices are connected. If vertices u and v are connected in G, the distance between u and v in G, denoted by d(u, v), is the length of a shortest (u, v)-path in G. In graph G, a tour is a closed walk that traverses each edge of G at least once. A graph is Eulerian if it contains a tour which traverses each edge exactly once [6].

A cycle in a graph is a path of length at least 3 through distinct vertices which begins and ends at the same vertex. A *Hamilton cycle* is a spanning cycle, and a graph which contains such a cycle is said to be *Hamiltonian*.

If G = (V, E) is a finite graph, define $f(U) = \sum_{u \in U} f(u)$, for a function $f: V \to \{-1, 1\}$ and $U \subseteq V$. A function $f: V \to \{-1, 1\}$ is called a *bad* function of G, if $f(N(v)) \leq 1$ for each $v \in V$ [13]. The maximum value of f(V), taken over all bad functions f, is called the *bad decision number* of G, which is denoted by $\beta_D(G)$. The function f is called a *nice function*, if $f(N[v]) \leq 1$ for each $v \in V$. The maximum value of f(V), taken over all nice functions f is called the *nice decision number* of G, and denoted by $\overline{\beta_D(G)}$.

Definition 2.1. Let R be a ring. The Co-intersection graph $\Omega(R)$ of R, is an undirected simple graph whose the vertex set $V(\Omega(R)) = \mathcal{I}^*(R)$ is a set of all nontrivial ideals of R and two distinct vertices I, J are adjacent if and only if $I + J \neq R$.

Remark 2.1. Let \mathbb{Z}_n be the ring of integers modulo n. Suppose that m_1, m_2 are two factor of n. Then, $\langle m_1 \rangle + \langle m_2 \rangle = \langle (m_1, m_2) \rangle$, where (m_1, m_2) is the greatest common divisor of m_1, m_2 .

Example 2.1. Suppose that $R = \mathbb{Z}_{50}$. Then, $\mathcal{I}^{\star}(R) = \{\langle 2 \rangle, \langle 5 \rangle, \langle 10 \rangle, \langle 25 \rangle\}$ and the co-intersection graph $\Omega(R)$ is as follow:

Figure 1: The Co-intersection Graph $\Omega(\mathbb{Z}_{50})$.

3. Connectivity, eulerianity and hamiltonicity

This section derives a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. Also, we determine the values of n for which $\Omega(\mathbb{Z}_n)$ is a connected graph. Further, we characterize the values of n for which the graph $\Omega(\mathbb{Z}_n)$ is Eulerian and Hamiltonian. Before presenting and proving results, we give the following lemma.

Lemma 3.1. Let R be a ring and I, J be two distinct maximal left ideals of R. Then, I and J are not adjacent.

Proof. Since *I* and *J* are two distinct maximal left ideals of *R*, therefore I+J = R. So *I* and *J* are not adjacent.

Lemma 3.2. Let R be a ring with co-intersection $\Omega(R)$ and J be a nontrivial left ideal of R. If deg(J) is finite, then R is a left Artinian ring.

Proof. Since $deg(J) < \infty$, so J is a left Artinian R-modules. Otherwise, there exists a descending chain $J \supset I_1 \supset \cdots \supset I_n \supset \cdots$ of left ideals of R belong to J. Thus, $J + I_i = J \neq R$ for each i and this is a contradiction. Also, R/J is a left Artinian R-modules. Otherwise, there exists a descending chain $R/J \supset I_1/J \supset \cdots \supset I_n/J \supset \cdots$ of left submodules of R/J. Thus, $J + I_i = I_i \neq R$ for each i and this is a contradiction 4.5], R is a left Artinian R-module and the proof is complete.

The following proposition can be obtained in a similar way in [9, Theorem 2.1] about the connectivity.

Proposition 3.1. Let R be a ring and $\mathcal{I}^*(R) \neq \emptyset$. Then, $\Omega(R)$ is disconnected if and only if R has at least two maximal left ideals, and every nontrivial left ideal is a maximal left ideal.

Corollary 3.1. The graph $\Omega(\mathbb{Z}_n)$ is disconnected if and only if n = pq, where p and q are distinct primes.

Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ for some $k \in \mathbb{N}$. According to Remark 2.1, \mathbb{Z}_n has at least two maximal ideals and every nontrivial ideal is a maximal ideal if and only if k = 2 and $\alpha_i = 1$. Then, by Proposition 3.1, $\Omega(\mathbb{Z}_n)$ is disconnected if and only if \mathbb{Z}_n has at least two maximal ideals and every nontrivial ideal is a maximal ideal if and only if k = 2 and $\alpha_i = 1$.

Corollary 3.2. Let R be a ring and $\mathcal{I}^{\star}(R) \neq \emptyset$. If $\Omega(R)$ is disconnected then $\operatorname{Max}(R) = \operatorname{Min}(R)$.

Proof. By Proposition 3.1, as $\Omega(R)$ is disconnected thus $\mathcal{I}^{\star}(R) = \operatorname{Max}(R)$. If $I \in \operatorname{Max}(R) = \mathcal{I}^{\star}(R)$, there is no nontrivial left ideal $J \subsetneq I$, then $I \in \operatorname{Min}(R)$. Also, $\operatorname{Min}(R) \subseteq \mathcal{I}^{\star}(R) = \operatorname{Max}(R)$.

Corollary 3.3. Let R be a ring. If $\Omega(R)$ is disconnected then, $\Omega(R)$ is a null graph.

Proof. By Lemma 3.1 and Proposition 3.1, the proof is complete.

Lemma 3.3. Let R be a ring. If $Max(R) \cap Min(R) \neq \emptyset$, then $\mathcal{I}^{\star}(R) = Max(R) = Min(R)$ and thus $\Omega(R)$ is a null graph.

Proof. Suppose that $\mathfrak{m} \in \operatorname{Max}(R) \cap \operatorname{Min}(R)$, then for each $I \in \mathcal{I}^{\star}(R)$, $I + \mathfrak{m} = R$. So, $\Omega(R)$ is disconnected and according to Corollary 3.2, $\operatorname{Max}(R) = \operatorname{Min}(R)$. Also, by Corollary 3.3 $\Omega(R)$ is a null graph. \Box

Proposition 3.2. Let R be a commutative ring. Then, the graph $\Omega(R)$ is disconnected if and only if $R = R_1 \times R_2$ where each $R_i(i = 1, 2)$ is either a field or a null ring with prime number of elements.

Proof. For the proof of the necessity part, suppose that, the graph $\Omega(R)$ is disconnected. Then, according to Proposition 3.1 and its proof, there are two maximal ideals I and J of R such that I + J = R and $I \cap J = <0 >$, as they are minimal ideal too, from Corollary 3.2. Then, $R = I \oplus J \cong \frac{R}{J} \times \frac{R}{I}$ where $\frac{R}{J}$ and $\frac{R}{I}$ are simple commutative rings, as I and J are maximal ideal.

Conversely, let $R = R_1 \times R_2$ where R_1, R_2 are simple commutative rings. If both R_1 and R_2 are two fields, then R has only two nontrivial ideals, $I = R_1 \times \{0_{R_2}\}$ and $\{0_{R_1}\} \times R_2$ and they are maximal ideals and hence according to Lemma 3.1, $\Omega(R)$ is disconnected. If both R_1 and R_2 are two null rings with

prime number of elements, let $(R_1, +) \cong (\mathbb{Z}_p, +)$ and $(R_2, +) \cong (\mathbb{Z}_q, +)$, where p, q are prime numbers. If $p \neq q$, then $(R, +) \cong (\mathbb{Z}_p \times \mathbb{Z}_q, +) \cong (\mathbb{Z}_{pq}, +)$, which has only two nontrivial subgroups $(\bar{p}), (\bar{q})$. These two subsets are also only nontrivial ideals of the null ring R, and then $\Omega(R)$ is disconnected.

If R_1 is a field and R_2 is a null rings with prime number of elements, such that $(R_2, +) \cong (\mathbb{Z}_p, +)$. In this case $\{(0_{R_1}) \times R_2, R_1 \times (\bar{0})\} = \mathcal{I}^*(R)$. As $1 \in (0_{R_1}) \times R_2 + R_1 \times (\bar{0})$, then $\Omega(R)$ is disconnected.

In the following, we characterize all the values of n for which the graph $\Omega(\mathbb{Z}_n)$ is Eulerian; further, some values of n for which $\Omega(\mathbb{Z}_n)$ is Hamiltonian are characterized.

At the first, we give a lemma about the number of vertices of $\Omega(\mathbb{Z}_n)$, and characterize deg(I) for each $I \in \mathcal{I}^*(\mathbb{Z}_n)$ and also minimum degree $\delta(\Omega(\mathbb{Z}_n))$.

Lemma 3.4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $a = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$, where p_i 's are all distinct prime numbers, and also $0 \leq \beta_i \leq \alpha_i$. If $I = \langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and suppose that $\mathfrak{B}_a = \{t_j | 1 \leq t_j \leq k, \beta_{t_j} \neq 0\}$ is the ordered set of all indices t_j , such that $\beta_{t_j} \neq 0$, then

(1)
$$deg(I) = \sum_{j=1}^{|\mathfrak{B}_a|} \left(\alpha_{t_j} \prod_{\substack{i=1\\i \notin \{t_1, \cdots, t_j\}}}^k (\alpha_i + 1) \right) - 2.$$

Also, the number of vertices of $G = \Omega(\mathbb{Z}_n)$ is $|\mathcal{I}^{\star}(\mathbb{Z}_n)| = \prod_{i=1}^k (\alpha_i + 1) - 2$ and

$$\delta(G) = \alpha_{t_0} \prod_{\substack{i=1\\i \neq t_0}}^k (\alpha_i + 1) - 2$$

wherein $\alpha_{t_0} = \min\{\alpha_i | 1 \le i \le k\}.$

Proof. Assume that b|n and $b \neq n$. Then, $J = \langle b \rangle \neq I$ and I are adjacent if there exist some $t_j \in \mathfrak{B}_a$ such that $p_{t_j}|b$. But there are

$$\alpha_{t_1} \prod_{\substack{i=1\\i\neq t_1}}^k (\alpha_i + 1)$$

factors of n in the form $b = p_{t_1}b'$ (two of them are n and a), and there are

$$\alpha_{t_2} \prod_{\substack{i=1\\i\notin\{t_1,t_2\}}}^k (\alpha_i+1)$$

factors of n in the form $b = p_{t_2}b'$ such that $p_{t_1} \nmid b'$ and so on. It is obvious that these factors of n are distinct. As $\langle n \rangle, \langle a \rangle$ are not adjacent to $I = \langle a \rangle$, thus 2 units are deducted from the total. The proof of other statements are obvious.

Example 3.1. Let $n = 2^{10} \times 3^5 \times 5^2 \times 7$, $a = 2^5 \times 3^2 \times 5$ and $G = \Omega(\mathbb{Z}_n)$. Thus, $I = \langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n . Then, according to the Lemma 3.4, $deg(\langle a \rangle) = (10 \times 6 \times 3 \times 2) + (5 \times 3 \times 2) + (2 \times 2) - 2 = 392$. Also, $\delta(G) = (1 \times 11 \times 6 \times 3) - 2 = 196$.

Proposition 3.3 ([6, Theorem 3.7]). A connected graph is Eulerian if and only if all of its vertices have even degree.

In the next proposition, we characterize all the values of n for which graphs of \mathbb{Z}_n are Eulerian.

Proposition 3.4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers. Then, $\Omega(\mathbb{Z}_n)$ is Eulerian if and only if $\alpha_i = 1$ for each $1 \le i \le k$, or each α_i is even $(1 \le i \le k)$.

Proof. According to Proposition 3.3, it is enough to show that all vertices of $\Omega(\mathbb{Z}_n)$ have even degree if and only if $\alpha_i = 1$ for each $1 \leq i \leq k$, or each α_i is even $(1 \leq i \leq k)$.

With the same notation in Lemma 3.4, if $\alpha_i = 1$ for each $1 \le i \le k$, then for each factor $a \ne n$ of n, there is some $i_0 \in \{1, 2, \dots, k\} \setminus \mathfrak{B}_a$. Thus

$$2 = (\alpha_{i_0} + 1) \prod_{\substack{i=1\\i \notin \{t_1, \cdots, t_j\}}}^k (\alpha_i + 1)$$

for each $1 \leq j \leq |\mathfrak{B}_a|$, and hence deg(I) is even. Also, it is obvious that deg(I) is even if α_i is even for each $1 \leq i \leq k$. Conversely, if there exist an α_i greater than 1 and also $\{s_1, \dots, s_m | \alpha_{s_i} \text{ is odd}\}$ is the nonempty set of all s_i such that α_{s_i} is odd, then the ideal $I = \langle a \rangle = \langle p_{s_1} \cdots p_{s_m} \rangle$ is a nontrivial ideal of \mathbb{Z}_n . We show that deg(I) is odd. In this case, it is obvious that the summand

$$\alpha_{s_j} \prod_{\substack{i=1\\i\notin\{s_1,\cdots,s_j\}}}^k (\alpha_i+1)$$

in Equation 1 is even for each $1 \le j \le m-1$ and is odd for j = m and thus deg(I) is odd. The proof is complete.

Proposition 3.5 ([6], Theorem 18.4). Let G be a simple graph of minimum degree δ , where $\delta \geq \frac{n}{2}$ and $n \geq 3$. Then, G is Hamiltonian.

Proposition 3.6. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers. If $k = 1, \alpha_1 \ge 4$ or $k \ge 2, \alpha_i \ge 3$ for each $1 \le i \le k$, then $\Omega(\mathbb{Z}_n)$ is Hamiltonian.

Proof. If $k = 1, \alpha_1 \ge 4$, then $\Omega(\mathbb{Z}_n)$ is a complete graph with at least 3 vertices ([9, Example 2.14]) and thus is Hamiltonian.

Now, assume that $k \ge 2, \alpha_i \ge 3$ for each $1 \le i \le k$. Let $\alpha_{t_0} = \min\{\alpha_i | 1 \le i \le k\}$. Therefore, $\Omega(\mathbb{Z}_n)$ has $n \ge 3$ vertices and also

$$(2\alpha_{t_0} - (\alpha_{t_0} + 1)) \prod_{\substack{i=1\\i \neq t_0}}^k (\alpha_i + 1) \ge 2.$$

Hence,

$$\delta(\mathbb{Z}_n) = \alpha_{t_0} \prod_{\substack{i=1\\i \neq t_0}}^k (\alpha_i + 1) - 2 \ge \frac{\prod_{i=1}^k (\alpha_i + 1)}{2} - 1 = \frac{n}{2}.$$

Therefore, by Proposition 3.5, $\Omega(\mathbb{Z}_n)$ is Hamiltonian.

4. The decision number of $\Omega(\mathbb{Z}_n)$

In this section, the bad decision number and the nice decision number of $G = \Omega(\mathbb{Z}_n)$ are investigated for each n. Some lemma's are presented in the following, and the results are combined to a single theorem at the end of the section.

Lemma 4.1. Let $n = p^{\alpha}$, $\alpha \geq 3$, and also $G = \Omega(\mathbb{Z}_n)$. Thus,

$$\beta_D(G) = \begin{cases} 0, & \text{for odd} \quad \alpha \ge 5 \\ 2, & \text{for} \quad \alpha = 3 \\ -1, & \text{for even} \quad \alpha. \end{cases}, \quad \overline{\beta_D(G)} = \begin{cases} 0, & \text{for odd} \quad \alpha \\ 1, & \text{for even} \quad \alpha. \end{cases}$$

Proof. We know $G = \Omega(\mathbb{Z}_n)$ is the complete graph $K_{\alpha-1}$ for $n = p^{\alpha}$. Thus, at least $\lceil \frac{\alpha-1}{2} \rceil$ of the vertices must be signed by -1, for any bad function f and $\alpha > 3$. In the other side, there is a bad function f over G, such that exactly $\lceil \frac{\alpha-1}{2} \rceil$ of the vertices are signed by -1. Further, it is obvious that $\beta_D(\Omega(\mathbb{Z}_3)) = \beta_D(K_2) = 2$. Similarly, at least $\lfloor \frac{\alpha-1}{2} \rfloor$ of the vertices must be signed by -1, for any nice function f.

Lemma 4.2. Let $k \geq 2$, α_k be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and also $G = \Omega(\mathbb{Z}_n)$. The bad decision number and the nice decision number of G are lower than or equal to 2.

Proof. If $\alpha_i = 1$, for all $1 \le i \le k$, then let $v_0 = p_2 \cdots p_k$. Note that, $|V(G)| = \prod_{i=1}^k (\alpha_i + 1) - 2$ is an even number, and $N(< v_0 >) = V(G) \setminus \{< v_0 >, < p_1 >\}$. If f is a bad function, then $f(N(< v_0 >))$ is at most equal to 0, because of $|N(< v_0 >)|$ is even. Also, $f(N[< v_0 >])$ is at most equal to 1 for a nice function f. Thus, f(V(G)) is at most equal to 2 for any bad or nice function f.

If there is an $\alpha_i \geq 2$, then let $v_0 = p_1 p_2 \cdots p_k$. If f is a bad function then $f(N(\langle v_0 \rangle))$ is at most equal to 1. If f is a nice function then, $f(N[\langle v_0 \rangle]) \geq 0$ because of $N[\langle v_0 \rangle] = V(G)$ and |V(G)| is even. Hence, for any bad or nice function $f, f(V(G)) \leq 2$.

The upper bound presented in Lemma 4.2 is sharp. As $\overline{\beta_D(\Omega(\mathbb{Z}_{pq}))} = \beta_D(\Omega(\mathbb{Z}_{pq})) = 2.$

Lemma 4.3. Let $k \geq 2$, α_k be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and $G = \Omega(\mathbb{Z}_n)$. The bad decision number and the nice decision number of G are greater than or equal to 0.

Proof. Let $m = \frac{\alpha_k - 1}{2}$. Define the function $f: V \to \{-1, 1\}$ as:

$$f(\langle a \rangle) = \begin{cases} -1, & \text{if } p_k^{m+1} | a \\ 1, & \text{otherwise.} \end{cases}$$

Suppose that $\langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. We show that $f(N(\langle a \rangle)) \leq 1$ and then the function f is a bad function. Let $A = \{i | a_i \neq 0\}$.

• If $a_k = 0$:

There are $X = (\prod_{i \in A} (\alpha_i + 1) - 1) \prod_{i \notin A, i \neq k} (\alpha_i + 1)(m+1) - 1$ elements in $N(\langle a \rangle)$, such that have value 1 under the function f. Also, There are X elements in $N(\langle a \rangle)$, such that have value -1 under the function f. Hence, $f(N(\langle a \rangle)) = 0$.

- If $m \neq 0$ and $a_k \neq 0$: In this case, $Y = \left(\prod_{i \in A, i \neq k} (\alpha_i + 1)(m + 1) - 1\right) \prod_{i \notin A} (\alpha_i + 1)$ elements of $N(\langle a \rangle)$ have value 1 under the function f, and Y elements of $N(\langle a \rangle)$ have value -1 under the function f. Therefore, $f(N(\langle a \rangle)) = 0$.
- If m = 0 and $a_k \neq 0$: In this case, there are $\prod_{i\neq k}(\alpha_i + 1) 2$ elements of $N(\langle a \rangle)$ with value -1 and $\prod_{i\in A, i\neq k}(\alpha_i + 1) 1$ elements of $N(\langle a \rangle)$ with value 1 under f. Thus, $f(N(\langle a \rangle)) = \prod_{i\in A, i\neq k}(\alpha_i + 1) (1 \prod_{i\notin A}(\alpha_i + 1)) + 1 \leq 1$. Also, $f(N[a]) \leq 0$, as $f(\langle a \rangle) = -1$.

On the other side, f(V) = 0, as exactly the half of the vertices of G have value 1 under the f. Hence, $\beta_D(G) \ge 0$. Furthermore, it is obvious that $f(N[a]) \le 1$ in all 3 cases, hence f is a nice function and $\overline{\beta_D(G)} \ge 0$.

The following Lemma, present an upper bound for decision numbers in the case of all of the prime factors of n have even exponent in the prime decomposition of n.

Lemma 4.4. Let $k \geq 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, α_i 's are all even numbers, and also $G = \Omega(\mathbb{Z}_n)$. The bad decision number and the nice decision number of G are lower than or equal to 1.

Proof. Let $v = p_1 p_2 \cdots p_k$, and f be a bad function. Note that, $|V(G)| = \prod_{i=1}^k (\alpha_i + 1) - 2$ is an odd number. We have, $N(\langle v \rangle) = V(G) \setminus \{\langle v \rangle\}$ and $|N(\langle v \rangle)|$ is even, thus $f(N(\langle v \rangle)) \leq 0$ and $f(V(G)) \leq 1$. Further, If f is a nice function then, $f(V(G)) = f(N[\langle v \rangle]) \leq 1$. Hence, f(V(G)) is at most equal to 1.

In the next example we show that the upper bound presented in Lemma 4.4 is sharp.

Example 4.1. Let $n = p_1^2 p_2^2 p_3^2$, and $G = \Omega(\mathbb{Z}_n)$. Define the function f over V(G) as: $f(p_i^{a_i}) = f(p_1^{a_1} p_2^{a_2} p_3^{a_3}) = 1$, where $1 \le i \le 3$ and $a_1 a_2 a_3 \ne 0$. Otherwise, f(v) = -1.

It is easy to check that the function \underline{f} is a bad (and nice) function, and f(V(G)) = +13 - 12 = 1. Hence, $\beta_D(G), \overline{\beta_D(G)} = 1$.

Lemma 4.5. Let $k \geq 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, α_i 's are all even numbers, and also $G = \Omega(\mathbb{Z}_n)$. The bad decision number and the nice decision number of G are greater than or equal to -1.

Proof. Let $m_i = \frac{\alpha_i}{2}$ for each $1 \le i \le k$. Define the function $f: V \to \{-1, 1\}$ as:

$$f(\langle a \rangle) = \begin{cases} 1, & \text{if } p_1^{\alpha_1} \cdots p_i^{\alpha_i} | a \text{ and } p_{i+1}^{m_{i+1}} \nmid a \text{ for some } 0 \leq i \leq k-1 \\ -1, & \text{otherwise.} \end{cases}$$

Suppose that $\langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. We show that $f(N(\langle a \rangle)) \leq 1$ and then the function f is a bad function. Let $A = \{i | a_i \neq 0\}$, and $t = \min\{i | a_i \neq 0\}$.

According to the definition of f,

$$X = \sum_{i=t}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) + \sum_{i=1}^{t-1} m_i \left(\prod_{j \in A, j > i} (\alpha_j + 1) - 1 \right) \prod_{j \notin A, j > i} (\alpha_j + 1)$$

elements of $N[\langle a \rangle]$ have value -1 under the function f, and

$$Y = \sum_{i=t}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) - \prod_{j \notin A, j > t} (\alpha_j + 1) + \sum_{i=1}^{t-1} m_i \left(\prod_{j \in A, j > i} (\alpha_j + 1) - 1 \right) \prod_{j \notin A, j > i} (\alpha_j + 1)$$

elements of N[a] have value 1 under the function f. Therefore, if $f(\langle a \rangle) = 1$, then X elements of $N(\langle a \rangle)$ have value -1, and Y - 1 elements of $N(\langle a \rangle)$ have value +1. If $f(\langle a \rangle) = -1$, then X - 1 elements of $N(\langle a \rangle)$ have value -1, and Y elements of $N(\langle a \rangle)$ have value +1. Thus,

$$f(N(\langle a \rangle)) = \begin{cases} Y - 1 - X = -\sum_{i=t}^{k} \prod_{j \notin A, j > t} (\alpha_j + 1) - 1, & \text{if } f(\langle a \rangle) = 1, \\ Y - X + 1 = -\sum_{i=t}^{k} \prod_{j \notin A, j > t} (\alpha_j + 1) + 1, & \text{if } f(\langle a \rangle) = -1. \end{cases}$$

Consequently, $f(N(\langle a \rangle)) \leq 0$ and $f(N[\langle a \rangle]) \leq -1$. Hence, f is both bad function and nice function.

By the definition of the function f,

$$Z = \sum_{i=1}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1)$$

vertices of G have value -1, and Z - 1 elements of $N(\langle a \rangle)$ have value +1. Hence, $\beta_D(G), \overline{\beta_D(G)} \ge -1$.

Finally, the following theorem can immediately be concluded from the above discussions.

Theorem 4.1. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and also $G = \Omega(\mathbb{Z}_n)$. We have

$$\beta_D(G) = \begin{cases} -1, & \text{if } k = 1, \alpha_1 \text{ is an even number,} \\ -1 \text{ or } 1, & \text{if } \alpha_i \text{ is an even number, for all } 1 \le i \le k \text{ ,} \\ 0 \text{ or } 2, & \text{otherwise.} \end{cases}$$

$$\overline{\beta_D(G)} = \begin{cases} 1, & \text{if } k = 1, \alpha_1 \text{ is an even number,} \\ -1 \text{ or } 1, & \text{if } \alpha_i \text{ is an even number, for all } 1 \le i \le k \\ 0 \text{ or } 2, & \text{otherwise.} \end{cases}$$

5. Conclusion

In this paper, we have obtained a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. Likewise, we characterized the values of n for which the graph $\Omega(\mathbb{Z}_n)$ is Eulerian and Hamiltonian. Finally, the bad (and nice) decision number of $\Omega(\mathbb{Z}_n)$ has been presented. In our future work, we will introduce new results of connected graphs that are very useful in networks and computer sciences.

References

- [1] S. Akbari, S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra, 42 (2014), 1594-1605.
- [2] S. Akbari, R. Nikadish, M.J. Nikmehr, Some results on the intersection graphs of ideals of rings, Journal of Algebra and its Applications, 12 (2013), 1250200 (13 pages).
- [3] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.

- [4] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
- [5] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
- [6] J.A. Bondy, U.S.R. Murty, *Graph theory*, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
- [7] B. Csákány, G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J., 19 (1969), 241-247.
- [8] K.R. Goodearl, R.B. Warfield, An introduction to noncommutative notherian rings, Cambridge University Press, Cambridge, 2004.
- [9] L.A. Mahdavi, Y. Talebi, Co-intersection graph of submodules of a module Algebra and Discrete Mathematics, 21 (2016), 128-143.
- [10] L.A. Mahdavi, Y. Talebi, Properties of Co-intersection graph of submodules of a module, Journal of Prime Research in Mathematics, 13 (2017), 16-29.
- S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math, 307 (2007), 1155-1166.
- [12] H. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra, 320 (2008), 2917-2933.
- [13] C. Wang, The negative decision number in graphs, Australasian Journal of Combinatorics, 41 (2008), 263-272.

Accepted: October 20, 2023