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Abstract. In this work, we study the existence and uniqueness of mild solutions to
second-order neutral stochastic functional differential equations (NSFDEs) with infinite
delay and Poisson jumps under global and local Carathéodory conditions by means of
the successive approximation. The p-th moment exponential stability of mild solution
to second-order NSFDEs with infinite delay and poisson jumps is also studied. Further,
example is given to illustrate the proposed theory.
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1. Introduction

In recent days, The study of stochastic differential equations (SDEs) has at-
tracted the researchers because of its applicability to diverse fields [1, 30, 8, 11,
17, 21].

Stochastic systems depend on the present state and a period of past state as
well, this system is said to be stochastic functional differential equation (SFDE).
In many areas of science, there has been an increasing interest in the investi-
gation of SFDEs incorporating memory or aftereffect i.e., there is the effect of
infinite delay on state equations. The importance of SFDEs with infinite delay
can be found in [4, 29, 14] and references there in. The development of the the-
ory of functional differential equations with infinite delay depends on a choice
of a phase space. In fact, various phase spaces have been considered and each
different phase space required a separate development of the theory [12]. The
common phase space B is proposed by Hale and Kato in [9]. Kolmanovskii, in
[14], introduced the NSFDE and its applications to chemical engineering and
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aero elasticity. Further, it has been drawn the attention of many researchers
[3, 6, 10, 17, 18, 22, 23, 31] and references there in. In [5], the existence of the
solutions of first order NSFDEs with delay and Poisson jumps are studied. It
may be noted here that the mentioned works are confined to first-order systems.

To model the problems like mechanical vibrations, charge on a capacitor,
condenser subjected to white noise excitation, second-order SDEs are more
appropriate. With the advent of applications, second order SDEs, FSDEs,
NSFDEs have attracted the focus of many researchers since last decade. The
second-order damped functional stochastic evolution equations are studied by
McKibben [19] and one can refer [16] for further works on this topic. Moreover,
McKibben [20] established the existence and uniqueness of mild solutions for
a class of second-order neutral stochastic evolution equations with finite delay.
Balasubramaniam et al. [2] gave the sufficient conditions for the approximate
controllability of the second-order neutral stochastic evolution equations with
infinite delay. In [26], the authors established the asymptotic stability of second-
order neutral stochastic differential equations using fixed point theorem.

The existence and uniqueness of solution of SFDEs with Poisson jumps are
established in [15, 24]. Very recently, existence, uniqueness and stability of mild
solutions for second-order neutral stochastic evolution equations with infinite
delay and Poisson jumps are discussed in [25] and references there in. Further,
Sakthivel et al. [27] presented the exponential stability of nonlinear second-
order stochastic evolution equations with Poisson jumps by using a fixed point
argument, Jiang et al.[13] discussed stability analysis for second-order stochastic
neutral partial functional systems subject to infinite delays and impulses by the
new integral inequality together with the stochastic analysis technique.

In this paper, inspired by the aforementioned works [13, 25, 23, 27], second-
order NSFDEs with infinite delay and Poisson jumps is considered. To the
best of our knowledge, there are no results on the existence of mild solu-
tions of second-order NSFDEs with infinite delay and Poisson jumps under
Carathéodory conditions in available literature. Motivated by the above at-
tention, using Carathéodory conditions we aim to establish the existence and
uniqueness of mild solutions to second-order NSFDEs with infinite delay and
Poisson jumps in which the initial value belongs to the space B((−∞, 0],H) (for
more details refer section 2). Besides, the exponential stability in p-th moment
of the considered NSFDEs with infinite delay and Poisson jumps is studied to
obtain the required sufficient conditions.

The paper is structured as follows. In section 2, some preliminaries are
presented. Existence and uniqueness of mild solutions are discussed in section
3. In section 4, the p-th moment exponential stability of mild solutions are
presented. An example is provided in last section to illustrate the theory.
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2. Preliminaries

In this section, some basic concepts that are useful for the development of our
results are presented. For more details, the reader may refer to Da Prato and
Zabczyk [6], Frattorini [7], Hale and Kato [9] and the references therein.

Let H and K be two real separable Hilbert spaces. L(K,H) stands for the
set of all bounded linear operators form K into H. We will use the notation |.|
and ⟨. , .⟩ to denote the norm and inner product for H and L(K,H) respectively.
Let (Ω,F , {Ft}t≥0, P ) be a filtered complete probability space with an increasing
right continuous family {Ft}t≥0 of complete sub σ− algebras of F .

Definition 2.1 ([9]). B is a linear space of family of F0- measurable functions
from (−∞, 0] into H endowed with a norm ∥.∥B which satisfies the following
axioms:

(A1) If x : (−∞, T ] → H is continuous on [0, T ] and x0 ∈ B, then, for every
t ∈ [0, T ], the following conditions hold.

(1) xt ∈ B
(2) |x(t)| ≤ L∥xt∥B
(3) ∥xt∥B ≤M(t) sup0≤s≤t |x(s)|+N(t)∥x0∥B

where L > 0 is a constant, M,N : [0,∞) → [1,∞) are continuous, N(t)
is locally bounded and L,M,N are independent of x(.).

(A2) The space B is complete.

Remark 2.1. For convenience, the condition (3) in (A1) can be replaced by
the following condition

∥xt∥B ≤ sup
0≤s≤t

|x(s)|+N∥x0∥B,

where N = sup0≤s≤t |N(s)|.

Let Q ∈ L(K,H) be an operator defined by Qen = λnen with finite trace
Tr(Q) =

∑∞
n=1 λn < ∞ where λn ≥ 0 (n = 1, 2, ...) are some nonnegative real

numbers and {en} (n = 1, 2, ...) is a complete orthonormal system {en} in K.
Then the above K valued stochastic process w(t) is called a Q-wiener process.
Let βn(t) (n = 1, 2, ...) be a sequence of real valued one dimensional Brownian
motion. Set

⟨w(t), e⟩ =
∞∑
n=1

√
λn⟨en, e⟩βn(t), e ∈ K.

Let σ ∈ L(K,H) and define

∥σ∥2L0
2
= Tr(σQσ∗) =

∞∑
n=1

|
√
λnσen|2.
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If |σ|2
L0
2
< ∞, then ∥σ∥ is called a Q-Hilbert-Schmidt operator and L0

2(K,H)

denotes the space of all Q-Hilbert-Schmidt operators σ : K → H. Let p =
p(t), t ≥ 0 be a stationary Ft− Poisson process with characteristic measure
λ. N(dt, du) denotes the Poisson counting measure associated with λ, i.e.,
N(t, Z) =

∑
t1<s<t2

IZ(p(s)) with a measurable set Z ∈ B(K − {0}), which

denotes the Borel σ−field of K − {0}. Ñ(dt, du) = N(dt, du) − dtλ(du) repre-
sents the compensated Poisson measure that is independent of w(t).

The one parameter family {C(t) : t ∈ R} ⊂ L(H,H) satisfying

(i) C(0) = I,

(ii) C(t)x is continuous in t on R, for all x ∈ H,

(iii) C(t+ s) + C(t− s) = 2C(t)C(s), for all t, s ∈ R

is called a strongly continuous cosine family.
The corresponding strongly continuous sine family {S(t) : t ∈ R} ⊂ L(H,H)

is defined by S(t)x =
∫ t
0 C(s)xds, t ∈ R, x ∈ H.

The generator A : H → H of {C(t) : t ∈ R} is given by Ax = d2

dt2
C(t)x|t=0

for all x ∈ D(A) = {x ∈ H : C(.)x ∈ C2(R;H)}. It is well known that the
infinitesimal generator A is closed, densely defined operator H. Such cosine
and the corresponding sine families and their generators satisfy the following
properties.

Lemma 2.1 ([7]). Suppose that A is the infinitesimal generator of a cosine
family of operators {C(t) : t ∈ R}. Then the following properties hold:

(i) there exists G∗ ≥ 1 and a ≥ 0 such that ∥C(t)∥ ≤ G∗eat and therefore
∥S(t)∥ ≤ G∗eat

(ii) A
∫ u
s S(r)xdr = [C(u)− C(r)]x for all 0 ≤ s ≤ u <∞

(iii) there exists G∗
1 ≥ 1 such that ∥S(s) − S(u)∥ ≤ G∗

1

∫ s
u e

a|θ|dθ for all 0 ≤
u ≤ s <∞.

Definition 2.2. Denote by M2((−∞, T ],H) the space of all H-valued contin-
uous Ft- adapted process x = {x(t)}−∞<t≤T such that

(i) x0 = ϕ ∈ B and x(t) is càdlàg on [0, T ];

(ii) define the norm ∥.∥M in M2((−∞, T ],H) by

(1) ∥x∥2M = E∥x0∥2B +E

∫ T

0
|x(t)|2dt <∞.

Then, M2((−∞, T ],H) with the norm (1) is a Banach space. In the sequel, in
case without confusion, we just use ∥.∥ for the norm.
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Lemma 2.2 ([6]). For arbitrary L0
2(K,H)- valued predictable process g such

that

sup
s∈[0,T ]

E

∥∥∥∥∫ s

0
g(r)dw(r)

∥∥∥∥2m ≤ (m(m−1))m
(∫ t

0
(E∥g(s)∥2mL0

2
)1/mds

)m

, t ∈ [0,∞).

Lemma 2.3 ([15]). Let the space Mν
λ ([0, T ] × Z × Ω,H) (ν ≥ 2) be the set of

all random process ρ(t, u) with values in H, predictable with respect to {Ft}t≥0

such that

E

(∫ t

0

∫
Z
∥ρ(s, u)∥νλ(du)ds

)
< +∞.

Suppose ρ ∈M2
λ([0, t]×Z×Ω,H)∩M4

λ([0, T ]×Z×Ω,H), then for any t ∈ [0, T ],

E

[
sup
s∈[0,t]

∥∥∥∥∫ s

0

∫
Z
S(s− s1)ρ(s1, u)Ñ(ds1, du)

∥∥∥∥2
]

≤ C

{
E

(∫ t

0

∫
Z
∥ρ(s, u)∥2λ(du)ds

)
+ E

(∫ t

0

∫
Z
∥ρ(s, u)∥4λ(du)ds

) 1
2

}
,

for some number C > 0, dependent on T > 0.

In this paper, we consider the second-order neutral stochastic functional
differential equation with infinite delay and Poisson jumps of the form, for t ∈
[0, T ],

(2)

d[x′(t)− f1(t, xt)] = [Ax(t) + f2(t, xt)]dt+ f3(t, xt)dw(t)

+

∫
Z
f4(t, xt, u)Ñ(dt, du)

x0 = ϕ ∈ B,
x′(0) = ξ

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous
cosine family C(t) onH; fi ∈ [0, T ]×B → H(i = 1, 2), f3 : [0, T ]×B → L0

2(K,H)
and f4 : [0, T ] × B × (Z − {0}) → H are some suitable measurable mappings.
The history xt : (−∞, 0] → H,xt(θ) = x(t+ θ), for t ≥ 0, belongs to the phase
space B. The initial data ϕ = {ϕ(t) : −∞ < t ≤ 0} is an F0-measurable, B−
valued stochastic process with finite second moment and ξ ia an F0−measurable
H-valued random variable independent of the wiener process with finite second
moment.

Definition 2.3. A stochastic process x : (−∞, T ] → H is called a mild solution
of (2) if

(i) x(t) is Ft- adapted and {xt : t ∈ [0, T ]} is B−valued;

(ii)
∫ T
0 |x(s)|2ds <∞, P-a.s.;
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(iii) for each t ∈ [0, T ], x(t) satisfies the following integral equation

(3)

x(t) = C(t)ϕ(0) + S(t)[ξ − f1(0, ϕ)] +

∫ t

0
C(t− s)f1(s, xs)ds

+

∫ t

0
S(t− s)f2(s, xs)ds+

∫ t

0
S(t− s)f3(s, xs)dw(s)

+

∫ t

0
S(t− s)

∫
Z
f4(s, xs, u)Ñ(ds, du)

where x0(.) = ϕ ∈ B.

In order to obtain existence and uniqueness of mild solutions to (2), we need
the following assumptions:

(H1) the cosine family of operators {C(t) : t ∈ [0, T ]} on H and the correspond-
ing sine family {S(t) : t ∈ [0, T ]} satisfy the conditions ∥C(t)∥2 ≤ K1 and
∥S(t)∥2 ≤ K1, t ≥ 0 for a positive constant K1;

(H2) fi (i = 1, 2, 3, 4) satisfy the following conditions

(2a) there exists a function Γ(t, v) : [0, T ]× [0,∞) → [0,∞) such that

E

∫ t

0
|fi(s, ψ)|2ds+ E

∫ t

0
|f3(s, ψ)|2ds+ E

∫ t

0

∫
Z
|f4(s, ψ, u)|2λ(du)ds

+ E

(∫ t

0

∫
Z
|f4(s, ψ, u)|4λ(du)ds

) 1
2

≤
∫ t

0
Γ(s,E∥ψ∥2B)ds

for all ψ ∈ B and t ∈ [0, T ] (i = 1, 2),

(2b) Γ(t, v) is locally integrable in t for each fixed v ∈ [0,∞) and is con-
tinuous concave, and monotone nondecreasing in v for each fixed
t ∈ [0, T ],

(2c) for any constant M > 0, the deterministic ordinary differential equa-
tion

dv

dt
=MΓ(t, v), 0 ≤ t ≤ T

has a global solution for any initial value v0;
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(H3) (3a) there exists a function Υ(t, v) : [0, T ]× [0,∞) → [0,∞) such that

E

∫ t

0
|fi(s, ψ)− fi(s, φ)|2ds+ E

∫ t

0
|f3(s, ψ)− f3(s, φ)|2ds

+ E

∫ t

0

∫
Z
|f4(s, ψ, u)− f4(s, φ, u)|2λ(du)ds

+ E

(∫ t

0

∫
Z
|f4(s, ψ, u)− f4(s, φ, u)|4λ(du)ds

) 1
2

≤
∫ t

0
Υ(s, E∥ψ − φ∥2B)ds

for all ψ,φ ∈ B and t ∈ [0, T ] (i = 1, 2)

(3b) Υ(t, v) is locally integrable in t for each fixed v ∈ [0,∞) and is contin-
uous, nondecreasing and concave in v for each fixed t ≥ 0. Moreover,
Υ(t, 0) = 0 and if a nonnegative continuous function Y (t), 0 ≤ t ≤ T
satisfies

Y (t) ≤ D

∫ t

0
Υ(s, Y (s))ds, 0 ≤ t ≤ T,

where D > 0 is a positive constant, then Y (t) ≡ 0 for all 0 ≤ t ≤ T ;

(H4) (the local condition)

(4a) for any integer N > 0, there exists a function ΥN (t, v) : [0, T ] ×
[0,∞) → [0,∞) such that

E

∫ t

0
|fi(s, ψ)− fi(s, φ)|2ds+ E

∫ t

0
|f3(s, ψ)− f3(s, φ)|2ds

+ E

∫ t

0

∫
Z
|f4(s, ψ, u)− f4(s, φ, u)|2λ(du)ds

+ E

(∫ t

0

∫
Z
|f4(s, ψ, u)− f4(s, φ, u)|4λ(du)ds

) 1
2

≤
∫ t

0
ΥN (s,E∥ψ − φ∥2B)ds

for all ψ,φ ∈ B with ∥ψ∥B, ∥φ∥B ≤ N and t ∈ [0, T ] (i = 1, 2),

(4b) ΥN (t, v) is locally integrable in t for each fixed v ∈ [0,∞) and is
continuous, nondecreasing, and concave in v for each fixed t ≥ 0.
Moreover, ΥN (t, 0) = 0 and if a nonnegative continuous function
Y (t), 0 ≤ t ≤ T satisfies

Y (t) ≤ D

∫ t

0
ΥN (s, Y (s))ds, 0 ≤ t ≤ T,

where D > 0 is a positive constant, then Y (t) ≡ 0 for all 0 ≤ t ≤ T.
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3. Existence and uniqueness

In this section, we prove the existence and uniqueness of mild solution of (2).
Let x0(t) = C(t)ϕ(0) + S(t)[ξ − f1(0, ϕ)], t ∈ [0, T ].

For each n ≥ 1, the sequence of successive approximation is defined as follows

(4)

xn(t) = C(t)ϕ(0) + S(t)[ξ − f1(0, ϕ)] +

∫ t

0
C(t− s)f1(s, x

n−1
s )ds

+

∫ t

0
S(t− s)f2(s, x

n−1
s )ds+

∫ t

0
S(t− s)f3(s, x

n−1
s )dw(s)

+

∫ t

0
S(t− s)

∫
Z
f4(s, x

n−1
s , u)Ñ(ds, du), t ∈ [0, T ],

xn(t) = ϕ(t), −∞ < t ≤ 0.

Theorem 3.1. If the assumptions (H1) - (H3) hold. Then, there exists a unique
mild solution of (2) in space M2((−∞, T ],H).

Proof. The proof of this theorem is divided into the following three steps.
Step 1. Boundedness of {xn(t);n ≥ 0} in the space M2((−∞, T ],H).

i.e., E( sup
0≤s≤t

|xn(s)|2) ≤ ut ≤ uT <∞.

It is obvious that x0(t) ∈ M2((−∞, T ], H) and now we prove that xn(t) ∈
M2((−∞, T ],H). From (4), using the Hölder inequality and the Doobs martin-
gale inequality, we have

E

(
sup
0≤s≤t

|xn(s)|2
)

≤ 6K1E|ϕ(0)|2 + 12K1E|ξ|2 + 12K1E|f1(0, ϕ)|2

+ 6K1TE

∫ t

0
|f1(s, xn−1

s )|2ds+ 6K1TE

∫ t

0
|f2(s, xn−1

s )|2ds

+ 6K1E

∫ t

0
|f3(s, xn−1

s )|2ds

+ 6CE

∫ t

0

∫
Z
|f4(s, xn−1

s , u)|2λ(du)ds

+ 6CE

(∫ t

0

∫
Z
|f4(s, xn−1

s , u)|4λ(du)ds
) 1

2

≤ K2 +K3

∫ t

0
Γ(s,E∥xn−1

s ∥2B)ds

where K2 = 6K1E∥ϕ∥2B +12K1E|ξ|2 +12K1Γ(0, E∥ϕ∥2B),K3 = 6(K1(2T +1)+
2C). By Remark 2.1, we have

(5) E( sup
0≤s≤t

|xn(s)|2) ≤ K2 +K3

∫ t

0
Γ(s, 2E(N2∥ϕ∥2B + sup

0≤r≤s
|xn−1(r)|2))ds
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For any p ≥ 1, from (5), we get

max
1≤n≤p

E

(
sup
0≤s≤t

|xn(s)|2
)

≤ K2 +K3

∫ t

0
Γ

(
s, 2E

(
N2∥ϕ∥2B + |x0(s)|2 + max

1≤n≤p

(
sup

0≤r≤s
|xn(r)|

)2
))

ds

≤ K2+K3

∫ t

0
Γ

(
s,

(
2

3
K2 + 2N2E∥ϕ∥2B+2E

(
max
1≤n≤p

(
sup

0≤r≤s
|xn(r)|

)2
)))

ds

or

max
1≤n≤p

E

(
2

3
K2 + 2N2E∥ϕ∥2B + 2 sup

0≤s≤t
|xn(s)|2

)
≤ 5

3
K2 + 2N2E∥ϕ∥2B +K3

∫ t

0
Γ

(
s,

(
2

3
K2 + 2N2E∥ϕ∥2B

+ 2E

(
max
1≤n≤p

(
sup

0≤r≤s
|xn(r)|

)2)))
ds.

Using assumption (2c), it can be observed that ut satisfies

ut =
5

3
K2 + 2N2E∥ϕ∥2B +K3

∫ t

0
Γ(s, us)ds.

Since E∥ϕ∥2B <∞, we deduce that

(6) max
1≤n≤p

E( sup
0≤s≤t

|xn(s)|2) ≤ ut ≤ uT <∞.

Since p is arbitrary, we have

(7) E|xn(t)|2 ≤ uT for all 0 ≤ t ≤ T, n ≥ 1.

From Definition (2.4) and the above result, we obtain

∥xn∥2 = E∥xn0∥2B + E

∫ T

0
|xn(t)|2dt

≤ E∥ϕ∥2B + TuT <∞,

which shows that the sequence {xn(t), n ≥ 0} is bounded in M2((−∞, T ],H).

Step 2. The sequence {xn(t), n ≥ 1} is Cauchy. For m,n ≥ 0 and
t ∈ [0, T ], from (4), we get

E( sup
0≤s≤t

|xn+1(s)− xm+1(s)|2)
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≤ 4K1TE

∫ t

0
|f1(s, xns )− f1(s, x

m
s )|2ds

+ 4K1TE

∫ t

0
|f2(s, xns )− f2(s, x

m
s )|2ds

+ 4K1E

∫ t

0
|f3(s, xns )− f3(s, x

m
s )|2ds

+ 4CE

∫ t

0

∫
Z
|f4(s, xns )− f4(s, x

m
s , u)|2λ(du)ds

+ 4CE

(∫ t

0

∫
Z
|f4(s, xns )− f4(s, x

m
s , u)|4λ(du)ds

) 1
2

≤ K4

∫ t

0
Υ(s,E∥xns − xms ∥B)ds, where K4 = 4(K1(2T + 1) + 2C)

≤ K4

∫ t

0
Υ(s,E( sup

0≤r≤s
|xn(r)− xm(r)|2))ds.

Let Y (t) = limn,m→∞E(sup0≤s≤t |xn(s) − xm(s)|2). From (6), (2b) and the
Fatou’s lemma, we obtain

Y (t) ≤ K4

∫ t

0
Υ(s, Y (s))ds

by (3b), we get Y (t) = 0, hence {xn(t), n ≥ 1} is a Cauchy sequence in M2. As
n → ∞, using Borel-Cantelli lemma, xn(t) → x(t) uniformly for 0 ≤ t ≤ T and
hence (4) tends to the solution x(t) of (2), for all −∞ < t ≤ T .

Step 3. Uniqueness of solutions of (2). Suppose x1(t) and x2(t) are two
solutions of (2). From step 1, we can see that x1(t), x2(t) ∈ M2((−∞, T ],H) .
From step 2, it can be shown that

E( sup
0≤s≤t

|x1(s)− x2(s)|2) ≤ K4

∫ t

0
Υ(s,E( sup

0≤r≤s
|x1(r)− x2(r)|))ds.

or

Y (t) ≤ K4

∫ t

0
Υ(s, Y (s))ds.

By assumption (3b), we obtain Y (t) ≡ 0, which implies that x1(t) = x2(t) a.s.
for any t0 ≤ t ≤ T . Therefore, for all −∞ < t ≤ T , x1(t) = x2(t) a.s. This
completes the proof of the uniqueness of a solution.

Next, we present the existence and uniqueness of mild solution of (2) with
the local Carathéodory conditions.

Theorem 3.2. Let (H1), (H2) and (H4) hold. Then there exists a unique mild
solution of (2) in space M2((−∞, T ],H).
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Proof. Let N be a positive integer and T0 ∈ (0, T ). Let the sequence of the
functions fNi (t, v)(i = 1, 2, 3, 4) for (t, v) ∈ [0, T0]× B be defined as follows

fNi (t, v) =

{
fi(t, v), if ∥v∥B ≤ N,

fi

(
t, Nv

∥v∥B

)
, if ∥v∥B > N,

(i = 1, 2, 3)

fN4 (t, v, u) =

{
f4(t, v, u), if ∥v∥B ≤ N,

f4

(
t, Nv

∥v∥B , u
)
, if ∥v∥B > N.

Then the function fNi (t, v) (i = 1, 2, 3, 4) satisfy the assumptions (H2) and (H4).
As a consequence of Theorem 3.1, there exists a unique mild solution xN (t) and
xN+1(t) to the following integral equations respectively;

(8)

xN (t) = C(t)ϕ(0) + S(t)[ξ − fN1 (0, ϕ)] +

∫ t

0
C(t− s)fN1 (s, xNs )ds

+

∫ t

0
S(t− s)fN2 (s, xNs )ds+

∫ t

0
S(t− s)fN3 (s, xNs )dw(s)

+

∫ t

0
S(t− s)

∫
Z
fN4 (s, xNs , u)Ñ(ds, du)

xN+1(t) = C(t)ϕ(0) + S(t)[ξ − fN+1
1 (0, ϕ)] +

∫ t

0
C(t− s)fN+1

1 (s, xN+1
s )ds

+

∫ t

0
S(t− s)fN+1

2 (s, xN+1
s )ds+

∫ t

0
S(t− s)fN+1

3 (s, xN+1
s )dw(s)(9)

+

∫ t

0
S(t− s)

∫
Z
fN+1
4 (s, xN+1

s , u)Ñ(ds, du).

Define the stopping times

δN = T0 ∧ inf{t ∈ [0, T ] : ∥xNt ∥B ≥ N}
δN+1 = T0 ∧ inf{t ∈ [0, T ] : ∥xN+1

t ∥B ≥ N}
τN = δN ∧ δN+1.

From (8) and (9), we have

E( sup
0≤s≤t∧τN

|xN+1(s)− xN (s)|2)

≤ 5K1E|fN1 (0, ϕ)− fN+1
1 (0, ϕ)|2

+ 5K1TE

∫ t∧τN

0
|fN+1

1 (s, xN+1
s )− fN1 (s, xNs )|2ds

+ 5K1TE

∫ t∧τN

0
|fN+1

2 (s, xN+1
s )− fN2 (s, xNs )|2ds
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+ 5K1E

∫ t∧τN

0
|fN+1

3 (s, xN+1
s )− fN3 (s, xNs )|2ds

+ 5CE

∫ t∧τN

0

∫
Z
|fN+1

4 (s, xN+1
s , u)− fN4 (s, xNs , u)|2λ(du)ds

+ 5CE

(∫ t∧τN

0

∫
Z
|fN+1

4 (s, xN+1
s , u)− fN4 (s, xNs , u)|4λ(du)ds

) 1
2

.

Clearly fN1 (0, ϕ) = fN+1
1 (0, ϕ) and since for 0 ≤ s ≤ τN

fN+1
i (s, xNs ) = fNi (s, xNs ), i = 1, 2, 3,

fN+1
4 (s, xNs , u) = fN4 (s, xNs , u).

Note that ∥xN+1
s − xNs ∥2B ≤ sup0≤v≤s |xN+1(v) − xN (v)|2 and hence we obtain

that

E( sup
0≤s≤t∧τN

|xN+1(s)− xN (s)|2)

≤ 5K1TE

∫ t∧τN

0
|fN+1

1 (s, xN+1
s )− fN+1

1 (s, xNs )|2ds

+ 5K1TE

∫ t∧τN

0
|fN+1

2 (s, xN+1
s )− fN+1

2 (s, xNs )|2ds

+ 5K1E

∫ t∧τN

0
|fN+1

3 (s, xN+1
s )− fN+1

3 (s, xNs )|2ds

+ 5CE

∫ t∧τN

0

∫
Z
|fN+1

4 (s, xN+1
s , u)− fN+1

4 (s, xNs , u)|2λ(du)ds

+ 5CE

(∫ t∧τN

0

∫
Z
|fN+1

4 (s, xN+1
s , u)−fN+1

4 (s, xNs , u)|4λ(du)ds
) 1

2

.

Therefore, for all 0 ≤ t ≤ T0, employing assumption (H4), it follows that

E( sup
0≤s≤t

|xN+1(s ∧ τN )− xN (s ∧ τN )|2)

≤ 5(K1(2T + 1) + C)

∫ t

0
ΥN+1

(
s ∧ τN , E∥xN+1

s∧τN − xNs∧τN ∥
2
B
)
ds

≤ 5(K1(2T + 1) + C)

∫ t

0
ΥN+1

(
s ∧ τN , E

(
sup

0≤v≤s
|xN+1(v ∧ τN )

− xN (v ∧ τN )|2
))

ds.

By (4b), we get

E( sup
0≤s≤t

|xN+1(s ∧ τN )− xN (s ∧ τN )|2) = 0.
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Thus, for a.e., ω ∈ Ω, xN+1(t) = xN (t) for 0 ≤ t ≤ T0 ∧ τN . Note that for each
ω ∈ Ω, there exists an N0(ω) > 0 such that 0 ≤ T0 ≤ τN0 . Define x(t) by

x(t) = xN0(t), for t ∈ [0, T0].

Since x(t ∧ τN ) = xN (t ∧ τN ), it holds that

x(t ∧ τN ) = C(t)ϕ(0) + S(t)[ξ − fN1 (0, ϕ)] +

∫ t∧τN

0
C(t− s)fN1 (s, xNs )ds

+

∫ t∧τN

0
S(t− s)fN2 (s, xNs )ds+

∫ t∧τN

0
S(t− s)fN3 (s, xNs )dw(s)

+

∫ t∧τN

0
S(t− s)

∫
Z
fN4 (s, xNs , u)Ñ(ds, du)

= C(t)ϕ(0) + S(t)[ξ − f1(0, ϕ)] +

∫ t∧τN

0
C(t− s)f1(s, xs)ds

+

∫ t∧τN

0
S(t− s)f2(s, xs)ds+

∫ t∧τN

0
S(t− s)f3(s, xs)dw(s)

+

∫ t∧τN

0
S(t− s)

∫
Z
f4(s, xs, u)Ñ(ds, du).

Taking N → ∞, for all t ∈ [0, T ], we have

x(t) = C(t)ϕ(0) + S(t)[ξ − f1(0, ϕ)] +

∫ t

0
C(t− s)f1(s, xs)

+

∫ t

0
S(t− s)f2(s, xs)ds+

∫ t

0
S(t− s)f3(s, xs)dw(s)

+

∫ t

0
S(t− s)

∫
Z
f4(s, xs, u)Ñ(ds, du).

.

4. Exponential stability

Definition 4.1. The solution of integral equation (3) is said to be exponentially
stable in p (p ≥ 2) moment, if there exists a pair of positive constants µ > 0
and M1 > 0 such that

E∥x(t)∥p ≤M1e
−µt, t ≥ 0, p ≥ 2.

In this section, we need the following assumptions to establish the exponen-
tial stability of (2).

(A1) The cosine family of operators {C(t) : t ≤ 0} on H and the corresponding
sine family {S(t) : t ≤ 0} satisfy the conditions ∥C(t)∥ ≤ Me−βt and
∥S(t)∥ ≤Me−αt, t ≥ 0 for some constants M ≥ 1, α > 0 and β > 0.
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(A2) There exist constants λi > 0 (i = 1, 2, 3, 4) and a function z : (−∞,∞) →
[0,∞) with

∫ 0
−∞ z(t)dt = 1 and

∫ 0
−∞ z(t)e−ρtdt <∞ (ρ > 0) such that

(10)

∥fi(t, x)− fi(t, y)∥ ≤ λi

∫ 0

−∞
z(θ)∥x(t+ θ)− y(t+ θ)∥dθ,

fi(t, 0) = 0, i = 1, 2,

∥f3(t, x)− f3(t, y)∥L0
2
≤ λ3

∫ 0

−∞
z(θ)∥x(t+ θ)− y(t+ θ)∥dθ,

f3(t, 0) = 0,∫
Z
∥f4(t, x, u)− f4(t, y, u)∥λ(du) ≤ λ4

∫ 0

−∞
z(θ)∥x(t+ θ)− y(t+ θ)∥dθ,

f4(t, 0, u) = 0,

x, y ∈ B, t ≥ 0.

(A3) 6p−1Mp

[
β−pλp1 + α−pλp2 + α−p/2λp3

(
2(p−1)
p−2

)1−p/2 (
p(p−1)

4

)p/2
+ α−pλp4

]
<

1, (p ≥ 2).

Lemma 4.1. Let L1, L2 ∈ (0, ρ] and assume that there exist some positive
constants Ci > 0 (i=1,2,3,4) and a function ŷ : (−∞,∞) → [0,∞) such that

(11) ŷ(t) ≤


C1e

−L1t + C2e
−L2t + C3

∫ t

0
e−L1(t−s)

∫ 0

−∞
z(θ)ŷ(s+ θ)dθds

+C4

∫ t

0
e−L2(t−s)

∫ 0

−∞
z(θ)ŷ(s+ θ)dθds, t ≥ 0,

C1e
−L1t + C2e

−L2t, t ∈ (−∞, 0],

holds. If C3
L1

+ C4
L2

< 1, then,

ŷ(t) ≤M2e
−µt, t ∈ (−∞,∞),

where µ ∈ (0, L1 ∧ L2) is a positive root of the algebra equation:(
C3

L1 − µ
+

C4

L2 − µ

)∫ 0

−∞
z(θ)e−µθdθ = 1

and

M2 = max

{
C1(L1 − µ)

C3

∫ 0
−∞ z(θ)e−µθdθ

,
C2(L2 − µ)

C4

∫ 0
−∞ z(θ)e−µθdθ

, C1 + C2

}
> 0.
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Proof. Let F (λ) =
(

C3
L1−λ + C4

L2−λ

) ∫ 0
−∞ z(θ)e−µθdθ− 1, then it is obvious that

there exists a positive constant µ ∈ (0, L1 ∧ L2) such that F (µ) = 0.
For any ϵ > 0 and Let

(12) Nϵ = max

{
(C1 + ϵ)(L1 − µ)

C3

∫ 0
−∞ z(θ)e−µθdθ

,
(C2 + ϵ)(L2 − µ)

C4

∫ 0
−∞ z(θ)e−µθdθ

, C1 + C2

}
> 0.

Now , in order to show this Lemma, we only claim that (11) implies

(13) ŷ(t) ≤ Nϵe
−µt, t ∈ (−∞,∞).

Obviously, for any t ∈ (−∞, 0], (13) holds. Now we will prove (13) by the
contradiction method. Assume that there exists a t1 > 0 such that

(14) ŷ < Nϵe
−µt, t ∈ (−∞, t1), ŷ(t1) = Nϵe

−µt1 .

However, from (11)

(15)

ŷ(t1) ≤ C1e
−L1t1+C2e

−L2t1+C3Nϵ

∫ t1

0
e−L1(t1−s)

∫ 0

−∞
z(θ)e−µ(s+θ)dθds

+ C4Nϵ

∫ t1

0
e−L2(t1−s)

∫ 0

−∞
z(θ)e−µ(s+θ)dθds

≤
(
C1 −

NϵC3

L1 − µ

∫ 0

−∞
z(θ)e−µθdθ

)
e−L1t1

+

(
C2 −

NϵC4

L2 − µ

∫ 0

−∞
z(θ)e−µθdθ

)
e−L2t1

+

(
C3

L1 − µ

∫ 0

−∞
z(θ)e−µθdθ +

C4

L2 − µ

∫ 0

−∞
z(θ)e−µθdθ

)
Nϵe

−µt1

Note that µ ∈ (0, L1 ∧ L2), From (12), we obtain

C3

L1 − µ

∫ 0

−∞
z(θ)e−µθdθ +

C4

L2 − µ

∫ 0

−∞
z(θ)e−µθdθ = 1

and

C1 −
NϵC3

L1 − µ

∫ 0

−∞
z(θ)e−µθdθ

≤ C1 −
C3

L1 − µ

∫ 0

−∞
z(θ)e−µθdθ

(C1 + ϵ)(L1 − µ)

C3

∫ 0
−∞ z(θ)e−µθdθ

< 0

C2 −
NϵC4

L2 − µ

∫ 0

−∞
z(θ)e−µθdθ

≤ C2 −
C4

L2 − µ

∫ 0

−∞
z(θ)e−µθdθ

(C2 + ϵ)(L2 − µ)

C4

∫ 0
−∞ z(θ)e−µθdθ

< 0.
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Thus, (15) yields

(16) ŷ(t1) < Nϵe
−µt,

which contradicts (14), that is, (13) holds. As ϵ > 0 is arbitrarily small, in view
of (13), it follows ŷ(t) ≤M2e

−µt, t ≥ 0.

Theorem 4.1. Assume that (A1)-(A3) hold and α, β ∈ (0, ρ], then the mild
solution of (2) is exponentially stable in p-th moment for p ≥ 2.

Proof. From (3), we have

(17)

E∥x(t)∥p ≤ 6p−1MpE∥ϕ∥pe−βt + 6p−1MpE∥ξ − f1(0, ϕ)∥pe−αt

+ 6p−1E

∥∥∥∥∫ t

0
C(t− s)f1(s, xs)ds

∥∥∥∥p
+ 6p−1E

∥∥∥∥∫ t

0
S(t− s)f2(s, xs)ds

∥∥∥∥p
+ 6p−1E

∥∥∥∥∫ t

0
S(t− s)f3(s, xs)dw(s)

∥∥∥∥p
+ 6p−1E

∥∥∥∥∫ t

0
S(t− s)

∫
Z
f4(s, xs, u)Ñ(ds, du)

∥∥∥∥p
= 6p−1

6∑
i=1

Φi.

From (A1), (A2) and the Hölder inequality, we have

Φ3 ≤Mp

(∫ t

0

(
e
−β(t−s)(1− 1

p
)
) p

p−1
ds

)p−1 ∫ t

0
e−β(t−s)E∥f1(s, xs)∥pds

=Mp

(∫ t

0
e−β(t−s)ds

)p−1 ∫ t

0
e−β(t−s)E∥f1(s, xs)∥pds

≤Mpλp1β
1−p

∫ t

0
e−β(t−s)E

(∫ 0

−∞
z(θ)∥x(s+ θ)∥dθ

)p

ds.

Similarly, we have

Φ4 ≤Mpλp2α
1−p

∫ t

0
e−α(t−s)E

(∫ 0

−∞
z(θ)∥x(s+ θ)∥dθ

)p

ds.

By using the conditions (A1), (A2) and Lemma 2.2, it follows that

Φ5 ≤Mp

(
p(p− 1)

4

)p/2(∫ t

0

(
e−αp(t−s)E∥f3(s, xs)∥pL0

2

)2/p
ds

)p/2

=Mp

(
p(p− 1)

4

)p/2(∫ t

0
e−2α(t−s)

(
E∥f3(s, xs)∥pL0

2

)2/p
ds

)p/2
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≤Mp

(
p(p− 1)

4

)p/2(∫ t

0

(
e
−2α(t−s)(1− 1

p
)
)p/(p−2)

ds

)(p/2)−1

×
∫ t

0

(
e−2α(t−s)(1/p)

(
E∥f3(s, xs)∥pL0

2

)2/p)p/2

ds

≤Mp

(
p(p− 1)

4

)p/2(∫ t

0
e−2α(t−s)((p−1)/(p−2))ds

)(p/2)−1

×
∫ t

0
e−α(t−s)E∥f3(s, xs)∥pL0

2
ds

≤Mpλp3

(
p(p− 1)

4

)p/2(2α(p− 1)

p− 2

)1−(p/2)

×
∫ t

0
e−α(t−s)E

(∫ 0

−∞
z(θ)∥x(s+ θ)∥dθ

)p

ds.

From (A1)and (A2), we obtain

Φ6 ≤Mp

(∫ t

0
e−α(t−s)ds

)p−1 ∫ t

0
e−α(t−s)

∫
Z
E∥f4(s, xs, u)∥pλ(du)ds

≤Mpα1−pλp4

∫ t

0
e−α(t−s)E

(∫ 0

−∞
z(θ)∥x(s+ θ)∥dθ

)p

ds.

These together with (17) yields

E∥x(t)∥p ≤ 6p−1MpE∥ϕ∥pe−βt + 6p−1MpE∥ξ − f1(0, ϕ)∥pe−αt

+ 6p−1Mpβ1−pλp1

∫ t

0
e−β(t−s)

∫ 0

−∞
z(θ)E∥x(s+ θ)∥pdθds

+ 6p−1Mpα1−pλp2

∫ t

0
e−α(t−s)

∫ 0

−∞
z(θ)E∥x(s+ θ)∥pdθds

+ 6p−1Mpλp3

(
p(p− 1)

4

)p/2(2α(p− 1)

p− 2

)1−(p/2)

×
∫ t

0
e−α(t−s)

∫ 0

−∞
z(θ)E∥x(s+ θ)∥pdθds

+ 6p−1Mpα1−pλp4

∫ t

0
e−α(t−s)

∫ 0

−∞
z(θ)E∥x(s+ θ)∥pdθds.

It can be easily verified that there exists two positive numbers M ′ > 0 and
M ′′ > 0 such that E∥x(t)∥2 ≤ M ′e−βt + M ′′e−αt, for any t ∈ (−∞, 0]. Let
C̃1 = 6p−1MpE∥ϕ∥p, C̃2 = 6p−1MpE∥ξ − f1(0, ϕ)∥p, C̃3 = 6p−1Mpβ1−pλp1, C̃4 =

6p−1Mpα1−pλp2+6p−1Mpλp3

(
p(p−1)

4

)p/2 (
2α(p−1)

p−2

)1−(p/2)
+6p−1Mpα1−pλp4, if

C̃3
β +

C̃4
α < 1, i.e., (A3) holds, then by using Lemma 4.1, we can obtain

E∥x(t)∥2 ≤M1e
−µt, t ∈ [0,∞) (µ ∈ (0, L1 ∧ L2)),



54 M.V.S.S.B.B.K. SASTRY and G.V.S.R. DEEKSHITULU

where

M1 =max

{
6p−1Mp(E∥ϕ∥p + E∥ξ − f1(0, ϕ)∥p), 6p−1Mpβ−pλp1,

6p−1Mp

(
α−pλp2 + α−p/2λp3

(
p(p− 1)

2

)p/2(2α(p− 1)

p− 2

)1−(p/2)

+ α−pλp4

)}
> 0.

5. Example

In this section, we present an example to illustrate the results obtained in pre-

vious sections. Let H = L2[0, π] with the norm ∥.∥. And let en =
√

2
π sin(ny)

(n = 1, 2, ...) denote the complete orthonormal basis in H.
Let w(t) :=

∑∞
n=1

√
λnβn(t)en, (λn > 0), where {βn(t)} are one dimensional

standard Brownian motion mutually independent on a usual complete probabil-
ity space. Ñ(ds, du) is a compensated Poisson random measure on [1,∞) with
parameter λ(du)dt. The Wiener process w(t) is independent of Ñ(du)dt.

Define the operator A : H → H by (Ax)(y) = ∂2

∂y2
x(y) with the domain

D(A) = {x ∈ H : x(0) = x(π)}. Then

Ax =

∞∑
n=1

−n2⟨x, en⟩en, x ∈ D(A),

where {en : n ∈ N} is the orthonormal set of eigen vectors of A corresponding
to the eigen values −n2 for n ∈ N. The operator C(t) defined by

C(t)x =
∞∑
n=1

cos(nt)⟨x, en⟩en, t ∈ R,

from a cosine function on H, with associated sine function

S(t)x =

∞∑
n=1

sin(nt)

n
⟨x, en⟩en, t ∈ R,

for all x ∈ H, with ∥C(t)∥ ≤ e−π2t and ∥S(t)∥ ≤ e−π2t, t ≥ 0.
Now, we consider the following second-order neutral stochastic partial dif-

ferential equations with infinite delay and Poisson jumps

(18)

∂

[
∂x(t, y)

∂t
− p1x(t+ θ, y)

]
=

[
∂2x(t, y)

∂y2
+ p2x(t+ θ, y)

]
∂t+ p3x(t+ θ, y)dw(t)



EXISTENCE AND EXPONENTIAL STABILITY OF SECOND-ORDER NEUTRAL ... 55

+

∫
Z
p4x(t+ θ, y)uÑ(dt, du),

t ∈ [0, T ], y ∈ [0, π], θ ∈ (−∞, 0),

subject to the conditions

x(t, y) = ϕ(t, y), −∞ < t ≤ 0, 0 < y < π,

x(t, 0) = x(t, π) = 0, 0 ≤ t ≤ T,

∂x(0, y)

∂t
= ξ(y), 0 < y < π,

where ξ ∈ L2[0, π], ϕ ∈ B and π > 0, (i = 1, 2, 3, 4). Define

f1(t, xt) = p1x(t+ θ, y),

f2(t, xt) = p2x(t+ θ, y),

f3(t, xt) = p3x(t+ θ, y),

f4(t, xt, u) = p4x(t+ θ, y)u,

where θ ∈ (−∞, 0].
The system (18) can be rewritten in the form of (2). Assume that fi

(i = 1, 2, 3, 4) satisfy the conditions of Theorem 3.1 and Theorem 3.2. Then,
the system (18) has a unique mild solution.

It is easy to see all the conditions are satisfied with M = 1, α = β = π. By
virtue of Theorem 4.1, the mild solution of (18) is p-th moment exponentially
stable provided that, p ≥ 2,

6p−1

[
π−ppp1 + π−ppp2+π

−ppp4+π
−p/2pp3

(
2(p− 1)

p− 2

)1−(p/2)(p(p− 1)

4

)p/2
]
< 1.
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