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Abstract. Let R be a ring and I⋆(R) be the set of all nontrivial left ideals of R. The
Co-intersection graph of ideals of R, denoted by Ω(R), is an undirected simple graph
with the vertex set I⋆(R), and two distinct vertices I and J are adjacent if and only if
I + J ̸= R.

This paper derives a sufficient and necessary condition for Ω(R) to be a connected
graph. We characterize the values of n for which the graph Ω(Zn) is Eulerian and
Hamiltonian. Furthermore, the bad (and nice) decision number of Ω(Zn) are studied in
the paper.
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1. Introduction

The idea to associate a graph to a ring first appeared in [5]. He let all elements
of the ring be vertices of the graph and was interested mainly in coloring. In [4],
Anderson and Livingston introduced and studied the zero-divisor graph whose
vertices are the nonzero zero-divisors. There are many papers on assigning a
graph to a ring R, for instance, see [4, 3, 12, 11, 2, 1]. Also, the intersection
graphs and co-intersection graphs of some algebraic structures such as groups,
rings, and modules have been studied by several authors, see [2, 9, 7, 10]. The
co-intersection graph of submodules is introduced in [9].

The paper is organized as follows. Some definitions and preliminaries are
introduced in Section 2. We devote Section 3 to study for connectivity of the
co-intersection graph. Also, we characterize all the values of n for which Ω(Zn)
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is Eulerian and characterize some values of n for which Ω(Zn) is Hamiltonian in
this section. Finally, the bad decision number, and the nice decision number of
Ω(Zn) are studied in Section 4.

2. Preliminaries

This section gives some definitions of ring theory and graph theory. Also, we
introduce the Co-intersection graph of a ring R and give some basic concepts
about rings and maximal left ideals.

We mean from a nontrivial ideal of R is a nonzero proper left ideal of R.
The set I⋆(R) is a set of all nontrivial left ideals of R. A nonzero ring R is
called simple if it has no nontrivial two-sided ideal. The term null ring is used
to refer a ring R, in which x× y = 0, for all x, y ∈ R.

By Max(R) and Min(R), we denote the set of all nonzero maximal left ideals
of R and all nonzero minimal left ideals of R respectively.

A graph G is an ordered pair G = (V,E), consisting of a nonempty set V
of vertices, and a set E ⊆ [V ]2 of edges, where [V ]2 is the set of all 2-element
subsets of V . Two vertices u, v ∈ V are adjacent if uv ∈ E (for simplicity
we use uv instead of subset {u, v}). The neighbourhood of a vertex u ∈ V is
N(u) = {v ∈ V |uv ∈ E}, and the closed neighbourhood of u isN [u] = N(u)∪{u}.
The degree of a vertex u in a graph G is the size of set N(u), which is denoted
by deg(u). We denote by δ(G) the minimum degree of the vertices of G. The
complete graph with n vertices is denoted by Kn, which is a graph with n
vertices in which any two distinct vertices are adjacent. A null graph is a graph
containing no edges. Let G be a graph, suppose that x, y ∈ V (G), a walk
between u and v is a sequence u = v0 − v1 − · · · − vk = v of vertices of G
such that for every i with 1 ≤ i ≤ k, the vertices vi−1 and vi are adjacent. A
(u, v)-path between u and v is a walk between u and v without repeated vertices.
Two vertices u and v of G are said to be connected if there is a (u, v)-path in
G. A graph G is called connected if every pair of its vertices are connected. If
vertices u and v are connected in G, the distance between u and v in G, denoted
by d(u, v), is the length of a shortest (u, v)-path in G. In graph G, a tour is a
closed walk that traverses each edge of G at least once. A graph is Eulerian if
it contains a tour which traverses each edge exactly once [6].

A cycle in a graph is a path of length at least 3 through distinct vertices
which begins and ends at the same vertex. A Hamilton cycle is a spanning cycle,
and a graph which contains such a cycle is said to be Hamiltonian.

If G = (V,E) is a finite graph, define f(U) =
∑

u∈U f(u), for a function
f : V → {−1, 1} and U ⊆ V . A function f : V → {−1, 1} is called a bad
function of G, if f(N(v)) ≤ 1 for each v ∈ V [13]. The maximum value of f(V ),
taken over all bad functions f , is called the bad decision number of G, which
is denoted by βD(G). The function f is called a nice function, if f(N [v])) ≤ 1
for each v ∈ V . The maximum value of f(V ), taken over all nice functions f is
called the nice decision number of G, and denoted by βD(G).
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Definition 2.1. Let R be a ring. The Co-intersection graph Ω(R) of R, is an
undirected simple graph whose the vertex set V (Ω(R)) = I⋆(R) is a set of all
nontrivial ideals of R and two distinct vertices I, J are adjacent if and only if
I + J ̸= R.

Remark 2.1. Let Zn be the ring of integers modulo n. Suppose that m1,m2

are two factor of n. Then, ⟨m1⟩ + ⟨m2⟩ = ⟨(m1,m2)⟩, where (m1,m2) is the
greatest common divisor of m1,m2.

Example 2.1. Suppose that R = Z50. Then, I⋆(R) = {⟨2⟩, ⟨5⟩, ⟨10⟩, ⟨25⟩} and
the co-intersection graph Ω(R) is as follow:

Figure 1: The Co-intersection Graph Ω(Z50).

3. Connectivity, eulerianity and hamiltonicity

This section derives a sufficient and necessary condition for Ω(R) to be a con-
nected graph. Also, we determine the values of n for which Ω(Zn) is a connected
graph. Further, we characterize the values of n for which the graph Ω(Zn) is
Eulerian and Hamiltonian. Before presenting and proving results, we give the
following lemma.

Lemma 3.1. Let R be a ring and I, J be two distinct maximal left ideals of R.
Then, I and J are not adjacent.

Proof. Since I and J are two distinct maximal left ideals of R, therefore I+J =
R. So I and J are not adjacent.

Lemma 3.2. Let R be a ring with co-intersection Ω(R) and J be a nontrivial
left ideal of R. If deg(J) is finite, then R is a left Artinian ring.

Proof. Since deg(J) < ∞, so J is a left Artinian R-modules. Otherwise, there
exists a descending chain J ⊃ I1 ⊃ · · · ⊃ In ⊃ · · · of left ideals of R belong to
J . Thus, J + Ii = J ̸= R for each i and this is a contradiction. Also, R/J is
a left Artinian R-modules. Otherwise, there exists a descending chain R/J ⊃
I1/J ⊃ · · · ⊃ In/J ⊃ · · · of left submodules of R/J . Thus, J + Ii = Ii ̸= R for
each i and this is a contradiction. Hence, according to [8, Proposition 4.5], R is
a left Artinian R-module and the proof is complete.
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The following proposition can be obtained in a similar way in [9, Theo-
rem 2.1] about the connectivity.

Proposition 3.1. Let R be a ring and I⋆(R) ̸= ∅. Then, Ω(R) is disconnected
if and only if R has at least two maximal left ideals, and every nontrivial left
ideal is a maximal left ideal.

Corollary 3.1. The graph Ω(Zn) is disconnected if and only if n = pq, where
p and q are distinct primes.

Let n = pα1
1 pα2

2 · · · pαk
k for some k ∈ N. According to Remark 2.1, Zn has

at least two maximal ideals and every nontrivial ideal is a maximal ideal if and
only if k = 2 and αi = 1. Then, by Proposition 3.1, Ω(Zn) is disconnected if
and only if Zn has at least two maximal ideals and every nontrivial ideal is a
maximal ideal if and only if k = 2 and αi = 1.

Corollary 3.2. Let R be a ring and I⋆(R) ̸= ∅. If Ω(R) is disconnected then
Max(R) = Min(R).

Proof. By Proposition 3.1, as Ω(R) is disconnected thus I⋆(R) = Max(R). If
I ∈ Max(R) = I⋆(R), there is no nontrivial left ideal J ⊊ I, then I ∈ Min(R).
Also, Min(R) ⊆ I⋆(R) = Max(R).

Corollary 3.3. Let R be a ring. If Ω(R) is disconnected then, Ω(R) is a null
graph.

Proof. By Lemma 3.1 and Proposition 3.1, the proof is complete.

Lemma 3.3. Let R be a ring. If Max(R)∩Min(R) ̸= ∅, then I⋆(R) = Max(R) =
Min(R) and thus Ω(R) is a null graph.

Proof. Suppose thatm ∈ Max(R)∩Min(R), then for each I ∈ I⋆(R), I+m = R.
So, Ω(R) is disconnected and according to Corollary 3.2, Max(R) = Min(R).
Also, by Corollary 3.3 Ω(R) is a null graph.

Proposition 3.2. Let R be a commutative ring. Then, the graph Ω(R) is
disconnected if and only if R = R1 ×R2 where each Ri(i = 1, 2) is either a field
or a null ring with prime number of elements.

Proof. For the proof of the necessity part, suppose that, the graph Ω(R) is
disconnected. Then, according to Proposition 3.1 and its proof, there are two
maximal ideals I and J of R such that I + J = R and I ∩ J =< 0 >, as they
are minimal ideal too, from Corollary 3.2. Then, R = I ⊕ J ∼= R

J × R
I where R

J
and R

I are simple commutative rings, as I and J are maximal ideal.

Conversely, let R = R1 × R2 where R1, R2 are simple commutative rings.
If both R1 and R2 are two fields, then R has only two nontrivial ideals, I =
R1 × {0R2} and {0R1} × R2 and they are maximal ideals and hence according
to Lemma 3.1, Ω(R) is disconnected. If both R1 and R2 are two null rings with
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prime number of elements, let (R1,+) ∼= (Zp,+) and (R2,+) ∼= (Zq,+), where
p , q are prime numbers. If p ̸= q, then (R,+) ∼= (Zp × Zq,+) ∼= (Zpq,+),
which has only two nontrivial subgroups (p̄), (q̄). These two subsets are also
only nontrivial ideals of the null ring R, and then Ω(R) is disconnected.

If R1 is a field and R2 is a null rings with prime number of elements, such
that (R2,+) ∼= (Zp,+). In this case {(0R1) × R2, R1 × (0̄)} = I⋆(R). As
1 ∈ (0R1)×R2 +R1 × (0̄), then Ω(R) is disconnected.

In the following, we characterize all the values of n for which the graph
Ω(Zn) is Eulerian; further, some values of n for which Ω(Zn) is Hamiltonian are
characterized.

At the first, we give a lemma about the number of vertices of Ω(Zn), and
characterize deg(I) for each I ∈ I⋆(Zn) and also minimum degree δ(Ω(Zn)).

Lemma 3.4. Let n = pα1
1 pα2

2 · · · pαk
k , a = pβ1

1 pβ2
2 · · · pβk

k , where pi’s are all dis-
tinct prime numbers, and also 0 ≤ βi ≤ αi. If I =< a > is a nontrivial ideal
of Zn, and suppose that Ba = {tj |1 ≤ tj ≤ k, βtj ̸= 0} is the ordered set of all
indices tj, such that βtj ̸= 0, then

(1) deg(I) =

|Ba|∑
j=1

αtj

k∏
i=1

i/∈{t1,··· ,tj}

(αi + 1)

− 2.

Also, the number of vertices of G = Ω(Zn) is |I⋆(Zn)| =
∏k

i=1(αi + 1)− 2 and

δ(G) = αt0

k∏
i=1
i ̸=t0

(αi + 1)− 2

wherein αt0 = min{αi|1 ≤ i ≤ k}.

Proof. Assume that b|n and b ̸= n. Then, J =< b > ̸= I and I are adjacent if
there exist some tj ∈ Ba such that ptj |b. But there are

αt1

k∏
i=1
i ̸=t1

(αi + 1)

factors of n in the form b = pt1b
′ (two of them are n and a), and there are

αt2

k∏
i=1

i/∈{t1,t2}

(αi + 1)

factors of n in the form b = pt2b
′ such that pt1 ∤ b′ and so on. It is obvious that

these factors of n are distinct. As < n >,< a > are not adjacent to I =< a >,
thus 2 units are deducted from the total. The proof of other statements are
obvious.
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Example 3.1. Let n = 210×35×52×7, a = 25×32×5 and G = Ω(Zn). Thus,
I =< a > is a nontrivial ideal of Zn. Then, according to the Lemma 3.4,
deg(< a >) = (10× 6× 3× 2) + (5× 3× 2) + (2× 2)− 2 = 392.
Also, δ(G) = (1× 11× 6× 3)− 2 = 196.

Proposition 3.3 ([6, Theorem 3.7]). A connected graph is Eulerian if and only
if all of its vertices have even degree.

In the next proposition, we characterize all the values of n for which graphs
of Zn are Eulerian.

Proposition 3.4. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime num-

bers. Then, Ω(Zn) is Eulerian if and only if αi = 1 for each 1 ≤ i ≤ k, or each
αi is even (1 ≤ i ≤ k).

Proof. According to Proposition 3.3, it is enough to show that all vertices of
Ω(Zn) have even degree if and only if αi = 1 for each 1 ≤ i ≤ k, or each αi is
even (1 ≤ i ≤ k).

With the same notation in Lemma 3.4, if αi = 1 for each 1 ≤ i ≤ k, then for
each factor a ̸= n of n, there is some i0 ∈ {1, 2, · · · , k} \Ba. Thus

2 = (αi0 + 1)|
k∏

i=1
i/∈{t1,··· ,tj}

(αi + 1)

for each 1 ≤ j ≤ |Ba|, and hence deg(I) is even. Also, it is obvious that deg(I)
is even if αi is even for each 1 ≤ i ≤ k. Conversely, if there exist an αi greater
than 1 and also {s1, · · · , sm|αsi is odd} is the nonempty set of all si such that
αsi is odd, then the ideal I =< a >=< ps1 · · · psm > is a nontrivial ideal of Zn.
We show that deg(I) is odd. In this case, it is obvious that the summand

αsj

k∏
i=1

i/∈{s1,··· ,sj}

(αi + 1)

in Equation 1 is even for each 1 ≤ j ≤ m − 1 and is odd for j = m and thus
deg(I) is odd. The proof is complete.

Proposition 3.5 ([6], Theorem 18.4). Let G be a simple graph of minimum
degree δ, where δ ≥ n

2 and n ≥ 3. Then, G is Hamiltonian.

Proposition 3.6. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime num-

bers. If k = 1, α1 ≥ 4 or k ≥ 2, αi ≥ 3 for each 1 ≤ i ≤ k, then Ω(Zn) is
Hamiltonian.

Proof. If k = 1, α1 ≥ 4, then Ω(Zn) is a complete graph with at least 3 vertices
([9, Example 2.14]) and thus is Hamiltonian.
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Now, assume that k ≥ 2, αi ≥ 3 for each 1 ≤ i ≤ k. Let αt0 = min{αi|1 ≤
i ≤ k}. Therefore, Ω(Zn) has n ≥ 3 vertices and also

(2αt0 − (αt0 + 1))

k∏
i=1
i ̸=t0

(αi + 1) ≥ 2.

Hence,

δ(Zn) = αt0

k∏
i=1
i ̸=t0

(αi + 1)− 2 ≥
∏k

i=1(αi + 1)

2
− 1 =

n

2
.

Therefore, by Proposition 3.5, Ω(Zn) is Hamiltonian.

4. The decision number of Ω(Zn)

In this section, the bad decision number and the nice decision number of G =
Ω(Zn) are investigated for each n. Some lemma’s are presented in the following,
and the results are combined to a single theorem at the end of the section.

Lemma 4.1. Let n = pα, α ≥ 3, and also G = Ω(Zn). Thus,

βD(G) =


0, for odd α ≥ 5 ,

2, for α = 3 ,

−1, for even α.

βD(G) =

{
0, for odd α ,

1, for even α.

Proof. We know G = Ω(Zn) is the complete graph Kα−1 for n = pα. Thus,
at least ⌈α−1

2 ⌉ of the vertices must be signed by −1, for any bad function f
and α > 3. In the other side, there is a bad function f over G, such that
exactly ⌈α−1

2 ⌉ of the vertices are signed by −1. Further, it is obvious that
βD(Ω(Z3)) = βD(K2) = 2. Similarly, at least ⌊α−1

2 ⌋ of the vertices must be
signed by −1, for any nice function f .

Lemma 4.2. Let k ≥ 2, αk be an odd number, n = pα1
1 pα2

2 · · · pαk
k , where pi’s

are all distinct prime numbers, and also G = Ω(Zn). The bad decision number
and the nice decision number of G are lower than or equal to 2.

Proof. If αi = 1, for all 1 ≤ i ≤ k, then let v0 = p2 · · · pk. Note that, | V (G) |=∏k
i=1(αi+1)−2 is an even number, and N(< v0 >) = V (G)\{< v0 >,< p1 >}.

If f is a bad function, then f(N(< v0 >)) is at most equal to 0, because of
| N(< v0 >) | is even. Also, f(N [< v0 >]) is at most equal to 1 for a nice
function f . Thus, f(V (G)) is at most equal to 2 for any bad or nice function f .

If there is an αi ≥ 2, then let v0 = p1p2 · · · pk. If f is a bad function then
f(N(< v0 >)) is at most equal to 1. If f is a nice function then, f(N [< v0 >
]) ≤ 0 because of N [< v0 >] = V (G) and | V (G) | is even. Hence, for any bad
or nice function f , f(V (G)) ≤ 2.
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The upper bound presented in Lemma 4.2 is sharp. As βD(Ω(Zpq)) =
βD(Ω(Zpq)) = 2.

Lemma 4.3. Let k ≥ 2, αk be an odd number, n = pα1
1 pα2

2 · · · pαk
k , where pi’s

are all distinct prime numbers, and G = Ω(Zn). The bad decision number and
the nice decision number of G are greater than or equal to 0.

Proof. Let m = αk−1
2 . Define the function f : V → {−1, 1} as:

f(< a >) =

{
−1, if pm+1

k |a ,

1, otherwise.

Suppose that < a > is a nontrivial ideal of Zn, and a = pa11 pa22 · · · pakk . We
show that f(N(< a >)) ≤ 1 and then the function f is a bad function. Let
A = {i|ai ̸= 0}.

� If ak = 0:
There are X =

(∏
i∈A(αi + 1)− 1

)∏
i/∈A,i ̸=k(αi + 1)(m+ 1)− 1 elements

in N(< a >), such that have value 1 under the function f . Also, There
are X elements in N(< a >), such that have value −1 under the function
f . Hence, f(N(< a >)) = 0.

� If m ̸= 0 and ak ̸= 0:

In this case, Y =
(∏

i∈A,i ̸=k(αi + 1)(m+ 1)− 1
)∏

i/∈A(αi+1) elements of

N(< a >) have value 1 under the function f , and Y elements of N(< a >)
have value −1 under the function f . Therefore, f(N(< a >)) = 0.

� If m = 0 and ak ̸= 0: In this case, there are
∏

i ̸=k(αi + 1) − 2 ele-
ments of N(< a >) with value −1 and

∏
i∈A,i ̸=k(αi + 1) − 1 elements of

N(< a >) with value 1 under f . Thus, f(N(< a >)) =
∏

i∈A,i ̸=k(αi +

1)
(
1−

∏
i/∈A(αi + 1)

)
+ 1 ≤ 1. Also, f(N [a]) ≤ 0, as f(< a >) = −1.

On the other side, f(V ) = 0, as exactly the half of the vertices of G have value
1 under the f . Hence, βD(G) ≥ 0. Furthermore, it is obvious that f(N [a]) ≤ 1
in all 3 cases, hence f is a nice function and βD(G) ≥ 0.

The following Lemma, present an upper bound for decision numbers in the
case of all of the prime factors of n have even exponent in the prime decompo-
sition of n.

Lemma 4.4. Let k ≥ 2, n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime

numbers, αi’s are all even numbers, and also G = Ω(Zn). The bad decision
number and the nice decision number of G are lower than or equal to 1.

Proof. Let v = p1p2 · · · pk, and f be a bad function. Note that, | V (G) |=∏k
i=1(αi +1)− 2 is an odd number. We have, N(< v >) = V (G) \ {< v >} and

| N(< v >) | is even, thus f(N(< v >)) ≤ 0 and f(V (G)) ≤ 1. Further, If f is
a nice function then, f(V (G)) = f(N [< v >]) ≤ 1. Hence, f(V (G)) is at most
equal to 1.
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In the next example we show that the upper bound presented in Lemma 4.4
is sharp.

Example 4.1. Let n = p21p
2
2p

2
3, and G = Ω(Zn). Define the function f over

V (G) as: f(paii ) = f(pa11 pa22 pa33 ) = 1, where 1 ≤ i ≤ 3 and a1a2a3 ̸= 0. Other-
wise, f(v) = −1.

It is easy to check that the function f is a bad (and nice) function, and
f(V (G)) = +13− 12 = 1. Hence, βD(G), βD(G) = 1.

Lemma 4.5. Let k ≥ 2, n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime

numbers, αi’s are all even numbers, and also G = Ω(Zn). The bad decision
number and the nice decision number of G are greater than or equal to −1.

Proof. Let mi =
αi
2 for each 1 ≤ i ≤ k. Define the function f : V → {−1, 1}

as:

f(< a >) =

{
1, if pα1

1 · · · pαi
i |a and p

mi+1

i+1 ∤ a for some 0 ≤ i ≤ k − 1 ,

−1, otherwise.

Suppose that < a > is a nontrivial ideal of Zn, and a = pa11 pa22 · · · pakk . We
show that f(N(< a >)) ≤ 1 and then the function f is a bad function. Let
A = {i|ai ̸= 0}, and t = min{i|ai ̸= 0}.

According to the definition of f ,

X =

k∑
i=t

mi

k∏
j=i+1

(αj + 1) +

t−1∑
i=1

mi

 ∏
j∈A,j>i

(αj + 1)− 1

 ∏
j /∈A,j>i

(αj + 1)

elements of N [< a >] have value −1 under the function f , and

Y =

k∑
i=t

mi

k∏
j=i+1

(αj + 1)−
∏

j /∈A,j>t

(αj + 1)

+
t−1∑
i=1

mi

 ∏
j∈A,j>i

(αj + 1)− 1

 ∏
j /∈A,j>i

(αj + 1)

elements of N [a] have value 1 under the function f . Therefore, if f(< a >) = 1,
then X elements of N(< a >) have value −1, and Y − 1 elements of N(< a >)
have value +1. If f(< a >) = −1, then X − 1 elements of N(< a >) have value
−1, and Y elements of N(< a >) have value +1. Thus,

f(N(< a >)) =


Y − 1−X = −

k∑
i=t

∏
j /∈A,j>t

(αj + 1)− 1, if f(< a >) = 1 ,

Y −X + 1 = −
k∑
i=t

∏
j /∈A,j>t

(αj + 1) + 1, if f(< a >) = −1.
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Consequently, f(N(< a >)) ≤ 0 and f(N [< a >]) ≤ −1. Hence, f is both bad
function and nice function.

By the definition of the function f ,

Z =

k∑
i=1

mi

k∏
j=i+1

(αj + 1)

vertices of G have value −1, and Z − 1 elements of N(< a >) have value +1.
Hence, βD(G), βD(G) ≥ −1.

Finally, the following theorem can immediately be concluded from the above
discussions.

Theorem 4.1. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime numbers,

and also G = Ω(Zn). We have

βD(G) =


−1, if k = 1, α1 is an even number,

−1 or 1, if αi is an even number, for all 1 ≤ i ≤ k ,

0 or 2, otherwise.

βD(G) =


1, if k = 1, α1 is an even number,

−1 or 1, if αi is an even number, for all 1 ≤ i ≤ k ,

0 or 2, otherwise.

5. Conclusion

In this paper, we have obtained a sufficient and necessary condition for Ω(R) to
be a connected graph. Likewise, we characterized the values of n for which the
graph Ω(Zn) is Eulerian and Hamiltonian. Finally, the bad (and nice) decision
number of Ω(Zn) has been presented. In our future work, we will introduce
new results of connected graphs that are very useful in networks and computer
sciences.
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