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Estimating loss given default based on time of default
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Abstract. The Basel II capital structure requires a minimum capital to cover the
exposures of credit, market, and operational risks in banks. The Basel Committee gives
three methodologies to estimate the required capital; standardized approach, Internal
Ratings-Based (IRB) approach, and Advanced IRB approach. The IRB approach is
typically favored contrasted with the standard approach because of its higher accuracy
and lower capital charges. The loss given default (LGD) is a key parameter in credit
risk management. The models are fit to a sample data of credit portfolio obtained from
a bank in Jordan for the period of January 2010 until December 2014. The best para-
metric models are selected using several goodness-of-fit criteria. The results show that
LGD fitted with Gamma distribution. After that, the financial variables as a covariate
that affect on two parameters in Gamma regression will find.
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1. Introduction

Survival analysis is a statistical method whose outcome variable of interest is
the time to the occurrence of an event which is often referred to as failure
time, survival time, or event time. Survival data can be divided into three
categories; complete, censored and truncated. Complete data is the ideal data
that contains the beginning and end dates of which the event time is determined.
Censored and truncated data is also called missing data due to the unavailability
of information on the beginning or end dates (Klugman et al. 2012). Right
censored data can be divided into three types: type I, type II and type III.
Type I and type II are also called the singly censored data, while type III is also
called the progressively censored data (Cohen 1965). Another commonly used
name for the type III censoring is random censoring.

The credit risk is a crucial issue for financial institutions as well as for non-
financial companies. Banks are allowed to estimate their own credit risk param-
eters dependent on the Basel II regulation and under the internal rate approach
(IRB) and thus more accurate for the capital requirement with the underlying
risk in the credit portfolio. In the past, Jordanian banks had to use standard-
ized approaches to estimate minimum capital requirement under Basel I. Indeed,
Basel II leads to a better differentiation of risks and takes into account the di-
versification of the bank’s portfolio to estimate minimum capital requirement
for credit risk (Kollar & Kliestik 2014).

In the related literature, there is numerous growths in various academic
research and publications focused on credit risk models namely; probability
default (PD) and loss given default (LGD) that can be formulated by using sur-
vival analysis techniques. It was initiated with the research paper by (Altman
1989) who used actuarial analysis to investigate the mortality rates of US cor-
porate bonds. This was followed by various empirical studies on PD and LGD.
Narain in 1992 defined the PD as the complement of the conditional survival
function evaluated at the forecast horizon. Later, this technique was developed
by (Carling et al. 1998). They used a semi-parametric duration model (Cox’s
proportional hazards model) with a data set consisting of 4733 individuals who
were granted credit by a Swedish lending institution between 1993 and1995 to
analyze the factors that determine the time to maturity on a loan and to evaluate
loan applicants by their expected duration and profits. In addition,(Stepanova
& Thomas 2002) and (Malik & Thomas 2010) modeled the lifetime of individual
credit with Cox’s proportional hazards model. Furthermore,(Glennon & Nigro
2005) measured the default risk of small business loans by survival analysis tech-
niques with Cox’s proportional hazards models. They found that the default
behavior of the loans is time sensitive; the likelihood of default increases initially,
peaks in the second year, and declines thereafter. However, (Beran & Djäıdja
2007) proposed statistical modelling of credit risk for retail clients based on sur-
vival analysis under extreme censoring for the time-to-default variable. (Cao et
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al. 2009) proposed three different mechanisms to estimate PD by using survival
analysis techniques.

However, the survival analysis for predicting LGD has been presented by
many researchers. (Dermine & De Carvalho 2006) used mortality approach to
measure the percentage of the bad and doubtful loan of corporate bonds that
are recovered n-months after the default date. The actuarial-based mortality
approach is appropriate because the population sample changes over time. The
dataset of this study obtained from micro-data on defaulted bank loans of a
private bank in Portugal, Banco Commercial Portugues (BCP). It consists of
10000 short –term loans granted to small and medium-sized companies over the
period from June 1995 to December 2000 (66 months). They identify the LGD
by the following: LGD =

∏T
t=1 SPULBt, Where, SPULBt is a sample (weighted)

percentage unpaid loan balance at period t, SPULBt= 1−SMRRt. Furthermore,
SMRRt is a sample (weighted) marginal recovery rate at time t,

SMRRt=

∑m
i=1Cashflow receivedit∑m
i=1 Loan outstandingit

,

i stands for each of the m loan balances outstanding in the sample, t periods
after default. The empirical results show that marginal recovery rate is high in
the first five months and heavy tail in the last months. Also, the cumulative
recovery rate n-months after default increase gradually from 20% to 70% over
the time. Furthermore,(Chen 2018) used the right censored survival techniques
for predicting bank loan LGD. The data contains 2644 defaulted loan over eight
years (quarterly) with start dates between January 2007 and December 2014
for real estate and non-real estate for a U.S financial services company. The
datasets tested by five parametric models namely, gamma, lognormal, Weibull,
exponential, and log-logistic. In the figure we can see the LGD is high in the
first months then decreases over time to become heavy tail in the last months.
Moreover, (Tanoue et al. 2017) study forecasts loss given default of bank loans
with multi-stage model. And, (Krüger & Rösch 2017) estimated downturn LGD
modeling using quantile regression. Finally, (Thompson & Brandenburger 2019)
constructed a model to predict the risk of a cardholder for the lifetime of the
account and the survival analysis methodologies applied to a case study from
capital card services.

The empirical studies on credit risk have depended mostly on the corporate
bond market to gauge losses in the case of default. The purpose behind this
is that, as bank loans are private instruments, little information on loan losses
are freely accessible. The researchers use parametric, non-parametric, semi-
parametric and transformation regression models to estimate LGD. In the other
words, the ordinal least squares regression (OLS), Ridge regression (RiR), Frac-
tional response regression, Tobit model, Decision trees model, Beta distribution
and Normal distribution for parametric models. However, regression tree, neural
networks, Multivariate adaptive regression spline, Least squares support vector
machine for non-parametric models. In the semi-parametric models applied
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the joint beta additive model. However, inverse Gaussian regression, inverse
Gaussian regression with beta transformation, Box-Cox transformation, Beta
transformation, Fractional logit transformation, and Log transform for Trans-
formation regression see for instance, (Bellotti & Crook 2008, 2012; Bruche &
González-Aguado 2010; Calabrese 2012; Giese 2005; Huang & Oosterlee 2011;
Loterman et al. 2012; Pykhtin 2003; Qi & Zhao 2011).

Theoretically, this study is of crucial importance for several reasons. First,
this study used hybrid model for estimating LGD with new data which get from
corporate credit portfolio from Jordanian bank. Second, it uses the actuarial
analysis of the progressive right censored data for estimating the loss given
default S (t) and recovery rate F(t) of a sample of corporate loans obtained from
a bank in Jordan. Third, this study are to fit LGD data to several parametric
distributions related with time such as Gama distribution, in order to estimate
LGD each month which reduce capital requirement to meet default obligation
each month. Finally, the financial variables which significantly affects on two
parameters for Gamma regression can be explored. Indeed, the LGD is fixed
under Basel I, but it changes over time (monthly) based on Gamma distribution
under Basel II.

The primary explanations behind using the progressive censoring are: the
time of study is constant, the borrowers can join the study any time during the
fixed period of investigation, and the borrowers could default or not before the
end of the study. Practically, the objective of this paper is to estimate the Loss
Given Default (LGD) using parametric models based on survival time. The used
parametric models are fitted to the right-censored data obtained from a bank
in Jordan for the period from January 2010 until December 2014. The portfolio
capacity is 4393, and the overall number of defaults during the 5-year period is
495. The sample size is same as number of default. A borrower is declared as
default if he is unable to pay his cash installment in a period of 3 months. The
estimated LGD is then used for predicting the performance of credit risk of a
corporate portfolio under Basel II. For estimating LGD default used this proxy:

LGD for each borrower =
outstanding amount

Amount of borrowing

But with the effect of survival time, the used hybrid LGD monthly approach is:

(1.1) LGD for each month=

∑n
i=1 LGD for each borroweri

n

where i represents the number of borrowers in the same month. For more details
to calculate LGD, see the following example a company borrows 1 million dollars
for 5 years with interest rate about 15 % yearly and payments monthly see
Table 1.
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Table 1. Example for calculate LGD

In the previous example, the LGD is higher in the beginning months then de-
greased gradually to become lower in the last months same as (Chen 2017). In
this study, we consider LGD at time of default (T=3) equals 0.9657, LGD at
time of default (T=58) equals 0.0467, and so on. Then the average of LGD
takes in each time.

Theoretically, LGD is defined as the key component for expected loss for
credit portfolio, which is central to credit risk management. The expected loss
(EL) or risk weight asset (Bauer & Agarwa 2014) for a credit portfolio is defined
as:

The expected loss (EL)=
∑n

i=1 Probability of default* Loss given default *
Exposure value at the time of default

LGD is used to find the expected loss that is key to determine minimum
capital required based on IRB approach in the Basel committee. Moreover, it
may be used to calculate the premium in credit insurance for corporations.

The rest of this paper proceeds as follows. In the next section, the framework
of estimating LGD will be discussed. Section 3 presents parametric distributions
for fitting the data, and Section 4 describes regression models for determining
which financial variables significantly affect the LGD for our sample data. We
present the sample data and the results in Section 5, and the final section will
be the conclusion.

2. Proposed framework for estimating LGD

In figure 1.1, LGD data related with time extracted from credit portfolio from
Jordanian bank. The right censored data approach is used to extracted LGD
data for default borrowers during the 5-year period. The sample size of default
which is declared as unable to pay financial obligations in a period of 3 months is
495 from 4393 borrowers. Then LGD data is fitted probability density function
(pdf) with parametric models associated with time such as exponential, Weibull,
Gamma, Gompertz models. Gamma distribution is better than other parametric
models.
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The LGD is assumed to be survival function S(t) as a result of heavy tail. We
will consider Gamma distribution that has two parameters namely; shape 2 and
rate. To find the financial variables that affect on LGD as covariate, Gamma
regression model is used to estimate equation of rate parameter with constant
shape 1. In this case, we consider time as dependent variables and financial
variables as independent variable to estimate mean in Gamma regression.

Then we used Gamma distribution with two parameters; the rate parameter
from Gamma regression model and the shape 2 parameter from a simulation.
The gamma distribution has the cumulative distribution, survival distribution,
and other characteristics more than Gamma regression model. Finally, Gamma
distribution with the best link function for rate from Gamma regression selected
based on statistical criteria. The methodology of this paper can be summarized
in the following flow chart.

Figure 1: The flowchart of the WT forecasting.

3. Modelling LGD with parametric distributions

Common parametric distributions for survival analysis are considered. Table
1 provides the density and survival function for the distributions considered
in this study, which are Exponential, Gamma, Weibull, Gompertz. Generalize
Gompertz, and Gompertz-Makeham see Table 1 in next section.

We use five types of accuracy criteria to select the best model; mean square
error (MSE), root mean square deviation (RMSD), mean absolute error (MAE),
Nash–Sutcliffe model efficiency coefficient (NSE), and mean absolute percentage
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error loss (MAPE). The mean square error

(Ramsey 1999) =

∑n
i=1 (actual − predicted)2

n
,

where n is the sample size. The root mean square deviation (RMSD) =
√
MSE.

The RMSE values can be used to distinguish model performance in a calibration
period with that of a validation period as well as to compare the individual model
performance to that of other predictive models. The mean absolute error

(MAE) =

∑n
i=1 |actual−predicted|

n
,

wheren is the sample size. The MAE is the average vertical and horizontal
distance between each actual and predicted points. The other criteria is Nash–
Sutcliffe model efficiency coefficient

(NSE)= 1−

[∑n
i=1 (actuali−predictedi)

2∑n
i=1 (actuali−E(actual))2

]
where n is the sample size. The NSE is a normalized statistic that determines
the relative magnitude of the residual variance “noise” compared to the mea-
sured data variance “information” (Nash & Sutcliffe 1970). The Nash–Sutcliffe
efficiency can range between −∞ and 1.0 (1 inclusive), with NSE = 1 being the
optimal value. Values between 0.0 and 1.0 are generally viewed as acceptable
levels of performance, whereas values ≤0.0 indicates that the mean observed
value is a better predictor than the simulated value, which indicates unaccept-
able performance. (Servat & Dezetter 1991) also approved NSE to be the best
objective function for reflecting the overall fit of a hydrograph. (Legates & Mc-
cabe Jr 1999) suggested a modified NSE that is less sensitive to high extreme
values due to the squared differences, but that modified version was not selected
because of its limited use and resulting relative lack of reported values. Mean
absolute percentage error loss

(MAPE)=
100%

n

n∑
t=1

|actualt−predictedt
actualt

|,

the MAPE can be indicated on how much error in predicting compared with
the actual value.

4. Modeling LGD with Gamma Regression

In our study we use Gamma regression for fitting the LGD data with covariates.
The reason for fitting Gamma regression is that the distribution is well-known
with time. Gamma distribution is the best model for fitting the sample data
of our case study. Therefore, we consider several Gamma regressions, by using
different link functions, for fitting the LGD data with covariates.
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Table 2: parametric models for LGD

Let random variable Y follows a Gamma distribution Gamma(α, β),where
the parameters α, β > 0.The mean and variance of Y are, respectively E (y) =
α/β and V ar (y) = α

β2 . Joint modeling of the mean and the shape parameters

in gamma regressions were proposed by (Cepeda-Cuervo 2001). With the re-
parameterization of the gamma distribution as a function of the mean, µ =
E(Y ), and the shape parameter, α, as proposed in (Cepeda-Cuervo 2001) and
(Cepeda & Gamerman 2005), setting β = α

µ , the gamma density function can
be written as

f (y)=
1

yΓ (α)
(
αy

µ
)
α
e
−α

µ
y

Under this re-parameterization, we use Y ∼ Gamma(µ, α) to denote that

Y follows a gamma distribution with E (y) = µ, V ar (y) = µ2

α and α as a
shape parameter. From this re-parameterization of the gamma distribution, the
joint mean and shape gamma regression was proposed in (Cepeda-Cuervo 2001),
under classic and Bayesian methodologies.

Let y = (y1, . . . , yn)
Tbe a random sample, whereyi ∼ Gamma(µi, α), i =

1, . . . , n. In the gamma regression model with a constant shape parameter, the
mean regression structure is defined by

(4.2) g (µi)=ηi=f
(
xTi ;β

)
where g is the link function, β = (β1, . . . , βn)

T a vector of covariate unknown
regression parameters which are assumed to be functionally independent, βϵ Rn,
ηi is a predictor. Some usual link functions in the gamma regression are:
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logg (µ) = log(µ) ; identity g (µ) = µ; and inverse g (µ) = 1/µ.A rich discussion
of link function can be found in (Mccullagh 1989).

The parameter of gamma regression can get from maximum likelihood es-
timator (MLE). The log-likelihood function for this class of gamma regression
models has to form

(4.3) ℓ (β, α)=

n∑
i=1

ℓi(µi, α)

where ℓi (µi, α)= (α−1) log y− log Γ (α)−α logµ+α logα−
(
α
µ

)
y;

µi=g−1 (ηi), as defined in equations (3), are functions of β and α, respec-
tively. The estimated parameters can be obtained by maximizing the likeli-
hood in (4). The derivatives Uk(β, α) =∂ℓ (β, α) /∂βkobtained parameters beta
regressionsβ′s . For more detail about a prove gamma regression refer to (Cepeda-
Cuervo 2001).

5. Results

The sample data of credit portfolio obtained for this study are collected from a
bank in Jordan. The monthly data of the credit portfolio were collected from
January 2010 until December 2014. The size of the portfolio is 4393, while the
total number of defaults throughout the 5-year period is 495. The sample size
is same as number of default. In this section, LGD data related with time. For
the sample data, a borrower is declared default when his/her cash installment
is not paid within 3 months. In this study, LGD is estimated by the default
sample only.

Table 3 shows the risk exposures (number of loans at risk) and the number
of defaults in each year. The highest number of defaults occurred in the second
year, and the highest number of defaults per exposure also occurred in the same
year (168 defaults from 1125 exposures). Table 4 provides summary statistics
for the monthly data. The average monthly exposure is 73, while the average
number of defaults per month is 8.

Table 3: Number of exposures and defaults in each year
Year exposure # of defaults % (# of de-

faults per ex-
posure)

2010 1265 137 10.83

2011 1125 168 14.93

2012 783 67 8.56

2013 652 41 6.29

2014 568 82 14.44

Total 4393 495 -
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Table 4: Summary statistics for credit data (monthly)
Exposure
per month

# of defaults
per month

# of censored
per month

Min 29 0 23

Max 272 33 254

Mean 73.22 8.25 64.97

Std.
dev.

42.88 6.35 38.93

Total
(N)

4393 495 3898

Table 5 provides the estimated parameters, together with the MSE, RMSD,
MAE, NSE, and MAPE. The best model is chosen based on the smallest MSE,
RMSD, MAE, MAPE and the largest NSE. The results in Table 8 show that
the Gamma distribution is the best parametric model since it has the smallest
MSE, RMSD, MAE, MAPE and the largest NSE.

Table 5: Estimated parameters and goodness-of-fit criteria for
parametric models
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Figure 2: Fitted survival function for parametric models. (a) Exponential distri-
bution, (b) Gamma distribution, (c) Weibull distribution, (d) Gom-
pertz distribution, (e) Generalize Gompertz distribution, (f) Gom-
pertz -Makeham.

For further comparison, Figure 2 shows the curve of survival function for all
of the fitted parametric models. The graphs illustrate that the survival curve of
Gamma model is closest compared to other models.
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Table 6. Summary statistics for explanatory variables as covariate
Explanatory variables Mean Std.

dev.
Minimum Maximum

The service pricing pol-
icy(O.E/ T.L)

2.3063 .6324 .9578 3.1188

Operating efficiency
(T.O.E/T.O.R)

.9208 .1318 .6048 1.2214

Liquidity ratio (Cur-
rent ratio)

1.0168 .1408 .7783 1.5508

Profitability ratio
(ROE)

.5839 .5838 -1.1598 1.7039

Table 7: Gamma regression distributions with different link function
Gamma(µ,α1),

Table 6 explains the descriptive statistics for explanatory variables. The
mean of service pricing policy (operating expenses (O.E) to total liability (T.L))
is 2.31 and standard deviation is 0.63. In addition, the mean of operating
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efficiency (Total operating expenses (T.O.E)/Total operating revenue (T.O.R))
is 0.92 with standard deviation is 0.13. Furthermore, the mean of liquidity ratio
(Current ratio=current asset/current liability) is 1.02 with standard deviation
is 0.14. Finally, the mean of profitability ratio (return on equity ROE=Net
Income/Owner Equity) is 0.58 with standard deviation is 0.58.

Estimating LGD based on Gamma(α2, β) in this section. The parameters
rate β estimated based on Gamma(µ, α1), where mean µ estimated from finan-
cial variables namely; standardized profitability ratio, standardized liquidity
ratio, standardized operating efficiency ratio, and standardized service pricing
policy. The different link function used to estimate this parameterµ such as log,
identity, and inverse with gamma regression explain in table in next table.

Conclusion

In the context of credit portfolio losses, loss given default (LGD) is the propor-
tion of the exposure that will be lost if a default occurs. Uncertainty, regarding
the actual LGD is an important source of credit portfolio risk in addition to
default risk. In this study, we have used several parametric models to estimate
LGD with time variables in the aim to evaluate the performance of a credit risk
portfolio samples. The financial variables models are fitted to a sample data
of credit portfolio obtained from a bank in Jordan for the period from 2010 -
2014. The used models were selected using several goodnesses of fitting crite-
ria to compare the performance of varied distributions. The used models were
selected using several goodnesses of fitting criteria to compare the performance
of the varied distributions. The results show that the Gamma distribution and
Gamma regression are the best parametric models for estimating LGD with time
of default based on the following tests: MSE, RMSD, MAE, NSE, and MAPE.
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