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Abstract. In this paper, we introduce some analytical techniques to solve some classes
of second order differential equations. Such classes of differential equations arise in de-
scribing some mathematical problems in Physics and Engineering. Moreover, these
classes of differential equations generalize some very well known differential equations.
For example, Chebyshev’s Equation, Cauchy-Euler’s Equation, and some of Hypergeo-
metric differential Equations. Using one of these techniques we solve a special case of
Lane-Emden Type of Differential Equations.
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1. Introduction

Solving differential equations has important impacts on Mathematics, sciences,
and engineering. In [1]-[9], several techniques for solving differential equations
are introduced. One of the most important applications in the calculus of vari-
ation is to maximize (minimize) the functional

(1) Q[y] =

∫ b

a

(√
p(x)(y′(x))2 +

h(y(x))√
p(x)

)
dx,

where p(x) is a positive and differentiable function on some open interval I ⊂ R,
and h(x) is a differentiable function. In fact, the functional

(2) Q[y] =

∫ b

a

(√
p(x)(y′(x))2 +

h(y(x))√
p(x)

)
dx

∗. Corresponding author
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attains its extreme values at a function y(x) ∈ C2(I), where I is an open interval
in R, when y(x) satisfies the Euler’s-Lagrange differential equation [12, 15]

(3)
∂F

∂y
(x, y, y′)− d

dx

(
∂F

∂y′
(x, y, y′)

)
= 0,

where

(4) F (x, y, y′) :=
√
p(x)(y′(x))2 +

h(y(x))√
p(x)

.

Therefore, the problem of maximizing (minimizing) Q[y] is reduced to solve the
differential equation (3). i.e., to solve

(5) p(x)y′′(x) +
1

2
p′(x)y′(x) =

1

2
h′(y(x)).

Hence, it is a matter to solve such differential equations. In the first part of this
paper, we solve the following class of second order differential equation:

(6) p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√
p(x) y′(x), y(x)) = 0

which generalizes the differential equation (5). The function p(x) is positive and
differentiable function on some open interval I ⊂ R, and f(

√
p(x) y′(x), y(x))

is continuous function on some domain D ⊂ R2. In fact, equation (6) not only
generalizes equation (5), but also it generalizes many of well known differential
equation. For example,

1. the Chebyshev’s Differential Equation, e.g., see, [12, 18],

(1− x2)y′′(x)− x y′(x) + n2y(x) = 0, |x| < 1,

2. the Cauchy-Euler’s Differential Equation, e.g., see, [13, 16],

ax2y′′(x) + a x y′(x) + b y(x) = 0, x > 0,

3. the Nonlinear Chebyshev’s Equation,

(1− x2)y′′(x) +
(
α
√
1− x2 − x

)
y′(x) + f(y(x)) = 0, |x| < 1,

4. the Hypergeometric Differential Equation, e.g., see, [11, 18],

x(1− x)y′′(x) + [c− (a+ b+ 1)x] y′(x)− a b y(x) = 0, 0 < x < 1

with c=1/2 and a=-b, and
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5. the Nonlinear Hypergeometric Differential Equation,

x(1− x)y′′(x) +

(
1

2
− x+ α

√
x(1− x)

)
y′(x) + f(y(x)) = 0, 0 < x < 1.

Throughout the paper, the class of differential equations given in (6) is called
by Chebyshev’s-type of differential equations.

In the second part of this paper, we introduce an approach to solve the class
of second order differential equations

(7) a2
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+ a1f

′(y)y′ + a0f(y) = g(x),

where a0, a1 and a2 are constants, and f ∈ C2(J), for some open interval J ⊂ R.
We also give an approach to solve the class of differential equation

(8) p(x)
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+

1

2
p′(x)f ′(y)y′ + a0f(y) = 0,

where p(x) is positive and differentiable function on some open interval I ⊂ R,
and f ∈ C2(J), for some open interval J ⊂ R. Throughout the paper, these two
classes of second order differential equations are called by f−types of second
order differential equations.

In the third part of this paper, we introduce an approach to solve the fol-
lowing class of second order differential equations:

(9) a2(x, y, y
′)
(
f ′(y)y′′ + f ′′(y)(y′)2

)
+ a1(x, y, y

′)(f ′(y)y′) + a0(x, y, y
′) = 0,

where f(y) is an invertible function, and f ∈ C2(J) for some open interval
J ⊂ R. To solve this class of differential equations, we assume that

a2

(
x, f−1(z),

z′

f ′ (f−1(z))

)
z′′ + a1

(
x, f−1(z),

z′

f ′ (f−1(z))

)
z′(10)

+ a0

(
x, f−1(z),

z′

f ′ (f−1(z))

)
= 0(11)

is an exact differential equation. The differential equation (10) is exact if the
conditions

(12)
∂a2
∂z

=
∂a1
∂z′

,
∂a2
∂x

=
∂a0
∂z′

, and
∂a1
∂x

=
∂a0
∂z

.

hold, see, [1, 7, 8, 9]. In this case, the first integral of (10) exists and is given
by ∫ x

x0

a0(α, z, z
′)dα+

∫ z

z0

a1(x0, β, z
′)dβ +

∫ z′

z′0

a2(x0, z0, γ)dγ = c.

Throughout the paper, this class of differential equations is called by f−type of
second order differential equations that can be transformed to exact differential
equations.
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The layout of the paper: In the second section, we solve Chebyshev’s-type of
Second Order Differential Equations. In the third section, we solve the f−types
of second order differential equations. In the fourth section, we solve the f−type
of second order differential equation that can be transformed into exact equa-
tions. The fifth section has been devoted for the concluding remarks.

2. Solving Chebyshev’s-type of second order differential equations

In this section, we present an approach to solve Chebyshev’s-type of second
order differential equations

(13) p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√
p(x) y′(x), y(x)) = 0,

where p(x) is a positive and differentiable function on some open interval I ∈ R,
and f(

√
p(x)

y′(x), y(x)) is continuous function on some domain D ⊂ R2. The approach is
described in the following theorem:

Theorem 2.1. Assume that p(x) be a positive and differentiable function on
the open interval I ⊂ R. Let x0 ∈ I. Then

t =

∫ x

x0

dξ√
p(ξ)

transforms the differential equation (13) into the second order differential equa-
tion

(14) y′′(t) + f(y(t), y′(t)) = 0.

Proof. Let

t =

∫ x

x0

dξ√
p(ξ)

.

Since,
dy

dx
=
dy

dt

dt

dx
.

Hence,

(15)
dy

dt
=
√
p(x)

dy

dx
.

Therefore,

(16)
d2y

dt2
=

d

dt

(√
p(x)

dy

dx

)
=

d

dx

(√
p(x)

dy

dx

)
dx

dt
= p(x)y′′ +

1

2
p′(x)y′.

By substituting (15) and (16) in Equation (6), we get the result.
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Remark 2.1. The differential equation (14) is independent of variable t, and
so, it can be solved by setting η(t) = y′(t). Hence, it can be reduced to the
following first order differential equation:

(17) η
dη

dy
+ f(y, η) = 0.

Particularly, if f(
√
p(x) y′, y) = f(y), then we have

η2(t) = −2

∫ y

f(ξ)dξ + c.

Therefore,

y′(t) =

(
c− 2

∫ y

f(ξ)dξ

) 1
2

,

where c is the integration constant.

Next, we present some illustrative examples.

Example 2.1. Consider the following special case of Lane-Emden type of dif-
ferential equation:

(18) y′′ +
n− 1

x
y′ + x2(1−n)f(y) = 0, n > 2, x > 0.

Generally, the Lane-Emden type of differential equations is given by

(19) y′′ +
n− 1

x
y′ + g(x)f(y) = 0, n > 2, x > 0.

This differential equation arises in mathematical physics and astrophysics to
describe the temperature variations of a spherical gas cloud under the mutual
attraction of its molecules and subject to classical thermodynamics law [17]. To
solve (18), we multiply it by x2(n−1) to get

(20) x2(n−1)y′′ + (n− 1)x2n−3y′ + f(y) = 0, n > 2, x > 0.

Clearly, this equation takes the form of Eq. (13). Therefore it can be reduced
to to the following simple differential equation:

y′′ + f(y) = 0.

Example 2.2. Consider the nonlinear Chebyshev’s differential equation

(21)

(1− x2)y′′(x)− xy′(x) + 4
√

1− x2 y′y(x) = 0,

y(0) =
1

2
, y′(0) = −1

2
.

Then

t =

∫ x dξ√
1− ξ2

= arcsin(x)
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transforms (21) into
y′′(t) + 4y′(t)y(t) = 0.

Set η(t) = y′(t). The above equation becomes

η
dη

dy
+ 4ηy = 0.

The solution of this equation is y(t) = 1
2(t+1) . Therefore,

y(x) =
1

2(arcsin(x) + 1)
.

Example 2.3. Consider the initial value problem

(22)

{
x2y′′ + xy′ − 3y2 = 0, x > 0,

y(1) = 2, y′(1) = 4.

Then

t =

∫ x

1

dξ

ξ
dξ = ln(x)

transforms the (22) into

(23)

{
y′′ − 3y2 = 0,

y(0) = 2, y′(0) = 4.

The solution of the above differential equation is

y(t) =
2

(1− t)2
.

Hence,

y(x) =
2

(1− ln(x))2
.

Example 2.4. Consider the linear form of (6). i.e.,

(24) ϕ(x)y′′ +
1

2
ϕ′(x)y′ + λ2y = 0,

where λ > 0, and ϕ(x) is a positive and differentiable function on some open
interval (a, b) ⊂ R. By applying the transformation

t =

∫ x

x0

dξ√
ϕ(ξ)

dξ

to equation (24), then it can be transformed into the following differential equa-
tion:

d2y

dt2
+ λ2y = 0.
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The solution of this differential equation is

y(t) = C1 sin(λt) + C2 cos(λt).

Hence, the general solution of equation (24) is

y(x) = C1 sin

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)
+ C2 cos

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)
.

Example 2.5. Consider the following second order linear differential equation
[16, eq. 239, p. 335]:

(25) 4xy′′ + 2y′ + y = 0.

From the previous example, the general solution of this equation is given by

y(x) = C1 sin

(∫ x

x0

dξ

2
√
ξ
dξ

)
+ C2 cos

(∫ x

x0

dξ

2
√
ξ
dξ

)
and so,

y(x) = C1 sin
(√
x
)
+ C2 cos

(√
x
)
.

Remark 2.2. Consider the second order linear differential equation

(26) (ϕ(x))2y′′(x) + ϕ(x)ϕ′(x)y′(x) + λy(x) = 0, x ∈ (a, b),

and assume that ϕ(x) is a positive and differentiable function on the open in-
terval (a, b) ⊂ R. Moreover, assume that ϕ(a) = ϕ(b) = 0. Define the linear
differential operator

L[y] := −
(
(ϕ(x))2y′′(x) + ϕ(x)ϕ′(x)y′(x))

)
= λy(x).

Then the boundary value problem

(27)

{
L[y] = −

(
(ϕ(x))2y′′(x) + ϕ(x)ϕ′(x)y′(x)

)
= λy(x), a < x < b,

ϕ(a) = ϕ(b) = 0,

satisfies the Lagrange Identity
∫ b
a ϕL[ψ]dx =

∫ b
a ψL[ϕ]dx, where ϕ and ψ satisfy

the above boundary value problem. Therefore, the operator L[y] is self-adjoint.
Hence, the boundary value problem (27) has an orthogonal set of eigenfunctions
{ϕn(x)}∞n=1 with corresponding eigenvalues {λn}∞n=1. Since the above boundary
value problem is a special case of (6). Then, by using the approach described
in Theorem 2.1, it is easy to find its orthogonal set of eigenfunctions.

By using the same approach described in Theorem 2.1. We can solve the
following class of second order linear differential equations:

(28) [P (x)]2 y′′(x) + P (x)
[
α+ P ′(x)

]
y′(x) + βy(x) = 0,
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where P (x) > 0, P (x) ∈ C1(a, b), and α and β are constants. In fact, the
transformation

(29) t =

∫ x

x0

dξ

P (ξ)
,

where x0, x ∈ (a, b), transforms Eq. (28) into the following second order differ-
ential equation:

y′′(t) + αy′(t) + βy(t) = 0.

This differential equation is with constant coefficients can be solved by using
the elementary techniques of solving second order differential equations. For
illustration, we present the following examples:

Example 2.6. Consider the well-known Cauchy-Euler’s Equation

x2y′′(x) + (α+ 1)xy′(x) + βy = 0, x > 0.

Then P (x) = x, and the t−transformation is t = ln(x), which transforms the
equation into

y′′(x) + αy′(x) + βy = 0

Example 2.7. Consider the Chebyshev’s Equation[
1− x2

]
y′′(x)− 2xy′(x) + n2y = 0, |x| < 1.

Then P (x) =
√
1− x2, and the t−transformation is t = sin−1(x), which trans-

forms the equation into

y′′(x) + n2y = 0.

Using this transformation, the solution of Chebyshev’s Equation is given by

y(x) = A cos(n sin−1(x)) +B sin(n sin−1(x)).

Example 2.8. Consider the Hypergeometric Equation

(30) x(1− x)y′′(x) +
1

2
(1− 2x)y′(x) + a2y = 0, x ∈ (0, 1).

Then P (x) =
√
x(1− x), and the t−transformation is t = sin−1(2x − 1). This

transforms the above equation into

y′′(t) + a2y(t) = 0.

Hence, the solution of equation (30) is given by

y(x) = A cos(a sin−1(2x− 1)) +B sin(a sin−1(2x− 1)).
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For certain functions, h(x) ∈ C(a, b), for some open interval (a, b) ∈ R , we
can solve the nonhomogeneous second order differential equation

(31) [P (x)]2 y′′(x) + P (x)
[
α+ P ′(x)

]
y′(x) + βy = h(x).

Particularly, when h(x) can be written in the form H(t), where t =
∫ x
x0

dξ
P (ξ) .

The following example shows this idea:

Example 2.9. Consider the nonhomogeneous differential equation

(32) x(1− x)y′′(x) +
1

2
(1− 2x)y′(x) + a2y = 2x, x ∈ (0, 1).

Then P (x) =
√
x(1− x). The t−transformation is t = sin−1(2x − 1). This

transforms the equation into

y′′(t) + a2y(t) = 1 + sin(t).

The solution of equation (32) is given by

y(x) =



A cos(a sin−1(2x− 1)) +B sin(a sin−1(2x− 1)) +
2x− 1

a2 − 1
+

1

a2
,

if a ̸= ±1,

A cos(sin−1(2x− 1)) +B(2x− 1) +
1

2
(1− 2x) sin−1(2x− 1) + 1,

if a = ±1.

3. Solving the f−types of second order differential equations

In this section, we solve the following class second order nonlinear differential
equation

(33) a2
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+ a1f

′(y)y′ + a0f(y) = g(x),

where a2, a1 and a0 are constants, and f ∈ C2(J), for some open interval J ⊂
R. In this section, we also solve the following class of second order nonlinear
differential equation:

(34) p(x)
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+

1

2
p′(x)f ′(y)y′ + a0f(y) = 0,

where p(x) is a positive and differentiable function on the open interval I ⊂ R,
and f ∈ C2(J). To solve (33), let z = f(y). Hence, z′ = f ′(y)y′, and z′′ =
f ′(y)y′′ + (y′)2f ′′(y). Substitute z, z′ and z′′ in equation (33), we get

(35) a2z
′′ + a1z

′ + a0z = g(x),

Similarly, equation (34) becomes

(36) p(x)z′′ +
1

2
p′(x)z′ + a0z = 0,
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which is the linear form of (6). Therefore, it can be solved by using the technique
described in Example 2.4. To illustrate the procedure of solving (33) and (34),
we present the following examples:

Example 3.1. Consider Langumir Equation, with a slightly modification,

(37) 3yy′′ + 3(y′)2 + 4yy′ + y2 = 1.

The original Langumir Equation is given by

3yy′′ + (y′)2 + 4yy′ + y2 = 1

which originally appears in connection with the theory of current flow from hot

cathode to an anode in a hight vacuum [10, 14]. To solve (37), we let z = y2

2 .
Then z′ = yy′ and z′′ = yy′′ + (y′)2. Hence, equation (37) becomes

3z′′ + 4z′ + 2z = 1.

The solution of this equation is

z(x) = e−
2
3
x

(
A cos

(√
2

3
x

)
+B sin

(√
2

3
x

))
+

1

2
.

Hence, the solution of (37) is given by

y2 = 2e−
2
3
x

(
A cos

(√
2

3
x

)
+B sin

(√
2

3
x

))
+ 1.

Example 3.2. Consider the initial value problem{
y′′ + (y′)2 + 1 = (cosωx)e−y, ω ̸= ±1,

y(0) = y′(0) = 0.

This problem is equivalent to{(
y′′ + (y′)2

)
ey + ey = (cosωx), ω ̸= ±1,

y(0) = y′(0) = 0.

Let z = ey. Then z′ = y′ey and z′′ = y′′ey + (y′)2ey. By substituting z, z′

and z′′ in the above initial value problem, we get{
z′′ + z = cosωx, ω ̸= ±1,

z(0) = 1, z′(0) = 0.

The solution of this problem is z(x) = 1
1−ω2

(
cosωx− ω2 cosx

)
, ω ̸= ±1. There-

fore, y(x) = ln
(

1
1−ω2

(
cosωx− ω2 cosx

))
, ω ̸= ±1.
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Example 3.3. Let ϕ(x) be a positive and differentiable function on the open
interval (a, b) ⊂ R, and consider the differential equation

ϕ(x)
(
y′′ + (y′)2

)
+

1

2
ϕ′(x)y′ + λ = 0.

By multiplying this equation by ey, we get

ϕ(x)
(
y′′ + (y′)2

)
ey +

1

2
ϕ′(x)y′ey + λey = 0.

Let z = ey. Then z′ = y′ey and z′′ = y′′ey + (y′)2ey. By substituting z, z′ and
z′′ in the above differential equation, we get

ϕ(x)z′′ +
1

2
ϕ′(x)z′ + λz = 0.

The solution of this equation is (see Example 2.4)

z(x) = C1 sin

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)
+ C2 cos

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)
.

Therefore,

y(x) = ln

[
C1 sin

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)
+ C2 cos

(
λ

∫ x

x0

dξ√
ϕ(ξ)

dξ

)]
.

4. Solving the f-type of second order differential equations that can
be transformed into exact differential equations

In this section, we solve the following class of second order differential equations:

(38) a2(x, y, y
′)
(
f ′(y)y′′ + f ′′(y)(y′)2

)
+ a1(x, y, y

′)(f ′(y)y′) + a0(x, y, y
′) = 0,

where f(y) is invertible function and f ∈ C2(J), for some open interval J ∈ R.
To solve this class of differential equations, we let z = f(y). Then z′ = f ′(y)y′

and z′′ = f ′′(y)(y′)2+f ′(y)y′′.Moreover, we let y = f−1(z). Then y′ = z′

f ′(f−1(z))
.

Hence, equation (38) can be transformed into the following differential equation:

a2

(
x, f−1(z),

z′

f ′ (f−1(z))

)
z′′ + a1

(
x, f−1(z),

z′

f ′ (f−1(z))

)
z′

+ a0

(
x, f−1(z),

z′

f ′ (f−1(z))

)
= 0.(39)

Assuming that (39) is exact, i.e., the conditions (12) hold. Then its first integral
exists, and so, it can reduced to a first order differential equation which in turn
can be solved by using elementary techniques. To explain this procedure, we
present the following illustrative examples:
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Example 4.1. Consider the second order nonlinear differential equation

(40)

{
ey
[
y′′ + (y′)2

]
+ 12xe4yy′ +

(
3e4y − 1

)
= 0,

y(0) = ln 2, y′(0) = 0.

Let z = ey. Then z′ = eyy′ and z′′ = eyy′′ + ey(y′)2. Hence, Eq. (40) becomes

(41)

{
z′′ + 12xz3z′ +

(
3z4 − 1

)
= 0,

z(0) = 2, z′(0) = 0.

Therefore, a2(x, z, z
′) = 1, a1(x, z, z

′) = 12xz3, and a0(x, z, z
′) =

(
3z4 − 1

)
. In

addition, we have

(42)
∂a2
∂z

=
∂a1
∂z′

= 0,
∂a2
∂x

=
∂a0
∂z′

= 0, and
∂a1
∂x

=
∂a0
∂z

= 12z3,

Hence, equation (41) is exact differential equation. Hence, its first integral is
given by

z′ + 3xz4 − x = 0.

For which an implicit solution can be obtained by separating the variables, and
hence, y(x) = ln(z(x)).

Remark 4.1. Assume that (39) is not exact. Then an integrating factor of (39)
could be exist. Hence, it can be transformed into an exact differential equation
[1]. To explain the procedure of solving (39), we present the following example:

Example 4.2. Consider the second order nonlinear differential equation

(43) xey (2x+ ey)
(
y′′ + (y′)2

)
+ x (x+ ey) y′ + (3x+ ey) = 0.

By multiplying this equation by ey, we get

(44) xe2y (2x+ ey)
(
y′′ + (y′)2

)
+ x (x+ ey) eyy′ + ey (3x+ ey) = 0.

Let z = ey. Then z′ = eyy′ and z′′ = eyy′′ + ey(y′)2. Hence, by substituting z,
z′ and z′′ in (44), we get

(45) xz(2x+ z)z′′ + x(x+ z)z′ + z(3x+ z) = 0.

This equation is not exact since ∂a2
∂z = 2(x + z) ̸= 0 = ∂a1

∂z′ . An integrating
factor of this second order nonlinear differential equation exists, and it is given
by µ(x, z) = 1

xz(2x+z) . Multiplying (45) by µ(x, z), we get

(46) z′′ +
(x+ z)

z(2x+ z)
z′ +

(3x+ z)

x(2x+ z)
= 0.
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Clearly,

(47)
∂a2
∂z

=
∂a1
∂z′

= 0,
∂a2
∂x

=
∂a0
∂z′

= 0, and
∂a1
∂x

=
∂a0
∂z

=
−1

(2x+ z)2
.

Therefore, the differential equation (46) is exact, and its first integral is given
by

(48) c = z′ + ln
(
xz

√
2x+ z

)
.

This first order differential equation can be solved by using the elementary
techniques of solving first order differential equations. Hence, y(x) = ln(z(x)).

Finally, we consider the nonhomogeneous second order linear differential
equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = h(x),

where a2(x) ̸= 0, a1(x), and a0(x) are differentiable functions on an open interval
(a, b) ⊂ R. This equation admits an integrating factor µ(x) = 1

a2(x)
provided

that W (a2, a1)(x) = a0(x)a2(x), where W (a2, a1)(x) = a2(x)a
′
1(x)−a1(x)a′2(x).

For this case, we present the following example:

Example 4.3. consider the second order linear differential equation

exy′′ + cosxy′ − (cosx+ sinx)y = h(x).

By multiplying this equation by the integrating factor e−x, we get

y′′ + e−x cosxy′ − e−x(cosx+ sinx)y = h(x)e−x.

This equation can be written as

d

dx

[
y′ + (e−x cosx)y

]
= h(x)e−x

Hence, its first integral is given by

y′ + (e−x cosx)y =

∫ x

h(ξ)e−ξdξ + c1

which can be solved by using the elementary techniques of solving first order
differential equations.

5. Concluding remarks

In this paper, we solved some classes of second order differential equation. In
fact, we solved the following classes of second order differential equations:
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1. The Chebyshev’s type of second order differential equations which is given
by

(49) p(x)y′′(x) +
1

2
p′(x)y′(x) + f(

√
p(x) y′(x), y(x)) = 0, x ∈ (a, b),

where p(x) is a positive and differentiable function on the some open in-
terval I ⊂ R, and f(

√
p(x) y′(x), y(x)) is a continuous function on some

domain D ⊂ R2.

2. The f−types of second order differential equations:

a) the first type is given by the second order differential equation

(50) a2
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+ a1f

′(y)y′ + a0f(y) = g(x),

where a2, a1 and a0 are constants, and the function f is a second
differentiable function of on some open interval J ⊂ R, and

b) the second type is given by the second order differential equation

(51) p(x)
(
f ′(y)y′′ + (y′)2f ′′(y)

)
+

1

2
p′(x)f ′(y)y′ + a0f(y) = 0,

where p(x) is a positive and differentiable function on some open
interval I ⊂ R, and f is a second differentiable function on some
open interval J ⊂ R.

3. f -type of second order differential equations that can be transformed into
exact second order Differential Equations. Particularly, the class of differ-
ential equations
(52)
a2(x, y, y

′)
(
f ′(y)y′′ + f ′′(y)(y′)2

)
+ a1(x, y, y

′)(f ′(y)y′) + a0(x, y, y
′) = 0,

where the function f(y) is an invertible function and is second differen-
tiable function on some open interval J ⊂ R.

In the paper, we also presented some illustrative examples.
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