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Abstract. The bifurcation of Liouville tori of a generalized Hènon-Heiles System
(GHH) are determined. The phase portrait of separation functions of (GHH) are stud-
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by using Poincaré surface section.
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1. Introduction

The integrable Hamiltonian system with n-degree of freedom possessing a pe-
riodic solutions and it has an n-invariant torus around these solution. The
Hamiltonian Hènon-Heiles (HH) system [22] is one of the famous model systems
which in general is not integrable. It represents the motion of a star in the
rotating meridian plane of a galaxy in the neighborhood of a circular orbit or in
the equatorial plane of a galaxy with axial symmetry. The problem can be inte-
grated in the sense of Liouvill-Arnold [3] if there exist a single-valued, integral of
the motion which are functionally independent and involution besides the inte-
gral of energy and the angular momentum integral. Hènon-Heiles introduced a
two-dimensional axil-symmetric, potential admit a third isolating integral which
is analytically and sufficiently complicated to give the trajectories which are far
from trivial, this integral existed only for some values of the constant of energy,
and in escape energy, the problem is not integrable.

The HH and GHH (Generalized Hènon-Heiles) has been studied in great
numbers of scientific works, to get a complete picture of the motion. The Hamil-
tonian Toda system [30] is possessed another integral for the motion of three
particles moving on a ring and, Ford et al. [17] gave the the same result nu-
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merically. The Hamiltonian can be reduced to the 2-D system by a canonical
transformation [25], and the expansion of the system up to the third order
terms coincided with HH system as shown in G. Contopoulos and C. Polymilis
[9]. They expanded the exponential terms up to 10th order approximation. The
periodic orbits of HH was studied by many authors: El-Sabaa and Sherief [11]
classified and discussed nine classes of the main periodic orbits and its stability
while Davies et al. [10] applied the monodromy method, for calculating the pe-
riodic trajectories, the monodromy method was computationally very efficient
where the periodic orbits including a number of simple bifurcations. Ozaki and
Kurosaki [27] found the periodic orbits and the bifurcation of it by calculating
Poincaré surface-section and the residues of their orbits. Carrasco and Vidal
[7] used small parameter in order to apply the average method of second order
to proved the existence of different families of periodic solutions for some cases
of parameters and characterized the stability of the family of periodic orbits.
For the study of fractal HH, Barrio et al. [4] presented the appearance of dif-
ferent kinds of fractal structures in the paradigmatic HH Hamiltonian, and as
the KAM (Kolmogrov, Arnold, Mozer) regime continues, the regular bounded
region presents a fractal structure. For non integrability of HH, Holmes [24]
used the Melnikov’s method to prove that the all neighboring systems of HH
type are non-integrable and estimate the width of the primary stochastic layer
which is the cause of non-integrability.

The HH system was study too in quantum mechanics: Bixon and Jortner
[5] considered the dynamics of wave packets of bound states in the nonlinear
HH system, and explored the correspondence between classical and quantum
dynamics. Akhiezer et al. [2] studied the chaos of charged particles in a crystal
regarding HH potential. Bastida et al. [32] investigated the possibility of using
oblique coordinates to determine the energy levels and wave functions of HH
coupled oscillator systems.

The aim of this article is to study GHH the Painlevé property [20] for the
problem is applied to show the identification of specific integrable cases. The
topology of the level set is given and, the phase portrait of the separated function
of the integrable cases are determined. The surface-section was introduced by
Poincaré to get the regular motion in all integrable cases for different values of
the constant of energy.

2. Painlevé analysis

The GHH Hamiltonian system is

(1) H =
1

2
(p2x + p2y +Ax2 +By2 + 2Dx2y − 2

3
Cy3).
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Where the HH Hamiltonian can be written when A = B = C = D = 1. The
GHH given a nonlinear dynamical system governed by a system of the equations:

ẍ+Ax+ 2Dxy = 0,

ÿ +By −Dx2 + Cy2 = 0.
(2)

By using Painlevé analysis, its required that a Laurent series of the solution,
considering time as a complex variable, have only simple poles at all movable
singularities, where these points are those that depend on the initial condition of
the system. If the singular points independent to the constants of integration,
then they are fixed singular points, and among these points, the branch and
the essential singularities are said to be a critical points. When system satisfy
Painlevé property (P-property), then they can be integrable and the solution
expressed in Laurent expansion in neighborhood of the movable singular point.
Many authors [21, 23, 6]have applied the Painlevé analysis to variety of the
Hamiltonian dynamical system, and identified a considerable number of new
integrable. Ablowitz et al. (1980) [1] announced an algorithm (ARS algorithm)
to determine whether a non-linear system is integrable or not, this algorithm
consists of the following steps:
The first step is to put

x = aτα, y = bτβ, τ = t− t0,(3)

where α and β are integers and less than zero. So the system (2) becomes:

aα(α− 1)τα−2 = −2Dabτα+β,

bβ(β − 1)τβ−2 = −Da2(τ2α) + Cb2τ2β,
(4)

and hance we can determine the leading order: we have two cases:

• Case (i) α = −2, a = ± 3
D

√
2 + 1

λ , β = −2, b = 6
D .

• Case (ii) α = 1
2 ±

1
2

√
1− 48λ, a = arbitrary, β = −2, b = 6

C .

where λ = D/C.
The second step is determine the resonances, that is the power at which

arbitrary constant of the solution can enter into the Laurent series expansion,
so we have

x = ± 3

D

√
2 + 1/λt−2 + ptr−2,

y = − 3

D
t−2 + qtr−2,

(5)

where p and q are arbitrary parameters. Setting up the linear equations for p
and q from the dominant balance terms in equation (2), and then the resonances
are:
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• for case (i)

(6) r = −1, 6,
5

2
± 1

2

√
1− 24(1 + λ),

• for case (ii)

(7) r = −1, 0, 6,±
√

1− 48

λ
.

The third step is to verified that sufficient number of arbitrary constants exist
without the introduction of the movable critical points

According to [29], the arbitrary constants exist where the root r = −1 is
represent the arbitrary of pole position, while the root r = 0 is associated to the
arbitrary A. As a Painlevé criterion, the values of r must be integer. So, the
problem is a Painlevé type and the integrable cases are:

1. λ = −1, AB = 1

2. λ = −1
6 any A,B

3. λ = 1
16 ,

A
B = 1

16

3. Topological analysis

In the first case, we recall that the Hamilton-Jacobi equation corresponding
to the system (2) separates to u, v defined as [33]

x =
1

2
(u+ v), y =

1

2
(u− v),(8)

which the first case λ = −1, then px, py can be determined through the coordi-
nates u, v as follows:

px =
1√
6

(
√
F1(u) + F2(v)),

py =
1√
6

(
√
F1(u)− F2(v)).

(9)

Where F1(u),F2(v) denoted by the polynomials:

F1(u) = f − 3h− 3

2
u2 − u3,(10)

F2(v) = −f − 3h− 3

2
v2 + v3,(11)

and f is the constant of separation. So the Hamilton-Jacobi equations leads to

du√
F1(u)

− dv√
F2(v)

=
1√
6
β,(12)

du√
F1(u)

+
dv√
F2(v)

=

√
3

2
(t0 − t).(13)
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Therefore, the differential equations satisfied by u and v are√
3

2

∫ u

u0

du√
F1(u)

=

∫ t

t0

dt,(14) √
3

2

∫ v

v0

dv√
F2(v)

=

∫ t

t0

dt.(15)

In the second case where λ = −1
6 , Wojciechowski [31]showed that the GHH

can be separated shifted parabolic coordinates ξ, η such that

x2 = −4ξη, y = ξ + η + (B − 4A)/4,(16)

and the Hamiltonian-Jacobi equation in this case

S = −ht+

∫
[
1

2
(h− A(4A−B)2

32D
) +

k

2
ξ − 1

2
Dξ4 + (

3

2
A− 1

4
B)ξ3

− 1

2
(
D

2
(B(4A−B) +

3

2
(4A−B)2))ξ2]dξ

+

∫
[
1

2
(h− A(4A−B)2

32D
)− k

2
η +

1

2
Dη4 − (

3

2
A− 1

4
B)η3(17)

+
1

2
(
D

2
(B(4A−B) +

3

2
(4A−B)2))η2]dη,

where h is the energy constant, k is the separation constant. And according to
the equation of motion, we have the system of differential equations:

dξ√
ξP1(ξ)

− dη√
ηP2(η)

= 0,(18)

ξdξ√
ξP1(ξ)

+
ηdη√
ηP2(η)

= −1

2
dt.(19)

these equations gives a separated functions

(20) P (q) = 16q2−8(6A−B)q3+(12A−B)(4A−B)q2+(8h−A(4A−B)2)q−k,

where q≡ (ξ, η)

Fomenko [15] proposed a new approach in the qualitative theory of integrable
Hamiltonian system, given the separation of the system, the determination of
critical values of the energy momentum map boils down to the analysis of the
discriminant surface of a polynomial. An Integrable Hamiltonian of a system
has n-degrees of freedom always has a set of n-integrals of motion in n-involution
consequently, the trajectory of the system is confined to n-dimensional manifold
phase space. According to the Arnold Liouville theorem [?], for non-critical
values of two constants of the problem, the regular level sets of a completely
integrable Hamiltonian system consists of tori. Their number depends only upon
the number and the location of the ovals of an associated Riemann surface.
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We will study the topology of the first case (λ = −1) by using the Fomenko’s
classification theorem [16], this classification was studied in Jamil in the different
cases in the rigid body problem [26], [18] . The second case (λ = −1

6) was studied
by L.Gavrilov [19], which they are only separated of all integrable cases.

Let Ls be the real phase space topology of the system (9), where

(21) Ls = [(x, y, px, py) ∈ R4 : H = h, F = f ] ⊂ R4,

and let Σ = Σ1
⋃

Σ2, where Σ1 and Σ2, are the discriminate locus of the poly-
nomials F1(u) and F2(v), respectively:

(22) Σ=Σ1∪Σ2=[(h, f)∈R2/disc(F1(u))=0]∪[(h, f)∈R2/disc(F2(v))=0].

The set R2/Σ consists of 16 connected component denoted by Di, i = 1, ..., 16.
Table 1 is presented the real roots of both F1(u), and F2(v) to find the ovals
of (Γ1 : ω1 =

√
F1(u), ω2 =

√
F2(v)) to study the topological type of Ls (see

Table 2).

To determine these ovals, it suffices to study the real roots of the polynomials
F1(u), and F2(v) for different values of h and f . It is found that there exist
exactly two ”admissible” ovals whose projections on the u-plane and the v-plane
which are denoted by 41 and 42, respectively as shown in Table 2.

To study the topological type of Ls, it is should be noted that the topological
type of Ls depends only on passing the point (h, f) ∈ R2 through Σ, for more
details [12].

The topological type of Ls is either a torus as in Di, i = 1, 16 or empty as in
Di, i = 2, ..., 15 (Liouville theorem [16]) as shown in Figure 1 and Table 2.

Table 1: The real roots of the polynomi-
als F1(u) and F2(v) for (h, f) ∈
R2/Σ

Domain Roots of F1(u) Roots of F2(v)

1 u1 < 0 v1 < 0

2 0 v1 < 0

3 0 v1 < 0

4 0 v1 < 0

5 0 v1 < 0

6 0 0

7 0 0

8 0 0

9 u1 < 0 0

10 0 0

11 u1 < 0 0

12 0 0

13 0 0

14 u1 < 0 0

15 u1 < 0 0

16 u1 < 0 v1 > 0

Table 2: Admissible ovals on diagram
Σ.

Domain u− plane 41 v − plane 42 Topological type

1 [0, u1] [0, v1] T

2 ∅ [0, v1] ∅
3 ∅ [0, v1] ∅
4 ∅ [0, v1] ∅
5 ∅ [0, v1] ∅
6 ∅ ∅ ∅
7 ∅ ∅ ∅
8 ∅ ∅ ∅
9 [0, u1] ∅ T

10 ∅ ∅ ∅
11 ∅ ∅ ∅
12 ∅ ∅ ∅
13 ∅ ∅ ∅
14 [0, u1] ∅ ∅
15 [0, u1] ∅ ∅
16 [0, u1] [0, v1] T
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Figure 1: Diagram of bifurcation Σ = Σ1 ∪ Σ2.

Figure 2: A torus T is contracted to the axial circle S and then vanishes.

A bifurcation of Liouville tori is due to the bifurcation of the polynomials
F1(u) and F2(v) roots. In the present problem, there are two type of bifurcation
as follows:

1. A torus contracts to circle and then vanished, as shown in Figure 2.
2. A symmetric bifurcation of one tori into one tori, as shown in Figure 3.

Figure 3: Bifurcation of Liouville tori, where S
∧
S is union of two circles having

exactly one common point.

Table 3 gives All generic bifurcations of Liouville tori of the system (9),
Figures 4, and 5 show the bifurcations of the polynomials F1(u) and F2(v).

Figure 4: Correspondence between bifurcation of roots of polynomials
F1(u) and F2(v) and bifurcation of invariant Liouville tori.
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Domains The generic bifurcation

1→ i, i = 2, ..., 15 T → ∅
16→ i, i = 2, ..., 15, T → ∅

1→ 16 T → T

Table 3: Generic bifurcations of the level set Ls passing from domain i to do-
main j.

Figure 5: Correspondence between bifurcation of roots of polynomials
F1(u) and F2(v) and bifurcation of invariant Liouville tori.

4. Periodic solutions

On the curve C1 where f = 3h, we note that the tori T contracted to axial
circle S and then vanish as shown in Figure 1, where the u parameter takes
value in interval [u1, 0], and v = −3

2 , then their exist a periodic solution on this
curve as shown in the Table 4.

Domain u− plane 41 v − plane 42 Topological type

C1 [u1, 0] [v1, 0] S

C2 [u1, 0] [v1, 0] s× (s ∧ s)

Table 4: Topological type of Ls for (h, f) ∈ B.

By solving the second equation of (15), the function F1(u) is a polynomial of
fourth degree and has three roots u1, u2, andu3 such that

If f > 3h or f < 3h, the real motion bounded by e1, and e2 such that
e2 < u < e1.

Put

(23) u =
e2e31 − e3e21sin2(φ)

e31 − e21sin2(φ)
,

where eij = ej − ei, and

(24) du =
2e21e32sin(φ)cos(φ)

e31(1− k2sin2(φ))2
dφ,

where

(25) k2 =
e21
e31

,
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the equations (15), become:

(26)

∫ t

t0

dt =

√
3

2

√
4

e31

∫ φ

φ0

√
dφ

1− k2sin2(φ)
.

Then, the solution is:

(27) u =
e1e31 − e3e21sn2(

√
e31
6 (t0 − t1), k)

e31 − e21sn2(
√

e31
6 (t0 − t1), k)

.

Then, the period T of F1(u)

(28) T = g1sn
−1(−1, k) = g1K(k).

where

g1 =

√
6

√
e31

(29)

and K(k)is complete elliptic function of the first kind.

5. Phase portrait of the separated functions

The aim of this section is to find topological interpretation of the trajectory
of the second case by using the phase portrait as manner it was studied in [13],
[14]

The phase portrait of the separated functions is:

Pq = 16q4 − 8(6A−B)q3 − (12A−B)(4A−B)q2

+A(4A−B)2q − 8hq − k − 4qp2.(30)

We first study the singular points of Pq. These points can be found from the
equations

∂Pq
∂p

= −8qp = 0,

∂Pq
∂q

= 64q3 − 24(6A−B)q2 − 2(12A−B)(4A−B)q −A(B − 4A)

− 8h− 4p2 = 0,

(31)

and hence, when p = 0, the second equation of (31) became

(32) 64q3 − 24(6A−B)q2 − 2(12A−B)(4A−B)q −A(B − 4A)− 8h = 0,

and when q = 0, we get the two equations

p2 =
1

4
(A(B − 4A) + 8h),(33)

then, from equation (31 and 32 ) we have the points (±
√
A(B − 4A) + 8h, 0)

and (0, q1), where q1 the real root of the equation 31.
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Now, we study the points in the following manner:
1. From equation (33) there are one singular point with p coordinate

(±
√
A(B − 4A) + 8h, 0) To get the type of the two points, put

q = y, p = ±
√
A(B − 4A) + 8h+ x,(34)

in the function Pq, neglecting terms of degree greater than 2, then we have

(35) Pq = −(12A−B)(4A−B)y2 − 4(±
√
A(B − 4A) + 8h)xy +A0,

where A0 contains the terms of zeros and first degree of x, y. These points are
hyperbolic in two case:

1. h > 0 (Figure 6),

2. h < 0 (Figure 7),

where

(36)

[
∂2Pq

∂x2
∂2Pq

∂x∂y
∂2Pq

∂x∂y
∂2Pq

∂y2

]
x=y=0

< 0.

2. From equation (32) there are one singular point with q coordinate (0, q1).
To get the type of the point, put

q = q1 + y, p = x,(37)

in the function Pq, neglecting terms of degree greater than 2, then we have

(38) Pq = [96q21 − 24(6A−B)q1 − (12A−B)(4A−B)]y2 − 4q1x
2 +A0,

where A0 contains the terms of zeros and first degree of x, y. This point is
hyperbolic point in two case:

1. h > 0 (Figure 8),

2. h < 0 (Figure 9),

where

(39)

[
∂2Pq

∂x2
∂2Pq

∂x∂y
∂2Pq

∂x∂y
∂2Pq

∂y2

]
x=y=0

< 0.

To study the phase portrait of the first case(λ = −1) we have the separated
function R:

(40) R = p2 + q3 +
3

2
q2 + 3h− f.

the singular points of this case are (0, 0) and (0,−1). These points are elliptic
and hyperbolic respectively as they shown in Figure 10.
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Figure 6: The two-hyperbolic point,
where h > 0.

Figure 7: The two-hyperbolic point,
where h < 0.

Figure 8: The hyperbolic point, where
h > 0.

Figure 9: The hyperbolic point, where
h < 0.

Figure 10: The one elliptic point, and the one hyperbolic point.

6. Poincaré surface section

To complete the picture of the present problem, we solve the GHH system nu-
merically by using a surface section introducing by Poincaré [28]. The trajectory
of the system may be treated in three dimension invariant (x, x̀, y, ỳ), with h
equals a constant. We find the Poincaré surface section (x, x̀). If the regular lies
on the smooth curves in the surface section then the system is integrable, and
the regular orbits are called the invariant curves. If the system is non-integral
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then a part of the curves seem to destroy and chaotic orbits appear instead,
filling a stochastic region.

Putting x̀ = ỳ = 0 in (1), then we have the equipotential lines

(41) V (x, y) = h.

Putting x̀ = 0 in integral energy equation, we have

(42) ỳ =
√

2(h− V (0, y)).

Now, we deduce the surface-section in all integrable cases to confirm that the
orbits of the motion lie on invariant tori and the motion is ordered:

1. The first case λ = −1, AB = 1, the equipotential lines at different values of
h are shown in Figure 11, the invariant curves at h = 0.08333, h = 0.1667,
and h = 1 are shown in Figures 12− 14.

2. The second case λ = −1
6 any A,B, the equipotential lines at different

values of h are shown in Figure 15, the invariant curves at h = 0.08333,
h = 0.1667, and h = 1 are shown in Figures 16− 18.

3. The third case λ = 1
16 ,

A
B = 1

16 , the equipotential lines at different values of
h are shown in Figure 19, the invariant curves at h = 0.08333, h = 0.1667,
and h = 1 are shown in Figures 20− 22.

4. Their are another case which GHH can be integrated, this case suggest
by Chang et al. [8], this may exist for values of λ for which

√
1− 48λ

= n/m with n and m two relatively prime integers. Then in this case
the equipotential lines at different values of h are shown in Figure 23, the
invariant curves at h = 0.08333, h = 0.1667, and h = 1 are shown in
Figures 24− 26.

7. Conclusion

We have studied the complete description of the real phase topology of the
problem and concluded that the topological type of the the level set is torus,
tours or empty set as shown in Table 2. And, the periodic solution of the
problem is determined. It is separated which allows to construct the topological
translation of the trajectory by using the phase portrait. The singular points of
the separated functions which are elliptic or hyperbolic points are determined.
The elliptic points in the figures are stable in the Lyapunov sense, because a
small disturbance will result in a closed trajectory that surrounds it and along
which the state of the system remains close to these points, which the hyperbolic
points are unstable because any small disturbance will result in a trajectory on
which the state of the system deviates more and more from these points as t
goes to infinity.
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Figure 11: The equipotential line for λ = −1 with a different values of h.

Figure 12: The invariant curves for λ = −1, and h = 0.0833.

Figure 13: The invariant curves for λ = −1, and h = 0.1667.

Figure 14: The invariant curves for λ = −1, and h = 1.
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Figure 15: The equipotential line for λ = −1
6 with a different values of h.

Figure 16: The invariant curves for λ = −1
6 , and h = 0.0833.

Figure 17: The invariant curves for λ = −1
6 , and h = 0.1667.

Figure 18: The invariant curves for λ = −1
6 , and h = 1.
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Figure 19: The equipotential line forλ = − 1
16 with a different values of h.

Figure 20: The invariant curves forλ = − 1
16 , and h = 0.0833.

Figure 21: The invariant curves for λ = − 1
16 , and h = 0.1667.
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Figure 22: The invariant curves for λ = − 1
16 , and h = 1.

Figure 23: The equipotential line for λ = 1
48(1− ( nm)2)with a different values of

h.

Figure 24: The invariant curves for λ = 1
48(1− 4

9), and h = 0.0833.
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Figure 25: The invariant curves for λ = 1
48(1− 4

9), and h = 0.1667 .

Figure 26: The invariant curves for λ = 1
48(1− 4

9), and h = 1.
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