A study on co-intersection graphs of rings

S. Jaber Hoseini*
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran, Babolsar
Iran
Sj.hosseini@stu.umz.ac.ir
Yahya Talebi
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
Babolsar
Iran
talebi@umz.ac.ir

Abstract

Let R be a ring and $\mathcal{I}^{\star}(R)$ be the set of all nontrivial left ideals of R. The Co-intersection graph of ideals of R, denoted by $\Omega(R)$, is an undirected simple graph with the vertex set $\mathcal{I}^{\star}(R)$, and two distinct vertices I and J are adjacent if and only if $I+J \neq R$.

This paper derives a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. We characterize the values of n for which the graph $\Omega\left(\mathbb{Z}_{n}\right)$ is Eulerian and Hamiltonian. Furthermore, the bad (and nice) decision number of $\Omega\left(\mathbb{Z}_{n}\right)$ are studied in the paper. Keywords: co-intersection graph, connectivity, decision number, bad function. MSC 2020: 05C25, 05C40, 05C45, 05C69

1. Introduction

The idea to associate a graph to a ring first appeared in [5]. He let all elements of the ring be vertices of the graph and was interested mainly in coloring. In [4], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the nonzero zero-divisors. There are many papers on assigning a graph to a ring R, for instance, see $[4,3,12,11,2,1]$. Also, the intersection graphs and co-intersection graphs of some algebraic structures such as groups, rings, and modules have been studied by several authors, see $[2,9,7,10]$. The co-intersection graph of submodules is introduced in [9].

The paper is organized as follows. Some definitions and preliminaries are introduced in Section 2. We devote Section 3 to study for connectivity of the co-intersection graph. Also, we characterize all the values of n for which $\Omega\left(\mathbb{Z}_{n}\right)$

[^0]is Eulerian and characterize some values of n for which $\Omega\left(\mathbb{Z}_{n}\right)$ is Hamiltonian in this section. Finally, the bad decision number, and the nice decision number of $\Omega\left(\mathbb{Z}_{n}\right)$ are studied in Section 4.

2. Preliminaries

This section gives some definitions of ring theory and graph theory. Also, we introduce the Co-intersection graph of a ring R and give some basic concepts about rings and maximal left ideals.

We mean from a nontrivial ideal of R is a nonzero proper left ideal of R. The set $\mathcal{I}^{\star}(R)$ is a set of all nontrivial left ideals of R. A nonzero ring R is called simple if it has no nontrivial two-sided ideal. The term null ring is used to refer a ring R, in which $x \times y=0$, for all $x, y \in R$.

By $\operatorname{Max}(R)$ and $\operatorname{Min}(R)$, we denote the set of all nonzero maximal left ideals of R and all nonzero minimal left ideals of R respectively.

A graph G is an ordered pair $G=(V, E)$, consisting of a nonempty set V of vertices, and a set $E \subseteq[V]^{2}$ of edges, where $[V]^{2}$ is the set of all 2-element subsets of V. Two vertices $u, v \in V$ are adjacent if $u v \in E$ (for simplicity we use $u v$ instead of subset $\{u, v\}$). The neighbourhood of a vertex $u \in V$ is $N(u)=\{v \in V \mid u v \in E\}$, and the closed neighbourhood of u is $N[u]=N(u) \cup\{u\}$. The degree of a vertex u in a graph G is the size of set $N(u)$, which is denoted by $\operatorname{deg}(u)$. We denote by $\delta(G)$ the minimum degree of the vertices of G. The complete graph with n vertices is denoted by K_{n}, which is a graph with n vertices in which any two distinct vertices are adjacent. A null graph is a graph containing no edges. Let G be a graph, suppose that $x, y \in V(G)$, a walk between u and v is a sequence $u=v_{0}-v_{1}-\cdots-v_{k}=v$ of vertices of G such that for every i with $1 \leq i \leq k$, the vertices v_{i-1} and v_{i} are adjacent. A (u, v)-path between u and v is a walk between u and v without repeated vertices. Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. A graph G is called connected if every pair of its vertices are connected. If vertices u and v are connected in G, the distance between u and v in G, denoted by $d(u, v)$, is the length of a shortest (u, v)-path in G. In graph G, a tour is a closed walk that traverses each edge of G at least once. A graph is Eulerian if it contains a tour which traverses each edge exactly once [6].

A cycle in a graph is a path of length at least 3 through distinct vertices which begins and ends at the same vertex. A Hamilton cycle is a spanning cycle, and a graph which contains such a cycle is said to be Hamiltonian.

If $G=(V, E)$ is a finite graph, define $f(U)=\sum_{u \in U} f(u)$, for a function $f: V \rightarrow\{-1,1\}$ and $U \subseteq V$. A function $f: V \rightarrow\{-1,1\}$ is called a bad function of G, if $f(N(v)) \leq 1$ for each $v \in V$ [13]. The maximum value of $f(V)$, taken over all bad functions f, is called the bad decision number of G, which is denoted by $\beta_{D}(G)$. The function f is called a nice function, if $\left.f(N[v])\right) \leq 1$ for each $v \in V$. The maximum value of $f(V)$, taken over all nice functions f is called the nice decision number of G, and denoted by $\overline{\beta_{D}(G)}$.

Definition 2.1. Let R be a ring. The Co-intersection graph $\Omega(R)$ of R, is an undirected simple graph whose the vertex set $V(\Omega(R))=\mathcal{I}^{\star}(R)$ is a set of all nontrivial ideals of R and two distinct vertices I, J are adjacent if and only if $I+J \neq R$.

Remark 2.1. Let \mathbb{Z}_{n} be the ring of integers modulo n. Suppose that m_{1}, m_{2} are two factor of n. Then, $\left\langle m_{1}\right\rangle+\left\langle m_{2}\right\rangle=\left\langle\left(m_{1}, m_{2}\right)\right\rangle$, where $\left(m_{1}, m_{2}\right)$ is the greatest common divisor of m_{1}, m_{2}.

Example 2.1. Suppose that $R=\mathbb{Z}_{50}$. Then, $\mathcal{I}^{\star}(R)=\{\langle 2\rangle,\langle 5\rangle,\langle 10\rangle,\langle 25\rangle\}$ and the co-intersection graph $\Omega(R)$ is as follow:

Figure 1: The Co-intersection Graph $\Omega\left(\mathbb{Z}_{50}\right)$.

3. Connectivity, eulerianity and hamiltonicity

This section derives a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. Also, we determine the values of n for which $\Omega\left(\mathbb{Z}_{n}\right)$ is a connected graph. Further, we characterize the values of n for which the graph $\Omega\left(\mathbb{Z}_{n}\right)$ is Eulerian and Hamiltonian. Before presenting and proving results, we give the following lemma.

Lemma 3.1. Let R be a ring and I, J be two distinct maximal left ideals of R. Then, I and J are not adjacent.

Proof. Since I and J are two distinct maximal left ideals of R, therefore $I+J=$ R. So I and J are not adjacent.

Lemma 3.2. Let R be a ring with co-intersection $\Omega(R)$ and J be a nontrivial left ideal of R. If $\operatorname{deg}(J)$ is finite, then R is a left Artinian ring.

Proof. Since $\operatorname{deg}(J)<\infty$, so J is a left Artinian R-modules. Otherwise, there exists a descending chain $J \supset I_{1} \supset \cdots \supset I_{n} \supset \cdots$ of left ideals of R belong to J. Thus, $J+I_{i}=J \neq R$ for each i and this is a contradiction. Also, R / J is a left Artinian R-modules. Otherwise, there exists a descending chain $R / J \supset$ $I_{1} / J \supset \cdots \supset I_{n} / J \supset \cdots$ of left submodules of R / J. Thus, $J+I_{i}=I_{i} \neq R$ for each i and this is a contradiction. Hence, according to [8, Proposition 4.5], R is a left Artinian R-module and the proof is complete.

The following proposition can be obtained in a similar way in $[9$, Theorem 2.1] about the connectivity.

Proposition 3.1. Let R be a ring and $\mathcal{I}^{\star}(R) \neq \emptyset$. Then, $\Omega(R)$ is disconnected if and only if R has at least two maximal left ideals, and every nontrivial left ideal is a maximal left ideal.

Corollary 3.1. The graph $\Omega\left(\mathbb{Z}_{n}\right)$ is disconnected if and only if $n=p q$, where p and q are distinct primes.

Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ for some $k \in \mathbb{N}$. According to Remark 2.1, \mathbb{Z}_{n} has at least two maximal ideals and every nontrivial ideal is a maximal ideal if and only if $k=2$ and $\alpha_{i}=1$. Then, by Proposition 3.1, $\Omega\left(\mathbb{Z}_{n}\right)$ is disconnected if and only if \mathbb{Z}_{n} has at least two maximal ideals and every nontrivial ideal is a maximal ideal if and only if $k=2$ and $\alpha_{i}=1$.

Corollary 3.2. Let R be a ring and $\mathcal{I}^{\star}(R) \neq \emptyset$. If $\Omega(R)$ is disconnected then $\operatorname{Max}(R)=\operatorname{Min}(R)$.

Proof. By Proposition 3.1, as $\Omega(R)$ is disconnected thus $\mathcal{I}^{\star}(R)=\operatorname{Max}(R)$. If $I \in \operatorname{Max}(R)=\mathcal{I}^{\star}(R)$, there is no nontrivial left ideal $J \subsetneq I$, then $I \in \operatorname{Min}(R)$. Also, $\operatorname{Min}(R) \subseteq \mathcal{I}^{\star}(R)=\operatorname{Max}(R)$.

Corollary 3.3. Let R be a ring. If $\Omega(R)$ is disconnected then, $\Omega(R)$ is a null graph.

Proof. By Lemma 3.1 and Proposition 3.1, the proof is complete.
Lemma 3.3. Let R be a ring. If $\operatorname{Max}(R) \cap \operatorname{Min}(R) \neq \emptyset$, then $\mathcal{I}^{\star}(R)=\operatorname{Max}(R)=$ $\operatorname{Min}(R)$ and thus $\Omega(R)$ is a null graph.

Proof. Suppose that $\mathfrak{m} \in \operatorname{Max}(R) \cap \operatorname{Min}(R)$, then for each $I \in \mathcal{I}^{\star}(R), I+\mathfrak{m}=R$. So, $\Omega(R)$ is disconnected and according to Corollary $3.2, \operatorname{Max}(R)=\operatorname{Min}(R)$. Also, by Corollary $3.3 \Omega(R)$ is a null graph.

Proposition 3.2. Let R be a commutative ring. Then, the graph $\Omega(R)$ is disconnected if and only if $R=R_{1} \times R_{2}$ where each $R_{i}(i=1,2)$ is either a field or a null ring with prime number of elements.

Proof. For the proof of the necessity part, suppose that, the graph $\Omega(R)$ is disconnected. Then, according to Proposition 3.1 and its proof, there are two maximal ideals I and J of R such that $I+J=R$ and $I \cap J=<0>$, as they are minimal ideal too, from Corollary 3.2 . Then, $R=I \oplus J \cong \frac{R}{J} \times \frac{R}{I}$ where $\frac{R}{J}$ and $\frac{R}{I}$ are simple commutative rings, as I and J are maximal ideal.

Conversely, let $R=R_{1} \times R_{2}$ where R_{1}, R_{2} are simple commutative rings. If both R_{1} and R_{2} are two fields, then R has only two nontrivial ideals, $I=$ $R_{1} \times\left\{0_{R_{2}}\right\}$ and $\left\{0_{R_{1}}\right\} \times R_{2}$ and they are maximal ideals and hence according to Lemma 3.1, $\Omega(R)$ is disconnected. If both R_{1} and R_{2} are two null rings with
prime number of elements, let $\left(R_{1},+\right) \cong\left(\mathbb{Z}_{p},+\right)$ and $\left(R_{2},+\right) \cong\left(\mathbb{Z}_{q},+\right)$, where p, q are prime numbers. If $p \neq q$, then $(R,+) \cong\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q},+\right) \cong\left(\mathbb{Z}_{p q},+\right)$, which has only two nontrivial subgroups $(\bar{p}),(\bar{q})$. These two subsets are also only nontrivial ideals of the null ring R, and then $\Omega(R)$ is disconnected.

If R_{1} is a field and R_{2} is a null rings with prime number of elements, such that $\left(R_{2},+\right) \cong\left(\mathbb{Z}_{p},+\right)$. In this case $\left\{\left(0_{R_{1}}\right) \times R_{2}, R_{1} \times(\overline{0})\right\}=\mathcal{I}^{\star}(R)$. As $1 \in\left(0_{R_{1}}\right) \times R_{2}+R_{1} \times(\overline{0})$, then $\Omega(R)$ is disconnected.

In the following, we characterize all the values of n for which the graph $\Omega\left(\mathbb{Z}_{n}\right)$ is Eulerian; further, some values of n for which $\Omega\left(\mathbb{Z}_{n}\right)$ is Hamiltonian are characterized.

At the first, we give a lemma about the number of vertices of $\Omega\left(\mathbb{Z}_{n}\right)$, and characterize $\operatorname{deg}(I)$ for each $I \in \mathcal{I}^{\star}\left(\mathbb{Z}_{n}\right)$ and also minimum degree $\delta\left(\Omega\left(\mathbb{Z}_{n}\right)\right)$.
Lemma 3.4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, a=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$, where p_{i} 's are all distinct prime numbers, and also $0 \leq \beta_{i} \leq \alpha_{i}$. If $I=<a>$ is a nontrivial ideal of \mathbb{Z}_{n}, and suppose that $\mathfrak{B}_{a}=\left\{t_{j} \mid 1 \leq t_{j} \leq k, \beta_{t_{j}} \neq 0\right\}$ is the ordered set of all indices t_{j}, such that $\beta_{t_{j}} \neq 0$, then

$$
\begin{equation*}
\operatorname{deg}(I)=\sum_{j=1}^{\left|\mathfrak{B}_{a}\right|}\left(\alpha_{t_{j}} \prod_{\substack{i=1 \\ i \notin\left\{t_{1}, \cdots, t_{j}\right\}}}^{k}\left(\alpha_{i}+1\right)\right)-2 . \tag{1}
\end{equation*}
$$

Also, the number of vertices of $G=\Omega\left(\mathbb{Z}_{n}\right)$ is $\left|\mathcal{I}^{\star}\left(\mathbb{Z}_{n}\right)\right|=\prod_{i=1}^{k}\left(\alpha_{i}+1\right)-2$ and

$$
\delta(G)=\alpha_{t_{0}} \prod_{\substack{i=1 \\ i \neq t_{0}}}^{k}\left(\alpha_{i}+1\right)-2
$$

wherein $\alpha_{t_{0}}=\min \left\{\alpha_{i} \mid 1 \leq i \leq k\right\}$.
Proof. Assume that $b \mid n$ and $b \neq n$. Then, $J=\langle b\rangle \neq I$ and I are adjacent if there exist some $t_{j} \in \mathfrak{B}_{a}$ such that $p_{t_{j}} \mid b$. But there are

$$
\alpha_{t_{1}} \prod_{\substack{i=1 \\ i \neq t_{1}}}^{k}\left(\alpha_{i}+1\right)
$$

factors of n in the form $b=p_{t_{1}} b^{\prime}$ (two of them are n and a), and there are

$$
\alpha_{t_{2}} \prod_{\substack{i=1 \\ i \notin\left\{t_{1}, t_{2}\right\}}}^{k}\left(\alpha_{i}+1\right)
$$

factors of n in the form $b=p_{t_{2}} b^{\prime}$ such that $p_{t_{1}} \nmid b^{\prime}$ and so on. It is obvious that these factors of n are distinct. As $\langle n\rangle,\langle a\rangle$ are not adjacent to $I=\langle a\rangle$, thus 2 units are deducted from the total. The proof of other statements are obvious.

Example 3.1. Let $n=2^{10} \times 3^{5} \times 5^{2} \times 7, a=2^{5} \times 3^{2} \times 5$ and $G=\Omega\left(\mathbb{Z}_{n}\right)$. Thus, $I=<a>$ is a nontrivial ideal of \mathbb{Z}_{n}. Then, according to the Lemma 3.4, $\operatorname{deg}(<a>)=(10 \times 6 \times 3 \times 2)+(5 \times 3 \times 2)+(2 \times 2)-2=392$. Also, $\delta(G)=(1 \times 11 \times 6 \times 3)-2=196$.

Proposition 3.3 ([6, Theorem 3.7]). A connected graph is Eulerian if and only if all of its vertices have even degree.

In the next proposition, we characterize all the values of n for which graphs of \mathbb{Z}_{n} are Eulerian.

Proposition 3.4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers. Then, $\Omega\left(\mathbb{Z}_{n}\right)$ is Eulerian if and only if $\alpha_{i}=1$ for each $1 \leq i \leq k$, or each α_{i} is even $(1 \leq i \leq k)$.

Proof. According to Proposition 3.3, it is enough to show that all vertices of $\Omega\left(\mathbb{Z}_{n}\right)$ have even degree if and only if $\alpha_{i}=1$ for each $1 \leq i \leq k$, or each α_{i} is even $(1 \leq i \leq k)$.

With the same notation in Lemma 3.4, if $\alpha_{i}=1$ for each $1 \leq i \leq k$, then for each factor $a \neq n$ of n, there is some $i_{0} \in\{1,2, \cdots, k\} \backslash \mathfrak{B}_{a}$. Thus

$$
2=\left(\alpha_{i_{0}}+1\right) \mid \prod_{\substack{i=1 \\ i \notin\left\{t_{1}, \cdots, t_{j}\right\}}}^{k}\left(\alpha_{i}+1\right)
$$

for each $1 \leq j \leq\left|\mathfrak{B}_{a}\right|$, and hence $\operatorname{deg}(I)$ is even. Also, it is obvious that $\operatorname{deg}(I)$ is even if α_{i} is even for each $1 \leq i \leq k$. Conversely, if there exist an α_{i} greater than 1 and also $\left\{s_{1}, \cdots, s_{m} \mid \alpha_{s_{i}}\right.$ is odd $\}$ is the nonempty set of all s_{i} such that $\alpha_{s_{i}}$ is odd, then the ideal $I=<a>=<p_{s_{1}} \cdots p_{s_{m}}>$ is a nontrivial ideal of \mathbb{Z}_{n}. We show that $\operatorname{deg}(I)$ is odd. In this case, it is obvious that the summand

$$
\alpha_{s_{j}} \prod_{\substack{i=1 \\ i \notin\left\{s_{1}, \cdots, s_{j}\right\}}}^{k}\left(\alpha_{i}+1\right)
$$

in Equation 1 is even for each $1 \leq j \leq m-1$ and is odd for $j=m$ and thus $\operatorname{deg}(I)$ is odd. The proof is complete.

Proposition 3.5 ([6], Theorem 18.4). Let G be a simple graph of minimum degree δ, where $\delta \geq \frac{n}{2}$ and $n \geq 3$. Then, G is Hamiltonian.

Proposition 3.6. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers. If $k=1, \alpha_{1} \geq 4$ or $k \geq 2, \alpha_{i} \geq 3$ for each $1 \leq i \leq k$, then $\Omega\left(\mathbb{Z}_{n}\right)$ is Hamiltonian.

Proof. If $k=1, \alpha_{1} \geq 4$, then $\Omega\left(\mathbb{Z}_{n}\right)$ is a complete graph with at least 3 vertices ([9, Example 2.14]) and thus is Hamiltonian.

Now, assume that $k \geq 2, \alpha_{i} \geq 3$ for each $1 \leq i \leq k$. Let $\alpha_{t_{0}}=\min \left\{\alpha_{i} \mid 1 \leq\right.$ $i \leq k\}$. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ has $n \geq 3$ vertices and also

$$
\left(2 \alpha_{t_{0}}-\left(\alpha_{t_{0}}+1\right)\right) \prod_{\substack{i=1 \\ i \neq t_{0}}}^{k}\left(\alpha_{i}+1\right) \geq 2
$$

Hence,

$$
\delta\left(\mathbb{Z}_{n}\right)=\alpha_{t_{0}} \prod_{\substack{i=1 \\ i \neq t_{0}}}^{k}\left(\alpha_{i}+1\right)-2 \geq \frac{\prod_{i=1}^{k}\left(\alpha_{i}+1\right)}{2}-1=\frac{n}{2} .
$$

Therefore, by Proposition 3.5, $\Omega\left(\mathbb{Z}_{n}\right)$ is Hamiltonian.

4. The decision number of $\Omega\left(\mathbb{Z}_{n}\right)$

In this section, the bad decision number and the nice decision number of $G=$ $\Omega\left(\mathbb{Z}_{n}\right)$ are investigated for each n. Some lemma's are presented in the following, and the results are combined to a single theorem at the end of the section.

Lemma 4.1. Let $n=p^{\alpha}, \alpha \geq 3$, and also $G=\Omega\left(\mathbb{Z}_{n}\right)$. Thus,

$$
\beta_{D}(G)=\left\{\begin{array}{ll}
0, & \text { for odd } \alpha \geq 5, \\
2, & \text { for } \alpha=3, \\
-1, & \text { for even } \alpha
\end{array} \quad \overline{\beta_{D}(G)}= \begin{cases}0, & \text { for odd } \alpha \\
1, & \text { for even } \alpha .\end{cases}\right.
$$

Proof. We know $G=\Omega\left(\mathbb{Z}_{n}\right)$ is the complete graph $K_{\alpha-1}$ for $n=p^{\alpha}$. Thus, at least $\left\lceil\frac{\alpha-1}{2}\right\rceil$ of the vertices must be signed by -1 , for any bad function f and $\alpha>3$. In the other side, there is a bad function f over G, such that exactly $\left\lceil\frac{\alpha-1}{2}\right\rceil$ of the vertices are signed by -1 . Further, it is obvious that $\beta_{D}\left(\Omega\left(\mathbb{Z}_{3}\right)\right)=\beta_{D}\left(K_{2}\right)=2$. Similarly, at least $\left\lfloor\frac{\alpha-1}{2}\right\rfloor$ of the vertices must be signed by -1 , for any nice function f.

Lemma 4.2. Let $k \geq 2$, α_{k} be an odd number, $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers, and also $G=\Omega\left(\mathbb{Z}_{n}\right)$. The bad decision number and the nice decision number of G are lower than or equal to 2 .

Proof. If $\alpha_{i}=1$, for all $1 \leq i \leq k$, then let $v_{0}=p_{2} \cdots p_{k}$. Note that, $|V(G)|=$ $\prod_{i=1}^{k}\left(\alpha_{i}+1\right)-2$ is an even number, and $N\left(<v_{0}>\right)=V(G) \backslash\left\{<v_{0}>,<p_{1}>\right\}$. If f is a bad function, then $f\left(N\left(<v_{0}>\right)\right)$ is at most equal to 0 , because of $\left|N\left(<v_{0}>\right)\right|$ is even. Also, $f\left(N\left[<v_{0}>\right]\right)$ is at most equal to 1 for a nice function f. Thus, $f(V(G))$ is at most equal to 2 for any bad or nice function f.

If there is an $\alpha_{i} \geq 2$, then let $v_{0}=p_{1} p_{2} \cdots p_{k}$. If f is a bad function then $f\left(N\left(<v_{0}>\right)\right)$ is at most equal to 1 . If f is a nice function then, $f\left(N\left[<v_{0}>\right.\right.$]) ≤ 0 because of $N\left[<v_{0}>\right]=V(G)$ and $|V(G)|$ is even. Hence, for any bad or nice function $f, f(V(G)) \leq 2$.

The upper bound presented in Lemma 4.2 is sharp. As $\overline{\beta_{D}\left(\Omega\left(\mathbb{Z}_{p q}\right)\right)}=$ $\beta_{D}\left(\Omega\left(\mathbb{Z}_{p q}\right)\right)=2$.
Lemma 4.3. Let $k \geq 2$, α_{k} be an odd number, $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers, and $G=\Omega\left(\mathbb{Z}_{n}\right)$. The bad decision number and the nice decision number of G are greater than or equal to 0 .
Proof. Let $m=\frac{\alpha_{k}-1}{2}$. Define the function $f: V \rightarrow\{-1,1\}$ as:

$$
f(<a>)= \begin{cases}-1, & \text { if } p_{k}^{m+1} \mid a \\ 1, & \text { otherwise }\end{cases}
$$

Suppose that $<a>$ is a nontrivial ideal of \mathbb{Z}_{n}, and $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$. We show that $f(N(<a>)) \leq 1$ and then the function f is a bad function. Let $A=\left\{i \mid a_{i} \neq 0\right\}$.

- If $a_{k}=0$:

There are $X=\left(\prod_{i \in A}\left(\alpha_{i}+1\right)-1\right) \prod_{i \notin A, i \neq k}\left(\alpha_{i}+1\right)(m+1)-1$ elements in $N(<a\rangle)$, such that have value 1 under the function f. Also, There are X elements in $N(<a\rangle)$, such that have value -1 under the function f. Hence, $f(N(<a>))=0$.

- If $m \neq 0$ and $a_{k} \neq 0$:

In this case, $Y=\left(\prod_{i \in A, i \neq k}\left(\alpha_{i}+1\right)(m+1)-1\right) \prod_{i \notin A}\left(\alpha_{i}+1\right)$ elements of $N(\langle a\rangle)$ have value 1 under the function f, and Y elements of $N(<a\rangle)$ have value -1 under the function f. Therefore, $f(N(<a\rangle))=0$.

- If $m=0$ and $a_{k} \neq 0$: In this case, there are $\prod_{i \neq k}\left(\alpha_{i}+1\right)-2$ elements of $N(\langle a\rangle)$ with value -1 and $\prod_{i \in A, i \neq k}\left(\alpha_{i}+1\right)-1$ elements of $N(<a>)$ with value 1 under f. Thus, $f(N(<a>))=\prod_{i \in A, i \neq k}\left(\alpha_{i}+\right.$ 1) $\left(1-\prod_{i \notin A}\left(\alpha_{i}+1\right)\right)+1 \leq 1$. Also, $f(N[a]) \leq 0$, as $f(<a>)=-1$.

On the other side, $f(V)=0$, as exactly the half of the vertices of G have value 1 under the f. Hence, $\beta_{D}(G) \geq 0$. Furthermore, it is obvious that $f(N[a]) \leq 1$ in all 3 cases, hence f is a nice function and $\overline{\beta_{D}(G)} \geq 0$.

The following Lemma, present an upper bound for decision numbers in the case of all of the prime factors of n have even exponent in the prime decomposition of n.
Lemma 4.4. Let $k \geq 2, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers, α_{i} 's are all even numbers, and also $G=\Omega\left(\mathbb{Z}_{n}\right)$. The bad decision number and the nice decision number of G are lower than or equal to 1 .
Proof. Let $v=p_{1} p_{2} \cdots p_{k}$, and f be a bad function. Note that, $|V(G)|=$ $\prod_{i=1}^{k}\left(\alpha_{i}+1\right)-2$ is an odd number. We have, $N(\langle v\rangle)=V(G) \backslash\{\langle v\rangle\}$ and $|N(<v>)|$ is even, thus $f(N(<v>)) \leq 0$ and $f(V(G)) \leq 1$. Further, If f is a nice function then, $f(V(G))=f(N[\langle v\rangle]) \leq 1$. Hence, $f(V(G))$ is at most equal to 1 .

In the next example we show that the upper bound presented in Lemma 4.4 is sharp.

Example 4.1. Let $n=p_{1}^{2} p_{2}^{2} p_{3}^{2}$, and $G=\Omega\left(\mathbb{Z}_{n}\right)$. Define the function f over $V(G)$ as: $f\left(p_{i}^{a_{i}}\right)=f\left(p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}}\right)=1$, where $1 \leq i \leq 3$ and $a_{1} a_{2} a_{3} \neq 0$. Otherwise, $f(v)=-1$.

It is easy to check that the function f is a bad (and nice) function, and $f(V(G))=+13-12=1$. Hence, $\beta_{D}(G), \overline{\beta_{D}(G)}=1$.

Lemma 4.5. Let $k \geq 2, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers, α_{i} 's are all even numbers, and also $G=\Omega\left(\mathbb{Z}_{n}\right)$. The bad decision number and the nice decision number of G are greater than or equal to -1 .

Proof. Let $m_{i}=\frac{\alpha_{i}}{2}$ for each $1 \leq i \leq k$. Define the function $f: V \rightarrow\{-1,1\}$ as:

$$
f(<a>)= \begin{cases}1, & \text { if } p_{1}^{\alpha_{1}} \cdots p_{i}^{\alpha_{i}} \mid a \text { and } p_{i+1}^{m_{i+1}} \nmid a \text { for some } 0 \leq i \leq k-1, \\ -1, & \text { otherwise }\end{cases}
$$

Suppose that $\langle a\rangle$ is a nontrivial ideal of \mathbb{Z}_{n}, and $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$. We show that $f(N(<a>)) \leq 1$ and then the function f is a bad function. Let $A=\left\{i \mid a_{i} \neq 0\right\}$, and $t=\min \left\{i \mid a_{i} \neq 0\right\}$.

According to the definition of f,

$$
X=\sum_{i=t}^{k} m_{i} \prod_{j=i+1}^{k}\left(\alpha_{j}+1\right)+\sum_{i=1}^{t-1} m_{i}\left(\prod_{j \in A, j>i}\left(\alpha_{j}+1\right)-1\right) \prod_{j \notin A, j>i}\left(\alpha_{j}+1\right)
$$

elements of $N[\langle a\rangle]$ have value -1 under the function f, and

$$
\begin{aligned}
Y & =\sum_{i=t}^{k} m_{i} \prod_{j=i+1}^{k}\left(\alpha_{j}+1\right)-\prod_{j \notin A, j>t}\left(\alpha_{j}+1\right) \\
& +\sum_{i=1}^{t-1} m_{i}\left(\prod_{j \in A, j>i}\left(\alpha_{j}+1\right)-1\right) \prod_{j \notin A, j>i}\left(\alpha_{j}+1\right)
\end{aligned}
$$

elements of $N[a]$ have value 1 under the function f. Therefore, if $f(\langle a\rangle)=1$, then X elements of $N(<a\rangle)$ have value -1 , and $Y-1$ elements of $N(<a\rangle)$ have value +1 . If $f(\langle a\rangle)=-1$, then $X-1$ elements of $N(<a\rangle)$ have value -1 , and Y elements of $N(\langle a\rangle)$ have value +1 . Thus,
$f(N(<a>))=\left\{\begin{array}{lll}Y-1-X=-\sum_{i=t}^{k} \prod_{j \notin A, j>t}\left(\alpha_{j}+1\right)-1, & \text { if } & f(<a>)=1, \\ Y-X+1=-\sum_{i=t}^{k} \prod_{j \notin A, j>t}\left(\alpha_{j}+1\right)+1, & \text { if } & f(<a>)=-1 .\end{array}\right.$

Consequently, $f(N(<a>)) \leq 0$ and $f(N[<a>]) \leq-1$. Hence, f is both bad function and nice function.

By the definition of the function f,

$$
Z=\sum_{i=1}^{k} m_{i} \prod_{j=i+1}^{k}\left(\alpha_{j}+1\right)
$$

vertices of G have value -1 , and $Z-1$ elements of $N(<a\rangle)$ have value +1 . Hence, $\beta_{D}(G), \overline{\beta_{D}(G)} \geq-1$.

Finally, the following theorem can immediately be concluded from the above discussions.

Theorem 4.1. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where p_{i} 's are all distinct prime numbers, and also $G=\Omega\left(\mathbb{Z}_{n}\right)$. We have

$$
\begin{aligned}
& \beta_{D}(G)= \begin{cases}-1, & \text { if } k=1, \alpha_{1} \text { is an even number, } \\
-1 \text { or } 1, & \text { if } \alpha_{i} \text { is an even number, for all } 1 \leq i \leq k, \\
0 \text { or } 2, & \text { otherwise. }\end{cases} \\
& \overline{\beta_{D}(G)}= \begin{cases}1, & \text { if } k=1, \alpha_{1} \text { is an even number, } \\
-1 \text { or } 1, & \text { if } \alpha_{i} \text { is an even number, for all } 1 \leq i \leq k, \\
0 \text { or } 2, & \text { otherwise. }\end{cases}
\end{aligned}
$$

5. Conclusion

In this paper, we have obtained a sufficient and necessary condition for $\Omega(R)$ to be a connected graph. Likewise, we characterized the values of n for which the graph $\Omega\left(\mathbb{Z}_{n}\right)$ is Eulerian and Hamiltonian. Finally, the bad (and nice) decision number of $\Omega\left(\mathbb{Z}_{n}\right)$ has been presented. In our future work, we will introduce new results of connected graphs that are very useful in networks and computer sciences.

References

[1] S. Akbari, S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra, 42 (2014), 1594-1605.
[2] S. Akbari, R. Nikadish, M.J. Nikmehr, Some results on the intersection graphs of ideals of rings, Journal of Algebra and its Applications, 12 (2013), 1250200 (13 pages).
[3] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
[4] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[5] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
[6] J.A. Bondy, U.S.R. Murty, Graph theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
[7] B. Csákány, G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J., 19 (1969), 241-247.
[8] K.R. Goodearl, R.B. Warfield, An introduction to noncommutative notherian rings, Cambridge University Press, Cambridge, 2004.
[9] L.A. Mahdavi, Y. Talebi, Co-intersection graph of submodules of a module Algebra and Discrete Mathematics, 21 (2016), 128-143.
[10] L.A. Mahdavi, Y. Talebi, Properties of Co-intersection graph of submodules of a module, Journal of Prime Research in Mathematics, 13 (2017), 16-29.
[11] S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math, 307 (2007), 1155-1166.
[12] H. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra, 320 (2008), 2917-2933.
[13] C. Wang, The negative decision number in graphs, Australasian Journal of Combinatorics, 41 (2008), 263-272.

Accepted: October 20, 2023

[^0]: *. Corresponding author

