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Abstract. In this paper, we extend the Chinese remainder theorem in the number
theory to several applications: (1) Lagrange interpolation formula is proved to be an
extension of the Chinese remainder theorem in the polynomial ring. (2) By applying
The Chinese Remainder Theorem in distributive lattice, a communication scheme is
proposed. (3) Adjusting and combing the Chinese remainder theorem with RSA public-
key cryptosystem, a dynamic secure communication on identity is proposed.
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1. Introduction

With the widely application of the computer and the continuous development
of network, communication system security problems cannot be ignored. The
inherent openness and limitations of network makes the security problem in-
creasingly obvious [2,3].

To protect information security has become the consensus of the whole so-
ciety. Great attention and commitment have been given to the communication
security system.
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In order to prevent information security risks, new security technology and
standard constantly appear. Encryptography also get great development as the
key technology in recent years [4,5,10-11].

The Chinese remainder theorem in number theory is essentially solving the
congruence equations. In the modern number theory, the Chinese remainder
theorem theory is of great importance, and also gains some applications in sev-
eral different algebras [1,6,13]. Besides the theoretical applications, the Chinese
remainder theorem theory also gains some applications in information security.
For example, [10] constructed a secret sharing schemes based on Chinese Re-
mainder Theorem.

Ring and lattice theory play a vital role as branches of algebra and in recent
years, and significance of ring and lattice theory also become gradually apparent
as their applications occur in many fields [9,12,14-15].

Lagrange’s interpolation formula includes interpolation by vector polynomi-
als and by rational vector functions with prescribed pole characteristics. The
formula is applied to obtain representations of the inverses of CauchyVander-
monde matrices generalizing former results. The shamir threshold scheme and
some password authentication schemes in encryptography are essentially based
on Lagrange interpolation formula [2,3].

Just as normal subgroups play a crucial role in the theory of groups, ideals
play an analogous role in the study of rings and lattice. The theory of ideals
functions well not only in algebras, but also in Computer Science. Nowadays,
ideals of different algebras were further studied.

In this paper, after Lagrange interpolation formula is proved just by extend-
ing the Chinese remainder theorem to the polynomial ring, we further construct
a dynamic secure communication scheme on identity by extending the Chinese
remainder theorem to distributive lattice.

The outline of this paper is organized as follows. In Section 2, preliminaries
of definitions and results are given. In Section 3, based on the Chinese Re-
mainder Theorem in Number Theory, Lagrange interpolation formula is proved
to be as an expression of the Chinese Remainder Theorem in the polynomial
ring. In Section 4, the Chinese Remainder Theorem in distributive lattice are
constructed and applied to secure communication application. In Section 5, an
identity-based dynamic secure communication scheme is proposed.

2. Preliminaries

Definition 2.1 ([12]). A ring is a nonempty set R together with two binary
operations (usually denoted as addition (+) and multiplication) such that

(1) (R,+) is an abelian group;

(2) (ab)c = a(bc) for all a, b, c ∈ R (associative multiplication);

(3) a(b+c) = ab+ac and (a+b)c = ac+bc (left and right distributive laws).
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If in addition: ab = ba for all a, b ∈ R, then R is said to be a commutative
ring. If R contains an element 1R such that 1Ra = a1R = a for all a ∈ R, then
R is said to be with identity.

Definition 2.2 ([8], the Chinese remainder theorem). Suppose n ≥ 2, and
m1,m2, . . . ,mn are n positive mutually prime integers. LetM = m1m2 . . .mn =
m1M1 = m2M2 = . . . = mnMn, here Mi = M

mi
, i = 1, 2, . . . , n, then for the

following congruence equations group
x ≡ b1(mod m1),
x ≡ b2(mod m2),
...
x ≡ bn(mod mn),

the minimum solution is x0 = b1M
′
1M1 + b2M

′
2M2 + . . . + bnM

′
nMn(mod M),

here positive integer M ′
i satisfying: M

′
iMi ≡ 1(mod mi), (i = 1, . . . n) i.e., M ′

i is
the inverse element of Mi with respect to mi.

Definition 2.3 ([12]). Let R be a ring and S a nonempty subset of R that is
closed under the operations of addition and multiplication in R. If S is itself a
ring under these operations then S is called a subring of R. A subring I of a ring
R is a left ideal provided r ∈ R and x ∈ I ⇒ rx ∈ I. I is a right ideal provided
r ∈ R and x ∈ I ⇒ xr ∈ I. I is an ideal if it is both a left and right ideal.

Theorem 2.4 ([12], Chinese Remainder Theorem on ring). Let A1, . . . , An be
ideals in a ring R, such that R2 + Ai = R for all i, and Ai + Aj = R for all
i ̸= j. If b1, . . . , bn ∈ R , then there exists b ∈ R such that b ≡ bi(mod Ai)(i =
1, . . . n). Furthermore b is uniquely determined up to congruence modulo ideal
A1 ∩A2 ∩ . . . ∩An.

Remark 2.5. If R has an identity, then R2 = R, whence R2 +A = R for every
ideal A of R.

Definition 2.6 ([15]). A nonempty set L with binary operations ∧ and ∨ is
called a lattice if for x, y, z ∈ L:

(1) x ∧ x = x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = (x ∨ y) ∧ x = x.

A binary relation ≤ is defined as for x, y ∈ L, x ≤ y if x∧y = x or x∨y = y.
Then we can find that binary relation ≤ is a partially ordered relation.

A lattice L is called bounded if there exists 0, 1 ∈ L, such that 0 ≤ x ≤ 1 for
any x ∈ L.

Definition 2.7 ([14]). For any x, y, z ∈ L,a lattice L is called distributive if:
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).



904 WEI WANG, PENG XI YANG and YAO XING

Definition 2.8 ([5], RSA public-key system). RSA is one of the best secure
algorithms till now [6].

RSA public-key system:
(1) Choose two large different prime numbers p and q.
(2) Compute n = pq, φ(n) = (p− 1)(q − 1).
(3) Find e(1 < e < φ(n)), such that g.c.d.(e, φ(n)) = 1, set e as public

encryption key.
(4) Compute d, such that de ≡ 1(mod φ(n)), set d as confidential decryption

key.
(5) Encryption process: for plain text m ∈ Zn, cipher text c is c = memod n.
(6) Decryption process: for cipher text c ∈ Zn, plain text m is m = cdmod n.

Definition 2.9 ([12], Lagrange interpolation formula). Suppose Xi = (xi1, xi2,
. . . , xin)(i = 1, 2, . . . ,m), then there exists a polynomial fi(x), such that fi(xj) =
xij(i = 1, 2, . . . ,m, j = 1, 2, . . . , n). If we define so-called Lagrange basic polyno-
mial lp(x) as lp(x) =

∏
p,p ̸=q

x−q
p−q , (p = 1, 2, . . . , n). Let fi(x) =

∑
p lp(x)xip(i =

1, 2, . . . ,m, j = 1, 2, . . . , n), then we can find that fi(j) = xij(i = 1, 2, . . . ,m, j =
1, 2, . . . , n). fi(x) is called Lagrange interpolation polynomial.

3. The Chinese remainder theorem of polynomials ring-Lagrange
interpolation formula

Lagrange interpolation formula is constructed usually from a Lagrange basic
polynomial. In fact, Lagrange interpolation formula can be proved to be as an
expression of the Chinese Remainder Theorem in the polynomial ring as the
following.

Theorem 3.1. Suppose n ≥ 2, and x − x1, x − x2, . . . , x − xn are n positive
mutually prime polynomials, Let X = (x−x1)(x−x2) . . . (x−xn) = (x−x1)X1 =
(x − x2)X2 = . . . = (x − xn)Xn, then for the following congruence equations
group:

F (x) ≡ F (x1)mod (x− x1),
F (x) ≡ F (x2)mod (x− x2),
...
F (x) ≡ F (xn)mod (x− xn),

the minimum degree polynomial solution is F (x) = F (x1)X
′
1X1+F (x2)X

′
2X2+

. . .+F (xn)X
′
nXn =

∑
i F (xi)

∏
j,j ̸=i(x−xj)∏
j,j ̸=i(xi−xj)

, here polynomial solution X ′
i satisfied

X ′
iXi ≡ 1(mod − xi), (i = 1, 2, . . . , n) i.e.,X ′

i is the inverse element of Xi with
respect to x− xi.

Lemma 3.2. Let Xi =
∏

j,j ̸=i(x − xj),then the corresponding inverse element

X ′
i of Xi is X ′

i =
1∏

j,j ̸=i(xi−xj)
(i = 1, 2, . . . , n).

Proof. XiX
′
imod (x− xi) = XiX

′
i|x=xi =

∏
j,j ̸=i(x−xj)∏
j,j ̸=i(xi−xj)

|x=xi =
∏

j,j ̸=i(xi−xj)∏
j,j ̸=i(xi−xj)

= 1

The theorem holds by the uniqueness of X ′
i.
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Remark 3.3. Lagrange interpolation formula can be proved to be as an expres-
sion of the Chinese Remainder Theorem in the polynomial ring. If the modules
are set properly, some other important interpolation formula can also obtained
as an expression of the Chinese Remainder Theorem in the polynomial ring.

4. The Chinese remainder theorem in distributive lattice

4.1 Congruence relation on ideals of distributive lattice

Definition 4.1 ([15]). A nonempty subset I of a lattice L is called an ideal of
L if it satisfies

(1) x ∈ L, y ∈ I, x ≤ y ⇒ y ∈ I,

(2) x ∈ I, y ∈ I ⇒ x ∨ y ∈ I.

Theorem 4.2. Suppose I be an ideal of a distributive lattice L. A binary
relation ≡ is defined as for ∀a, b ∈ L, a ≡ b(mod I) if for some d ∈ I, a∨d = b∨d,
then the binary relation ≡ is a congruence relation on L.

Proof. It is easy to see that binary relation ≡ has reflexivity and symmetry.

Suppose for a, b, c ∈ L, a ≡ b(mod I) and b ≡ c(mod I), then there exist
d, e ∈ I, such that a ∨ d = b ∨ d, b ∨ e = c ∨ e. So a ∨ (d ∨ e) = b ∨ d ∨ e =
b ∨ e ∨ d = c ∨ (d ∨ e), and d ∨ e ∈ I, then a ≡ c(mod I). So binary relation ≡
is an equivalent relation.

Suppose a ≡ b(mod I), then there exists some d ∈ I, such that a∨ d = b∨ d,
then ∀c ∈ L, (a∨d)∨ c = (b∨d)∨ c, i.e., for some d ∈ I, (a∨ c)∨d = (b∨ c)∨d,
then a ∨ c ≡ b ∨ c(mod I).

In the same way, a ≡ b(mod I), then there exists some d ∈ I, such that
a∨d = b∨d, then ∀c ∈ L, (a∧c)∨d = (a∨d)∧(c∨d) = (b∨d)∧(c∨d) = (b∧c)∨d,
then a ∧ c ≡ b ∧ c(mod I).

Suppose a ≡ b(mod I) and c ≡ d(mod I), then a ∨ c ≡ b ∨ c(mod I) and
b ∨ c ≡ b ∨ d(mod I), so a ∨ c ≡ b ∨ d(mod I).

In the same way, we can get a ∧ c ≡ b ∧ d(mod I).

Remark 4.3. Suppose I be an ideal of a distributive lattice L. A congruence
relation ≡ can be induced by I. If we use [x]I to denote the equivalent class of
x ∈ L, i.e., L/I = {[x]I |x ∈ L}. If we define [x]I ∨ [y]I = [x ∨ y]I , [x]I ∧ [y]I =
[x ∧ y]I , then (L/I,∧,∨) is a distributive lattice.

Theorem 4.4. Suppose I be an ideal of a lattice L. If a ∈ I, then [a]I = I.

Proof. Suppose for x ∈ [a]I , there exist d ∈ I, such that x ∨ d = a ∨ d, since
x ≤ x ∨ d = a ∨ d ∈ I. So x ∈ I. On the other hand, if x ∈ I, then x ∨ a ∈ I,
since x ∨ (x ∨ a) = a ∨ (x ∨ a), then x ≡ a(mod I), i.e., x ∈ [a]I .

Corollary 4.5. Suppose I be an ideal of a lattice L. If a ∈ I, then ∀d ∈ L,
a ≡ a ∧ d(mod I).
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Proof. ∀d ∈ L and a ∈ I, a ∨ a = (a ∧ d) ∨ a, so a ≡ a ∧ d(mod I).

Definition 4.6. Suppose I1, I2 be two ideals of a lattice L. An ideal I generated
by I1 ∪ I2 is called the sum of ideals I1 and I2, denoted by I = I1 + I2.

Lemma 4.7. Suppose I1, I2 be two ideals of a lattice L. Then I1 + I2 = {x| for
some a ∈ I1, b ∈ I2, x ≤ a ∨ b}.

Proof. Suppose I = {x| for some a ∈ I1, b ∈ I2, x ≤ a ∨ b}, then any ideal J
containing I1, I2 must contain I: if x ∈ I, then for some a ∈ I1, b ∈ I2, x ≤ a∨b,
x ≤ a ∨ b ∈ J , we get x ∈ J . i.e., I ⊆ J . And we have I1 + I2 ⊇ I.

Next we prove that I is an ideal. Suppose x ≤ y and y ∈ I, then for some
a ∈ I1, b ∈ I2, x ≤ y ≤ a ∨ b, so x ∈ I. If x, y ∈ I, then for some a, a1 ∈ I1,
b, b1 ∈ I2, we have x ≤ a ∨ b, y ≤ a1 ∨ b1, so x ∨ y ≤ (a ∨ b) ∨ (a1 ∨ b1) =
(a ∨ a1) ∨ (b ∨ b1), and a ∨ a1 ∈ I1, b ∨ b1 ∈ I2, we have x ∨ y ∈ I.

It is easy to see that I1 ⊆ I, I2 ⊆ I, so I1 + I2 ⊆ I.

Corollary 4.8. Suppose I1, I2 be two ideals of a distributive lattice L. Then
I1 + I2 = {a ∨ b| for some a ∈ I1, b ∈ I2}.

Proof. Suppose x ∈ I1 + I2, then for some a ∈ I1, b ∈ I2, we have x ≤ a ∨ b.
And x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b), since x ∧ a ≤ a ∈ I1, x ∧ b ≤ b ∈ I2, we
get x ∧ a ∈ I1, x ∧ b ∈ I2. i.e., I1 + I2 ⊆ {a ∨ b| for some a ∈ I1, b ∈ I2}. And
we have I1 + I2 ⊇ {a ∨ b| for some a ∈ I1, b ∈ I2}.

4.2 The Chinese Remainder Theorem in distributive lattice

Based on the above results, we can construct the Chinese Remainder Theorem
in distributive lattice.

Theorem 4.9. Suppose I1, I2, . . . , In be ideals of a distributive lattice L, such
that L = Ik +

∩
i ̸=k Ii, k = 1, . . . , n. If b1, b2, . . . , bn ∈ L, then there exist b ∈ L,

such that b ≡ bi(mod Ii), i = 1, 2, . . . , n. And b is uniquely determined with
respect to module ideal I1 ∩ I2 ∩ . . . ∩ In.

Proof. For every k, bk ∈ L = Ik +
∩

i̸=k Ii, k = 1, . . . n. When ak ∈ Ik, rk ∈∩
i̸=k Ii, bk = ak ∨ rk. On the other hand, ak ∈ Ik, then bk ∨ ak = ak ∨ rk ∨ ak =

rk ∨ ak, so bk ≡ rk(mod Ik), k = 1, . . . n. rk ∈
∩

i ̸=k Ii, then for all d ∈ L,
rk ≡ rk ∧ d(mod Ii), (i ̸= k). Let d = ri, then rk ≡ rk ∧ ri(mod Ii)(i ̸= k). Let
b = r1 ∨ r2 ∨ . . . ∨ rk ∨ . . . ∨ rn ≡ r1 ∨ r2 ∨ . . . ∨ rk ∨ . . . ∨ rn ≡ (r1 ∧ rk) ∨ (r2 ∧
rk)∨ . . .∨ rk ∨ . . .∨ (rn ∧ rk)(mod Ik) ≡ rk(mod Ik), (k = 1, 2, . . . , n). So we get
b ≡ bk(mod Ik)(k = 1, . . . n).

Then we prove the uniqueness.
Suppose there exist c ∈ L, such that c ≡ bk(mod Ik)(k = 1, . . . n). Then

b ≡ c(mod Ik)(k = 1, . . . n). So there exists dk ∈ Ik, such that b∨dk = c∨dk, (k =
1, . . . n). (b∨d1)∧ (b∨d2)∧ . . .∧ (b∨dn) = (c∨d1)∧ (c∨d2)∧ . . .∧ (c∨dn), i.e.,
b∨ (d1∧d2∧ . . .∧dn) = c∨ (d1∧d2∧ . . .∧dn), then we get b ≡ c(mod

∩
i Ii).
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4.3 A new communication scheme based on the Chinese remainder
theorem in distributive lattice

Based on the Chinese Remainder Theorem in distributive lattice, we can further
propose a secure communication scheme as follows.

Theorem 4.10. Suppose L = {the polynomial space on GF (2)}. A binary
relation ≤ is defined as for x ≤ y, (x, y ∈ L) ⇔ y|x, then (L,≤) is a partial
ordered set.

Proof. ∀f(x), g(x), h(x) ∈ L,

(1) f(x)|f(x) ⇔ f(x) ≤ f(x);

(2) f(x)|g(x), g(x)|f(x) ⇒ f(x) = g(x) ⇔ f(x) ≤ g(x), g(x) ≤ f(x) ⇒
f(x) = g(x);

(3) f(x)|g(x), g(x)|h(x) ⇒ f(x)|h(x) ⇔ g(x) ≤ f(x), h(x) ≤ g(x) ⇒ h(x) ≤
f(x).

(L,≤) is a partial ordered set.

Theorem 4.11. Suppose L = { the polynomial space on GF (2)}. For ∀f(x),
g(x) ∈ L, f(x) + g(x) and f(x)g(x) exist, i.e. L is a commutative ring. The
binary operations ∨,∧ are defined as

(1) f(x) ∨ g(x) = g.c.d.(f(x), g(x));

(2) f(x) ∧ g(x) = l.c.m.(f(x), g(x)),

then f(x) ∨ g(x) and f(x) ∧ g(x) exist, (L,∨,∧) is a distributive lattice.

Lemma 4.12. Suppose I be an ideal of a lattice L. Then I = {m(x)p(x)|m(x) ∈
L}, here p(x) is the irreducible polynomial on L.

Proof. Suppose f(x) ∈ L, g(x)|f(x) and g(x) ∈ I, then g(x) = m1(x)p(x), f(x) =
h(x)g(x) ⇒ f(x) = h(x)m1(x)p(x) ⇒ f(x) ∈ I, i.e., f(x) ∈ L, f(x) ≤ g(x) and
g(x) ∈ I, then we get f(x) ∈ I. On the other hand, ∀f(x), g(x) ∈ I, f(x)∨g(x) ∈
I.

Theorem 4.13. The unique solution determined by the module∩
i

Ii = {m(x)
∩
i

pi(x),m(x) ∈ L}

is F (x) =
∑

j fj(x)
∏

i ̸=j pi(x).

Proof. Let pi(x) ∈ Ii, since (fj(x)
∏

i̸=j pi(x)) ∨ pi(x) = 0 ∨ pi(x) = pi(x),
we get fj(x)

∏
i ̸=j pi(x) ≡ 0(mod Ik), and from (

∏
i ̸=j pi(x), pk(x)) = 1, we have

u(x)(
∏

i̸=j pi(x))+v(x)pk(x) = 1, then u(x)(fk(x)
∏

i̸=j pi(x))+v(x)fk(x)pk(x) =
fk(x), so (fk(x)

∏
i ̸=j pi(x), pk(x)) = fk(x), by (fk(x)

∏
i̸=j pi(x)) ∨ pk(x) =

fk(x)∨pk(x), we get (fk(x)
∏

i̸=j pi(x))mod Ik = fk(x), for any k, (k = 1, 2, . . . , n),
F (x)mod Ik =

∑
j fj(x)

∏
i̸=j pi(x)mod Ik = (f1p2p3 . . . pn + p1f2p3 . . . pn +

p1p2p3 . . . fn)mod Ik = fk(x), then F (x) is the unique solution.
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Based on the above analysis, a secure communication scheme can be de-
signed as follows: after the sender and the receiver of the communication chose
n modules on L: I1, I2, . . . , In, the sender can send solution of the congruence
equations group F (x) directly through the channel, the receiver can obtain
fi(x)(i = 1, 2, . . . , n) by F (x)mod Ii, then the receiver can get original informa-
tion flow safely and effectively, so as to achieve the requirements of the secure
communication.

System only need to transfer F (x) secretly, transfer volume decreases. Even
if F (x) is obtained by an intruder, since he couldn’t know the module and order,
it is difficult to use F (x) to get the original sequence; When the receiver needs to
restore sequence, he only needs to perform modular operations, which is simpler
and faster.

Remark 4.14. The Chinese Remainder Theorem can be constructed in dis-
tributive lattice, not in lattice, because the congruence relation is defined just
based on the properties of distributive lattice.

5. Identity based dynamic secure communication scheme

There has been a growing interest in the use of chaotic techniques for enabling
secure communication in recent years. The use of Chaotic techniques can en-
hance communication security, while it is inferior in low bit error rates (BER)
performance as compared to conventional communication schemes.

In this section, by constructing the Chinese remainder theorem with respect
to IDj combing RSA public-key cryptosystem, a new kind of secure communi-
cation is obtained with the same secure level and less complexity compared with
the techniques mentioned above.

Assume that there is n users ui, (i = 1, 2, . . . , n) in the system, IDi is the
identifier of ui (such that i ̸= j, (IDi, IDj) = 1). System Center(SC) chooses
two different large prime numbers p and q, and calculate n = pq(public),
φ(n) = (p − 1)(q − 1)(confidential by SC). The system selects encryption key
ei (public)and decryption key di(confidential by ui) for each user ui, such that
eidi ≡ 1(mod φ(n)), and 1 < di < IDi.

For congruence equation:

x ≡ di(mod IDi)

SC get the solution x0 (public)based on the Chinese Remainder Theorem.
SC chooses Two-way function f(public).

Communication process: Suppose there is a user ui who will want to com-
municate with uj , then ui get the decryption key dj(confidential by uj) by
computing dj = x0mod IDj , and compute fdj (m,T ), T is the sending time, m
is the message. When uj received fdj (m,T ), he computes (fdj (m,T ))ejmod n,
then gets T and m. If T meets the requirements, accepts m, otherwise refuses
m.
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Remark 5.1. The improvement of the secure communication system over the
RSA is that on one hand by combing RSA public-key cryptosystem and the
Chinese remainder theorem the scheme just stores public x0 instead of public
key list, store volume decreases; on the other hand the scheme keeps the same
level security of RSA, while avoids complicated power operations.

6. Conclusion

Based on the Chinese remainder theorem of polynomials, Lagrange interpola-
tion formula is found to be an extension of the Chinese remainder theorem in
the polynomial ring. And two new communication schemes based on the Chi-
nese Remainder Theorem in distributive lattice and combined with RSA are
proposed.
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