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Abstract. This paper deals with a nonlinear gradient chemotaxis system with logis-
tic source motivated by the model of tumor lymphangiogenesis in a smooth bounded
domain Ω ⊂ Rn. By using the iterative method and the test-function argument, we
prove that the problem possesses a unique global solution which is uniformly bounded.
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1. Introduction

In this paper we study the nonlinear gradient chemotaxis system with logistic
source 

ut = ∆u− χ∇ · (uF(∇v)) + f(u), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

(∇u− χuF(∇v)) · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω is a smooth bounded domain in Rn, ν denotes the outward normal on
∂Ω, χ > 0, F is a vector-valued function and the initial data u0(x), v0(x) are
given nonnegative functions. The unknown function u denotes cell density and
v describes the concentration of the chemical signal.
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The problem (1.1) is a variation of the so-called minimal model of the Keller-
Segel chemotaxis model which is obtained when F(∇v) = ∇v and f ≡ 0. Such
a model in which the chemotactic component to motion depends nonlinearly on
signal gradient provides a more realistic depiction of individual cell migration
[2]. Various versions of the model for chemotaxis have attracted much attention
in recent years; see the survey articles [2, 3, 9] and the references therein for
more information.

Throughout this paper we assume that the vector-valued function F : Rn →
Rn belongs to C1+δ(Rn) for some δ > 0 and that

|F(a)| ≤ A, for all a ∈ Rn.(1.2)

The logistic function f : R → R is smooth satisfying f(0) = 0 and

f(s) ≤ κs− µs2, for all s ≥ 0(1.3)

with κ > 0 and µ > 0. We note that there exist some important models in
which the assumption (1.2) is satisfied. For instance,

F(∇v) =
1

c

(
tanh

( cvx1

1 + c

)
, · · · , tanh

( cvxn

1 + c

))
for describing migration of the flagella bacteria Escherichia coli [2]. Another
specific choice of the function

F(∇v) =
∇v√

1 + c|∇v|2

represents chemotactic factor in model of tumor lymphangiogenesis [1].

For the case f(s) = 0, the global existence of solutions has been shown by
Hillen and Painter [2, Lemma 3] if F is uniformly bounded. The main purpose
of this paper is to prove the global existence and the boundedness of solutions
of (1.1) with nontrivial logistic source for all dimensions n ≥ 1. The proof is
based on a test-function argument and an iterative technique on Lp norms[4, 5].

2. Preliminary lemmas and statements of the main result

In this paper we need the following well-known facts concerning the Laplacian on
Ω supplemented with homogeneous Neumann boundary conditions (for instance,
see [4, 6]). Firstly, the operator −∆ + 1 is sectorial in Lp(Ω) and therefore
possesses closed fractional powers (−∆ + 1)θ, θ ∈ (0, 1), with dense domain
D((−∆+ 1)θ). If m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞) with m − n

p < 2θ − n
q ,

then we have

∥ω∥Wm,p(Ω) ≤ c∥(−∆+ 1)θω∥Lq(Ω),(2.1)
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for all ω ∈ D((−∆+ 1)θ), where c is a positive constant. Moreover, for p < ∞
the associated heat semigroup (et∆)t≥0 maps Lp(Ω) into D((−∆ + 1)θ) in any
of the space Lq(Ω) for q ≥ p, and there exist c > 0 and µ > 0 such that

∥(−∆+ 1)θet(∆−1)ω∥Lq(Ω) ≤ ct
−θ−n

2
( 1
p
− 1

q
)
e−µt∥ω∥Lp(Ω)(2.2)

for all ω ∈ Lp(Ω).
In the following proof, we shall use the ODE comparison principle repeatedly.

Lemma 2.1. Let the function y ∈ C1[0,∞) be positive and satisfy{
y′ + γyp ≤ δyq, t > 0,

y(0) = y0

with γ > 0, p > q ≥ 0 and δ ≥ 0. Then, for all t ≥ 0

y(t) ≤ max

{
y0,

(
δ

γ

) 1
p−q

}
.

Proof. If y0 ≤
(

δ
γ

) 1
p−q

, then y(t) ≤
(

δ
γ

) 1
p−q

for all t ≥ 0. If y0 >
(

δ
γ

) 1
p−q

, then

there exists t0 ∈ (0,∞) such that

y(t) ≥
(
δ

γ

) 1
p−q

, t ∈ [0, t0],(2.3)

y(t) ≤
(
δ

γ

) 1
p−q

, t ∈ [t0,∞).

From (2.3), we have y′(t) ≤ 0 in (0, t0), which implies y(t) ≤ y0 in (0, t0). Hence
we complete the proof.

In the proof of boundedness of u, we also use the following Lemma (see [8, 5]
for details).

Lemma 2.2. Assume that Ω ⊂ Rn is a bounded domain with smooth boundary.
For each ε > 0, there exists C > 0 which depends only on n and Ω with the
property that

∥φ∥2L2(Ω) ≤ ε∥∇φ∥2L2(Ω) + C(1 + ε−
n
2 )∥φ∥2L1(Ω), φ ∈ W 1,2(Ω).(2.4)

The following lemma asserts that the system (1.1) has a unique local-in-time
existence classical solution.

Lemma 2.3. Let u0 and v0 be nonnegative functions such that u0 ∈ C0(Ω̄) and
v0 ∈ W 1,r(Ω) for some r > n. Suppose that F satisfies (1.2) and f is given by
(1.3). Then there exist the maximal existence time Tmax ∈ (0,∞] and a unique
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local-in-time classical nonnegative solution (u(x, t), v(x, t)) to the problem (1.1)
such that

u ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

v ∈ C0(Ω̄× [0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,r(Ω)) ∩ C2,1(Ω̄× (0, Tmax)).

If Tmax < ∞, then

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) → ∞ as t ↗ Tmax.

In addition, there exists a constant M > 0 such that∫
Ω
u(x, t)dx ≤ M, for all t ∈ (0, Tmax).(2.5)

Proof. The proof of local existence of a classical solution to (1.1) is similar to
that of [6, Lemma 2.1] and [7, Lemma 1.1] and so is omitted. We now prove
(2.5). Integrating the first equation in (1.1) over Ω, we obtain

d

dt

∫
Ω
u =

∫
Ω
∆u− χ

∫
Ω
∇ · (uF(∇v)) +

∫
Ω
f(u).

Here the Green’s formulas ensures that∫
Ω
∆u =

∫
∂Ω

∇u · ν

and

−χ

∫
Ω
∇ · (uF(∇v)) = −χ

∫
∂Ω

uF(∇v) · ν.

We next recall the boundary condition in (1.1) to see that∫
Ω
∆u− χ

∫
Ω
∇ · (uF(∇v)) =

∫
∂Ω

(∇u− χuF(∇v)) · ν = 0.

Hence, the assumption (1.3) implies that

d

dt

∫
Ω
udx ≤

∫
Ω
(κu− µu2)dx.(2.6)

From Hölder’s inequality, we get the inequality

−
∫
Ω
u2dx ≤ − 1

|Ω|
(

∫
Ω
udx)2.(2.7)

It follows from (2.6) and (2.7) that

d

dt

∫
Ω
udx ≤

(
κ− µ

|Ω|

∫
Ω
udx

)∫
Ω
udx.
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Let y(t) =
∫
Ω u(x, t)dx, then we have

y′ ≤
(
κ− µ

|Ω|
y

)
y.

Hence, we apply Lemma 2.1 to obtain∫
Ω
udx ≤ M := max{

∫
Ω
u0dx,

κ

µ
|Ω|}.

This completes the proof.

The main result of this paper reads as follows:

Theorem 2.1. Under the assumptions of Lemma 2.2, problem (1.1) possesses
a unique global classical solution (u, v) such that both u and v are nonnegative
and bounded in Ω× (0,∞).

3. Proof of Theorem 2.1

We first prove uniform boundedness of the first component of the solution u(·, t)
in the space Lk(Ω) for all 2 < k < ∞. In the sequel we shall denote by C various
positive constants which may vary from line to line. Also u(·, t) will be denoted
sometimes by u. Multiplying the first equation in (1.1) by uk−1 and integrating
over Ω, we obtain

1

k

d

dt

∫
Ω
ukdx≤

∫
Ω
∆uuk−1dx−χ

∫
Ω
∇ · (uF(∇v))uk−1dx+

∫
Ω
uk−1(κu− µu2)dx,

where by the Green’s formulas∫
Ω
∆uuk−1dx = −(k − 1)

∫
Ω
uk−2|∇u|2dx+

∫
∂Ω

uk−1∇u · νdS

and

−χ

∫
Ω
∇·(uF(∇v))uk−1dx = χ(k−1)

∫
Ω
uk−1∇u·F(∇v)dx−χ

∫
∂Ω

ukF(∇v)·νdS.

The boundary condition in (1.1) implies that∫
Ω
∆uuk−1dx− χ

∫
Ω
∇ · (uF(∇v))uk−1dx

= −(k − 1)

∫
Ω
uk−2|∇u|2dx+ χ(k − 1)

∫
Ω
uk−1∇u · F(∇v)dx

+

∫
∂Ω

uk−1(∇u− χuF(∇v)) · νdS

= −(k − 1)

∫
Ω
uk−2|∇u|2dx+ χ(k − 1)

∫
Ω
uk−1∇u · F(∇v)dx.
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Hence, we get the estimate

1

k

d

dt

∫
Ω
ukdx+ (k − 1)

∫
Ω
uk−2|∇u|2dx

≤ χ(k − 1)

∫
Ω
uk−1∇u · F(∇v)dx+

∫
Ω
uk−1(κu− µu2)dx.

Applying (1.2) and Cauchy’s inequality, we get

χ(k − 1)

∫
Ω
uk−1∇u · F(∇v)dx ≤ k − 1

2

∫
Ω
uk−2|∇u|2dx+

k − 1

2
(Aχ)2

∫
Ω
ukdx.

In view of Hölder’s inequality∫
Ω
ukdx ≤

(∫
Ω
uk+1dx

) k
k+1 |Ω|

1
k+1 ,

we have

−
∫
Ω
uk+1dx ≤ −|Ω|−

1
k

(∫
Ω
ukdx

) k+1
k
.

It follows that

1

k

d

dt

∫
Ω
ukdx ≤ −µ|Ω|−

1
k

(∫
Ω
ukdx

) k+1
k

+
(k − 1

2
(Aχ)2 + κ

)∫
Ω
ukdx.

Therefore, Lemma 2.1 yields∫
Ω
ukdx ≤ C, t ∈ (0, Tmax),(3.1)

for all 2 < k < ∞.
In order to complete the proof of Theorem 2.1, by means of Lemma 2.2, it

is sufficient to prove that for any fixed τ ∈ (0, Tmax)

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) ≤ C(τ), t ∈ (τ, Tmax)

holds with some constant C(τ) > 0. To do so, we let τ ∈ (0, Tmax) such that
τ < 1 and pick k > max{2, n2 }, so that we can choose θ ∈ ( n

2k , 1). From the
variation-of-constant formula, we get

v(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)u(·, s)ds, t ∈ (0, Tmax).

By using (2.1), (2.2), (1.2) and (3.1), we have

∥v(·, t)∥W 1,∞(Ω) ≤ C∥(−∆+ 1)θv(·, t)∥Lk(Ω)

≤ Ct−θe−µt∥v0∥Lk(Ω) + C

∫ t

0
(t− s)−θe−µ(t−s)∥u(·, s)∥Lk(Ω)ds

≤ Ct−θ + C

∫ t

0
(t− s)−θe−µ(t−s)ds

≤ C
(
τ−θ + Γ(1− θ)

)
, t ∈ (τ, Tmax),(3.2)
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where Γ(·) denotes the Gamma function.
We now turn to establish a uniform bound of u. For any p ≥ 2, using the

first equation in (1.1), (1.2) and (1.3), we compute

d

dt

∫
Ω
updx = p

∫
Ω
up−1utdx

= p

∫
Ω
up−1

(
∆u− χ∇(uF(∇v)) + f(u)

)
dx

≤ −p(p− 1)

∫
Ω
up−2|∇u|2dx+χAp(p− 1)

∫
Ω
up−1|∇u|dx+pκ

∫
Ω
updx

= −4(p− 1)

p

∫
Ω
|∇u

p
2 |2dx+ 2χA(p− 1)

∫
Ω
u

p
2 |∇u

p
2 |dx+ pκ

∫
Ω
updx

≤ −2(p− 1)

p

∫
Ω
|∇u

p
2 |2dx+

((χA)2

2
p(p− 1) + pκ

)∫
Ω
updx,

where we have used Young’s inequality. Therefore,

d

dt

∫
Ω
updx+ p(p− 1)

∫
Ω
updx

≤ −2(p− 1)

p

∫
Ω
|∇u

p
2 |2dx+ C1p(p− 1)

∫
Ω
updx,(3.3)

where C1 =
(χA)2

2 + κ
p−1 + 1. Using (2.4) with φ = u

p
2 and ε = 2

C1p2
, we obtain

C1p(p− 1)

∫
Ω
updx = C1p(p− 1)∥u

p
2 ∥2L2(Ω)

≤ 2(p− 1)

p

∫
Ω
|∇u

p
2 |2dx+ C2p(p− 1)(1 + p)n

(∫
Ω
u

p
2 dx

)2
,

where C2 = CC1max{1, (C1
2 )

n
2 }. Substituting in (3.3) we get

d

dt

∫
Ω
updx+ p(p− 1)

∫
Ω
updx ≤ C2p(p− 1)(1 + p)n

(∫
Ω
u

p
2 dx

)2
.

Taking supremum for t ∈ [0, Tmax] on the right hand-side, we get

d

dt

∫
Ω
updx+ p(p− 1)

∫
Ω
updx ≤ C2p(p− 1)(1 + p)n sup

0≤t≤Tmax

(∫
Ω
u

p
2 dx

)2
.

Therefore, it follows from Lemma 2.1 that∫
Ω
updx ≤ max

{∫
Ω
up0dx, C2(1 + p)n sup

0≤t≤Tmax

( ∫
Ω
u

p
2 dx

)2}
.(3.4)

Denoting

F (p) := max

{
∥u0∥L∞(Ω), sup

0≤t≤Tmax

∥u(t)∥Lp(Ω)

}
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and hence (3.4) yields

F (p) ≤
(
C3(1 + p)n

) 1
pF (

p

2
),

where C3 = max{|Ω|, C2}. Taking p = 2j (j ∈ N+), we obtain

F (2j) ≤ C
1

2j

3 (1 + 2j)
n

2j F (2j−1)

≤ · · ·

≤ C
∑j

i=1 2
−i

3 ·
j∏

i=1

(1 + 2i)
n

2i F (1)

≤ C32
n
∑j

i=1
i

2i · 2n
∑j

i=1
1

2i F (1)

≤ C32
n(2− j

2j+1 )F (1).

Letting j → ∞, we infer that

max

{
∥u0∥L∞(Ω), sup

0≤t≤Tmax

∥u(t)∥L∞(Ω)

}
=: F (∞) ≤ C32

2nF (1)

according to (2.5). This along with (3.2) yields

∥u(t)∥L∞(Ω) + ∥v(t)∥W 1,∞(Ω) < ∞.

This is a contradiction with Lemma 2.3.
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