Ideals in LA-rings

Nasreen Kausar*

Department of Mathematics and Statistics University of Agriculture Faisalabad Pakistan kausar.nasreen57@gmail.com

Mohammad Munir

Department of Mathematics Government Postgraduate College Abbottabad Pakistan dr.mohammadmunir@gpgc-atd.edu.pk

Badar ul Islam

Department of Electrical Engineering NFC IEFR FSD Pakistan badar.utp@gmail.com

Meshari Alesemi

Department of Mathematics Jazan University, Jazan Kingdom of Saudi Arabia malesemi@jazanu.edu.sa

Salahuddin

Department of Mathematics Jazan University, Jazan Kingdom of Saudi Arabia drsalah12@hotmail.com

Muhammad Gulzar

Department of Mathematics Government College University Faisalabad Pakistan 98kohly@gmail.com

Abstract. Our aim is to encourage research and maturity of associative algebraic structures by studying a class of non-associative and non-commutative algebraic structures (LA-ring).

Keywords: (left, right, interior, quasi-, bi-,generalized bi-) ideals, regular (intraregular) LA-rings.

*. Corresponding author

1. Introduction

In ternary operations, the commutative law is given by abc = cba. Kazim et al [6] have generalized this notion by introducing the paranthesis on the left side of this equation to get a new pseudo associative law, that is (ab)c = (cb)a. This law (ab)c = (cb)a is the left invertive law. A groupoid S is a left almost semigroup (abbreviated as LA-semigroup), if it satisfies the left invertive law. An LA-semigroup is a midway structure between a commutative semigroup and a groupoid. Ideals in LA-semigroups have been investigated by Protic et al [7].

In [2] (resp. [1]), a groupoid S is to be medial (resp. paramedial) if (ab)(cd) = (ac)(bd) (resp. (ab)(cd) = (db)(ca)). In [6], an LA-semigroup is medial, but in general an LA-semigroup needs not to be paramedial. Every LA-semigroup with left identity is paramedial by Protic et al [7] and also satisfies a(bc) = b(ac), (ab)(cd) = (dc)(ba).

Kamran [3], extended the notion of LA-semigroup to the left almost group (LA-group). An LA-semigroup G is a left almost group, if there exists a left identity $e \in G$ such that ea = a for all $a \in G$ and for every $a \in G$ there exists $b \in G$ such that ba = e.

Shah et al [8], discussed the left almost ring (LA-ring) of finitely nonzero functions which is a generalization of commutative semigroup ring. By a left almost ring, we mean a non-empty set R with at least two elements such that (R, +) is an LA-group, (R, \cdot) is an LA-semigroup, both left and right distributive laws hold. For example, from a commutative ring $(R, +, \cdot)$, we can always obtain an LA-ring (R, \oplus, \cdot) by defining for all $a, b \in R$, $a \oplus b = b - a$ and $a \cdot b$ is same as in the ring. Although the structure is non-associative and non-commutative, nevertheless, it possesses many interesting properties which we usually find in associative and commutative algebraic structures.

In this paper, we will define the left (resp. right, interior, quasi-, bi-, generalized bi-) ideals of an LA-ring R. We will establish a study by discussing the different properties of such ideals. We will also characterize regular (resp. intraregular, both regular and intra-regular) LA-rings in terms of left (resp. right, quasi-, bi-, generalized bi-) ideals.

2. Ideals in LA-rings

We initiate the concept of LA-subrings and left (resp. right, interior, quasi-, bi-, generalized bi-) ideals of an LA-ring R.

A non-empty subset A of an LA-ring R is called an LA-subring of R if a - band $ab \in A$ for all $a, b \in A$. A is called a left (resp. right) ideal of R, if (A, +)is an LA-group and $RA \subseteq A$ (resp. $AR \subseteq A$). A is called an ideal of R. if it is both a left ideal and a right ideal of R. **Example 1.** Let $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Define + and \cdot in R as follows:

+	0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7		0	0	0	0	0	0	0	0	0
1	2	0	3	1	6	4	7	5		1	0	4	4	0	0	4	4	0
2	1	3	0	2	5	7	4	6		2	0	4	4	0	0	4	4	0
3	3	2	1	0	7	6	5	4	and	3	0	0	0	0	0	0	0	0
4	4	5	6	7	0	1	2	3		4	0	3	3	0	0	3	3	0
5	6	4	7	5	2	0	3	1		5	0	7	7	0	0	7	7	0
6	5	7	4	6	1	3	0	2		6	0	7	7	0	0	7	7	0
$\overline{7}$	7	6	5	4	3	2	1	0		7	0	3	3	0	0	3	3	0

Let $A = \{0, 4\}$ be a subset of R. Since (A, +) is an LA-subgroup and

$$A^{2} = AA = \{0,4\}\{0,4\} = \{0\} \subseteq A.$$

$$AR = \{0,4\}\{0,1,2,3,4,5,6,7\} = \{0,3\} \nsubseteq A.$$

Thus A is an LA-subring of R, but not right ideal of R.

A non-empty subset A of an LA-ring R is an interior ideal of R, if (A, +) is an LA-group and $(RA)R \subseteq A$. A non-empty subset A of R is a quasi-ideal of R, if (A, +) is an LA-group and $AR \cap RA \subseteq A$. An LA-subring A of an LA-ring R is a bi-ideal of R if $(AR)A \subseteq A$. A non-empty subset A of an LA-ring R is a generalized bi-ideal of R if (A, +) is an LA-group and $(AR)A \subseteq A$. An ideal Iof an LA-ring R is an idempotent ideal of R if $A^2 = A$.

Now we give the central properties of such ideals of an LA-ring R, which will be very helpful for further sections.

Lemma 2.1. Let R be an LA-ring with left identity e, then RR = R and eR = R = Re.

Proof. Since $RR \subseteq R$ and $x = ex \in RR$, i.e., $R \subseteq RR$, thus RR = R. Obviously, eR = R and Re = (RR)e = (eR)R = RR = R.

Lemma 2.2 ([4, Lemma 8]). Let R be an LA-ring with left identity e and $a \in R$. Then Ra is the smallest left ideal of R containing a.

Lemma 2.3 ([4, Lemma 9]). Let R be an LA-ring with left identity e and $a \in R$. Then Ra is a left ideal of R.

Proposition 2.1 ([4, Proposition 5]). Let R be an LA-ring with left identity e and $a \in R$. Then $aR \cup Ra$ is the smallest right ideal of R containing a.

Lemma 2.4. Let R be an LA-ring with left identity e. Then every right ideal of R is an ideal of R.

Proof. Let I be a right ideal of R. Let $a \in I$ and $r \in R$. Now $ra = (er)a = (ar)e \in IR \subseteq I$. Thus I is an ideal of R. \Box

Lemma 2.5. Every two-sided ideal of R is an interior ideal of R, but the converse is not true.

Proof. Straight forward.

Example 2. Let $A = \{0, 1, 2, 3\}$ be a subset of R, defined as in example 1. Since (A, +) is an LA-subgroup and

$$(RA)R = (\{0, 1, 2, 3, 4, 5, 6, 7\}\{0, 1, 2, 3\})\{0, 1, 2, 3, 4, 5, 6, 7\}$$

= $\{0, 3, 4, 7\}\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 3\} \subseteq A.$
$$RA = \{0, 1, 2, 3, 4, 5, 6, 7\}\{0, 1, 2, 3\} = \{0, 3, 4, 7\} \nsubseteq A.$$

$$AR = \{0, 1, 2, 3\}\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 4\} \nsubseteq A.$$

Thus A is an interior ideal of R, but not an ideal of R.

Proposition 2.2. Let R be an LA-ring with left identity e. Then any non-empty subset I of R is an ideal of R if and only if I is an interior ideal of R.

Proof. Let *I* be an interior ideal of *R*. Let $a \in I$ and $r \in R$. Now $ar = (ea)r \in (RI)R \subseteq I$, i.e., *I* is a right ideal of *R*. Thus *I* is an ideal of *R* by the Lemma 2.4. Converse is true by the Lemma 2.5.

Lemma 2.6. Every left (resp. right, two-sided) ideal of R is a bi-ideal of R.

Proof. Straight forward.

Example 3. Let $A = \{0, 4\}$ be a subset of R defined as in example 1. Since (A, +) is an LA-subgroup and

$$A^{2} = AA = \{0, 4\}\{0, 4\} = \{0\} \subseteq A.$$

$$(AR)A = (\{0, 4\}\{0, 1, 2, 3, 4, 5, 6, 7\})\{0, 4\}$$

$$= \{0, 3\}\{0, 4\} = \{0\} \subseteq A.$$

$$AR = \{0, 4\}\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 3\} \nsubseteq A.$$

Thus A is a bi-ideal of R, but not right ideal of R.

Lemma 2.7. Every bi-ideal of R is a generalized bi-ideal of R.

Proof. Obvious.

Lemma 2.8. Every left (resp. right, two-sided) ideal of R is a quasi-ideal of R.

Proof. Let *I* be a left ideal of *R* and $IR \cap RI \subseteq RI \subseteq I$, i.e., *I* is a quasi-ideal of *R*.

Proposition 2.3. Let I be a right ideal and L be a left ideal of an LA-ring R, respectively. Then $I \cap L$ is a quasi-ideal of R.

Proof. Since $(I \cap L)R \cap R(I \cap L) \subseteq IR \cap RL \subseteq I \cap L$, i.e., $I \cap L$ is a quasi-ideal of R.

Lemma 2.9. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then every quasi-ideal of R is a bi-ideal of R.

Proof. Let Q be a quasi-ideal of R. Now $(QR)Q \subseteq RQ$ and $(QR)Q \subseteq (QR)R = (QR)(eR) = (Qe)(RR) = (Qe)R = QR$, thus $(QR)Q \subseteq QR \cap RQ \subseteq Q$. Hence Q is a bi-ideal of R.

3. Regular LA-rings

An LA-ring R is regular, if for every $a \in R$, there exists an element $x \in R$ such that a = (ax)a. We characterize regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Lemma 3.1. Every right ideal of a regular LA-ring R is an ideal of R.

Proof. Suppose that I is a right ideal of R. Let $a \in I$ and $r \in R$. This implies that there exists an element $x \in R$, such that r = (rx)r. Now $ra = ((rx)r)a = (ar)(rx) \in IR \subseteq I$. Hence I is an ideal of R.

Lemma 3.2. Every ideal of a regular LA-ring R is an idempotent.

Proof. Let *I* be an ideal of *R*. Since $I^2 \subseteq I$ and $a \in I$. This means that there exists an element $x \in R$ such that a = (ax)a. Now $a = (ax)a \in (IR)I \subseteq II = I^2$, i.e., $I \subseteq I^2$. Thus $I^2 = I$.

Remark 1. Every right ideal of a regular LA-ring R is an idempotent.

Proposition 3.1. Let R be a regular LA-ring. Then any non-empty subset I of R is an ideal of R if and only if I is an interior ideal of R.

Proof. Assume that I is an interior ideal of R. Let $a \in I$ and $r \in R$. Then there exists an element $x \in R$, such that a = (ax)a. Now $ar = ((ax)a)r = (ra)(ax) \in (RI)R \subseteq I$, i.e., $IR \subseteq I$. Thus I is an ideal of R by the Lemma 3.1. Converse is true by the Lemma 2.5.

Proposition 3.2. Let R be a regular LA-ring with left identity e. Then $IR \cap RI = I$ for every right ideal I of R.

Proof. Let *I* be a right ideal of *R*. This implies that $IR \cap RI \subseteq I$, because every right ideal of *R* is a quasi-ideal of *R*. Let $a \in I$, this means that there exists an element $x \in R$ such that a = (ax)a. Now $a = (ax)a \in (IR)I \subseteq II \subseteq IR$, i.e., $I \subseteq IR$ and $a = (ax)a = (ax)(ea) = (ae)(xa) \in I(RI) = R(II) = RI$, i.e., $I \subseteq RI$. Thus $I \subseteq IR \cap RI$, hence $IR \cap RI = I$.

Lemma 3.3. Let R be a regular LA-ring. Then $DL = D \cap L$ for every right ideal D and for every left ideal L of R.

Proof. Since $DL \subseteq D \cap L$ is obvious. Let $a \in D \cap L$, then there exists an element $x \in R$ such that a = (ax)a. Now $a = (ax)a \in (DR)L \subseteq DL$, i.e., $D \cap L \subseteq DL$. Hence $DL = D \cap L$.

Theorem 1. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

- (2) $D \cap L = DL$ for every right ideal D and for every left ideal L of R.
- (3) Q = (QR)Q for every quasi-ideal Q of R.

Proof. Suppose that (1) holds. Let Q be a quasi-ideal of R and $a \in Q$, this implies that there exists an element $x \in R$ such that a = (ax)a. Now $a = (ax)a \in (QR)Q$, i.e., $Q \subseteq (QR)Q \subseteq Q$, because every quasi-ideal of R is a bi-ideal of R. Hence Q = (QR)Q, i.e., (1) \Rightarrow (3). Assume that (3) holds, let D be a right ideal and L be a left ideal of R. Then D and L be quasi-ideals of R by the Lemma 2.8, so $D \cap L$ be also a quasi-ideal of R. Now $D \cap L = ((D \cap L)R)(D \cap L) \subseteq (DR)L \subseteq DL$. Since $DL \subseteq D \cap L$, so $DL = D \cap L$, i.e., (3) \Rightarrow (2). Suppose that (2) is true, let $a \in R$, then Ra is a left ideal of R containing a by the Lemma 2.2 and $aR \cup Ra$ is a right ideal of R containing a by the Proposition 2.1. By our supposition

$$(aR \cup Ra) \cap Ra = (aR \cup Ra)(Ra) = (aR)(Ra) \cup (Ra)(Ra).$$

Now
$$(Ra)(Ra) = ((Re)a)(Ra) = ((ae)R)(Ra) = (aR)(Ra).$$

Thus

$$(aR \cup Ra) \cap Ra = (aR)(Ra) \cup (Ra)(Ra)$$
$$= (aR)(Ra) \cup (aR)(Ra) = (aR)(Ra).$$

Since $a \in (aR \cup Ra) \cap Ra$, implies $a \in (aR)(Ra)$. Then a = (ax)(ya) = ((ya)x)a = (((ey)a)x)a = (((ay)e)x)a = ((xe)(ay))a

 $= (a((xe)y))a \in (aR)a$ for any $x, y \in R$, i.e., $a \in (aR)a$. Hence a is a regular, so R is a regular, i.e., $(2) \Rightarrow (1)$.

Theorem 2. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

- (1) R is a regular.
- (2) Q = (QR)Q for every quasi-ideal Q of R.
- (3) B = (BR)B for every bi-ideal B of R.
- (4) G = (GR)G for every generalized bi-ideal G of R.

Proof. (1) \Rightarrow (4), is obvious. (4) \Rightarrow (3), since every bi-ideal of R is a generalized bi-ideal of R by the Lemma 2.7. (3) \Rightarrow (2), since every quasi-ideal of R is bi-ideal of R by the Lemma 2.9. (2) \Rightarrow (1), by the Theorem 1. **Theorem 3.** Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

- (2) $Q \cap I = (QI)Q$ for every quasi-ideal Q and for every ideal I of R.
- (3) $B \cap I = (BI)B$ for every bi-ideal B and every for ideal I of R.

(4) $G \cap I = (GI)G$ for every generalized bi-ideal G and for every ideal I of R.

Proof. Suppose that (1) holds. Let G be a generalized bi-ideal and I be an ideal of R. Now $(GI)G \subseteq (RI)R \subseteq I$ and $(GI)G \subseteq (GR)G \subseteq G$, thus $(GI)G \subseteq G \cap I$. Let $a \in G \cap I$, this means that there exists an element $x \in R$ such that a = (ax)a. Now $a = (ax)a = (((ax)a)x)a = ((xa)(ax))a = (a((xa)x))a \in (GI)G$, thus $G \cap I \subseteq (GI)G$. Hence $G \cap I = (GI)G$, i.e., $(1) \Rightarrow (4) \cdot (4) \Rightarrow (3)$, since every bi-ideal of R is a generalized bi-ideal of R by the Lemma 2.7. $(3) \Rightarrow (2)$, since every quasi-ideal of R is a bi-ideal of R by the Lemma 2.9. Assume that (2) is true. Now $Q \cap R = (QR)Q$, i.e., Q = (QR)Q, where Q is a quasi-ideal of R. Hence R is a regular by the Theorem 1, i.e., $(2) \Rightarrow (1)$.

Theorem 4. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

(2) $D \cap Q \subseteq DQ$ for every quasi-ideal Q and for every right ideal D of R.

(3) $D \cap B \subseteq DB$ for every bi-ideal B and for every right ideal D of R.

(4) $D \cap G \subseteq DG$ for every generalized bi-ideal G and for every right ideal D of R.

Proof. Since $(1) \Rightarrow (4)$, is obvious. $(4) \Rightarrow (3)$, since every bi-ideal of R is a generalized bi-ideal of R. $(3) \Rightarrow (2)$, since every quasi-ideal of R is a bi-ideal of R. Suppose that (2) is true. Now $D \cap Q \subseteq DQ$, where Q is a left ideal and D is right ideal of R, because every left ideal of R is a quasi-ideal of R. Since $DQ \subseteq D \cap Q$, thus $D \cap Q = DQ$. Hence R is a regular by the Theorem 1, i.e., $(2) \Rightarrow (1)$.

Theorem 5. Let R be an LA-ring with left identity e, such that (xe)R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

(2) $Q \cap D \cap L \subseteq (QD)L$ for every quasi-ideal Q, every right ideal D and for every left ideal L of R.

(3) $B \cap D \cap L \subseteq (BD)L$ for every bi-ideal B, every right ideal D and for every left ideal L of R.

(4) $G \cap D \cap L \subseteq (GD)L$ for every generalized bi-ideal G, every right ideal D and for every left ideal L of R.

Proof. Suppose that (1) holds. Let $x \in G \cap D \cap L$, where G is a generalized bi-ideal, D is a right ideal and L is a left ideal of R. Let $x \in R$, this implies that

there exists an element $a \in R$ such that x = (xa)x. Now

Thus $x = (xa)x = (((xm)x)(xe))x \in (GD)L$, i.e., $G \cap D \cap L \subseteq (GD)L$. Hence $(1) \Rightarrow (4)$. It is clear that $(4) \Rightarrow (3)$ and $(3) \Rightarrow (2)$. Assume that (2) is true. Then $Q \cap R \cap L \subseteq (Q \circ R) \circ L$, where Q is a right ideal of R, i.e., $Q \cap L \subseteq Q \circ L$. Since $Q \circ L \subseteq Q \cap L$, so $Q \circ L = Q \cap L$. Therefore R is a regular by the Theorem 1, i.e., $(2) \Rightarrow (1)$.

4. Intra-regular LA-rings

An LA-ring R is an intra-regular, if for every $a \in R$, there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^{n} (x_i a^2) y_i$. We characterize intra-regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Lemma 4.1. Every left (right) ideal of an intra-regular LA-ring R is an ideal of R.

Proof. Suppose that *I* is a right ideal of *R*. Let $i \in I$ and $a \in R$. This implies that there exist elements $x_i, y_i \in R$, such that $a = \sum_{i=1}^n (x_i a^2) y_i$. Now $ai = ((x_i a^2) y_i)i = (iy_i))(x_i a^2) \in IR \subseteq I$. Hence *I* is an ideal of *R*. \Box

Lemma 4.2. Every ideal of an intra-regular LA-ring R with left identity e is an idempotent.

Proof. Let I be an ideal of R. Since $I^2 \subseteq I$ and $a \in I$, this means that there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^n (x_i a^2) y_i$. Now

$$a = (x_i a^2) y_i = (x_i(aa)) y_i = (a(x_i a)) y_i$$

= $(a(x_i a))(ey_i) = (ae)((x_i a) y_i) = (x_i a)((ae) y_i) \in II.$

Thus $I \subseteq I^2$, i.e., $I^2 = I$.

Proposition 4.1. Let R be an intra-regular LA-ring with left identity e. Then any non-empty subset I of R is an ideal of R if and only if I is an interior ideal of R.

Proof. Assume that I is an interior ideal of R. Let $i \in I$ and $a \in R$. Then there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^n (x_i a^2) y_i$. Now

$$ia = i((x_i a^2)y_i) = i((x_i(aa))y_i)$$

= $i((a(x_i a))y_i) = i((a(x_i a))(ey_i))$
= $i((ae)((x_i a)y_i)) = i((x_i a)((ae)y_i))$
= $(x_i a)(i((ae)y_i)) = (x_i i)(a((ae)y_i)) \in (RI)R \subseteq I.$

Thus I is a right ideal of R. Therefore I is an ideal of R by the Lemma 4.1. Converse is obvious.

Lemma 4.3. Let R be an intra-regular LA-ring. Then $L \cap D \subseteq LD$ for every left ideal L and every right ideal D of R.

Proof. Let $a \in L \cap D$, where L is a left ideal and D is a right ideal of R. This implies that there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^n (x_i a^2) y_i$. Now

$$a = (x_i a^2) y_i = (x_i (aa)) y_i = (a(x_i a)) y_i = (a(x_i a)) (ey_i)$$

= $(ae)((x_i a) y_i) = (x_i a)((ae) y_i) \in LD.$

Thus $L \cap D \subseteq LD$.

Theorem 6. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is an intra-regular.

(2) $L \cap D \subseteq LD$ for every left ideal L and for every right ideal D of R.

Proof. (1) \Rightarrow (2) is true by the Lemma 4.3. Suppose that (2) holds and $a \in R$, then Ra is a left ideal of R containing a by the Lemma 2.2 and $aR \cup Ra$ is a right ideal of R containing a by the Proposition 2.1. By our supposition

$$\begin{aligned} Ra \cap (aR \cup Ra) &\subseteq (Ra)(aR \cup Ra) = (Ra)(aR) \cup (Ra)(Ra).\\ \text{Now } (Ra)(aR) &= (Ra)((ea)R) = (Ra)((Ra)e) = (Ra)((Ra)(ee))\\ &= (Ra)((Re)(ae)) = (Ra)(R(ae)) = (Ra)(Ra). \end{aligned}$$

Thus

$$(aR \cup Ra) \cap Ra \subseteq (Ra)(aR) \cup (Ra)(Ra) = (Ra)(Ra) \cup (Ra)(Ra) = (Ra)(Ra) = R^2a^2 = (RR)(a^2e) = (ea^2)(RR) = (Ra^2)(Re) = (Ra^2)R.$$

Since $a \in (aR \cup Ra) \cap Ra$, implies $a \in (Ra^2)R$, thus a is an intra regular. Hence R is an intra-regular, i.e., $(2) \Rightarrow (1)$.

Theorem 7. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is an intra-regular.

(2) $Q \cap I = (QI)Q$ for every quasi-ideal Q and for every ideal I of R.

(3) $B \cap I = (BI)B$ for every bi-ideal B and for every ideal I of R.

(3) $G \cap I = (GI)G$ for every generalized bi-ideal G and for every ideal I of R.

Proof. Suppose that (1) holds. Let $a \in G \cap I$, where G is a generalized bi-ideal and I is an ideal of R, this implies that there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^{n} (x_i a^2) y_i$. Now

$$a = (x_i a^2) y_i = (x_i (aa)) y_i = (a(x_i a)) y_i = (y_i (x_i a)) a.$$

$$y_i (x_i a) = y_i (x_i ((x_i a^2) y_i)) = y_i ((x_i a^2) (x_i y_i)) = (x_i a^2) (y_i (x_i y_i))$$

$$= (x_i a^2)(x_i y_i^2) = (x_i(aa))m_i, \text{ say } x_i y_i^2 = m_i$$

$$= (a(x_i a))m_i = (m_i(x_i a))a.$$

$$m_i(x_i a) = m_i(x_i((x_i a^2)y_i)) = m_i((x_i a^2)(x_i y_i)) = (x_i a^2)(m_i(x_i y_i))$$

$$= (x_i(aa))n_i, \text{ say } m_i(x_i y_i) = n_i$$

$$= (a(x_i a))n_i = (n_i(x_i a))a$$

$$= v_i a, \text{ say } n_i(x_i a) = v_i.$$

$$\Rightarrow y_i(x_i a) = (m_i(x_i a))a = (v_i a)a = (v_i a)(ea) = (v_i e)(aa) = a((v_i e)a).$$

Thus $a = (x_i a^2)y_i = (y_i(x_i a))a = (a((v_i e)a))a \in (GI)G$, i.e., $G \cap I \subseteq (GI)G$. Now $(GI)G \subseteq (RI)R \subseteq I$ and $(GI)G \subseteq (GR)G \subseteq G$, thus $(GI)G \subseteq G \cap I$. Hence $G \cap I = (GI)G$, i.e., $(1) \Rightarrow (4) \cdot (4) \Rightarrow (3)$, every bi-ideal of R is a generalized bi-ideal of R by the Lemma 2.7. $(3) \Rightarrow (2)$, every quasi-ideal of R is a bi-ideal of R by the Lemma 2.9. Assume that (2) is true and let Q be a right ideal and I be a two-sided ideal of R. Now $I \cap Q = (QI)Q \subseteq (RI)Q \subseteq IQ$, since every right ideal of R is a quasi-ideal of R. Therefore R is an intra-regular by the Theorem 6, i.e., $(2) \Rightarrow (1)$.

Theorem 8. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is an intra-regular.

(2) $L \cap Q \subseteq LQ$ for every quasi-ideal Q and for every left ideal L of R.

(3) $L \cap B \subseteq LB$ for every bi-ideal B and for every left ideal L of R.

(4) $L \cap G \subseteq LG$ for every generalized bi-ideal G and for every left ideal L of R.

Proof. Suppose that (1) holds. Let $a \in L \cap G$, where L is a left ideal and G is a generalized bi-ideal of R, this means that there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^{n} (x_i a^2) y_i$. Now $a = (x_i a^2) y_i = (x_i (aa)) y_i = (a(x_i a)) y_i =$

 $(y_i(x_ia))a \in LG$, i.e., $a \in LG$. Thus $L \cap G \subseteq LG$, i.e., $(1) \Rightarrow (4)$. $(4) \Rightarrow (3)$, every bi-ideal of R is a generalized bi-ideal of R. $(3) \Rightarrow (2)$, every quasi-ideal of R is a bi-ideal of R. Assume that (2) is true and let Q be a right ideal and Lbe a left ideal of R. Now $L \cap Q \subseteq LQ$, where Q is a quasi-ideal of R. Hence Ris an intra-regular by the Theorem 6, i.e., $(2) \Rightarrow (1)$.

Theorem 9. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

(1) R is an intra-regular.

(2) $L \cap Q \cap D \subseteq (LQ)D$ for every quasi-ideal Q, every right ideal D and for every left ideal L of R.

(3) $L \cap B \cap D \subseteq (LB)D$ for every bi-ideal B, every right ideal D and for every left ideal L of R.

(4) $L \cap G \cap D \subseteq (LG)D$ for every generalized bi-ideal G, every right ideal D and for every left ideal L of R.

Proof. Suppose that (1) holds. Let $a \in G \cap L \cap D$, where G is a generalized bi-ideal, L is a left ideal and D is a right ideal of R, this implies that there exist elements $x_i, y_i \in R$ such that $a = \sum_{i=1}^n (x_i a^2) y_i$. Now

$$a = (x_i a^2) y_i = (x_i(aa)) y_i = (a(x_i a)) y_i = (y_i(x_i a)) a.$$

$$y_i(x_i a) = y_i(x_i((x_i a^2) y_i)) = y_i((x_i a^2)(x_i y_i)) = (x_i a^2)(y_i(x_i y_i))$$

$$= (x_i a^2)(x_i y_i^2) = (x_i(aa)) m_i, \text{ say } x_i y_i^2 = m_i$$

$$= (a(x_i a)) m_i = (m_i(x_i a)) a.$$

Thus $a = (x_i a^2)y_i = (y_i(x_i a))a = ((m(x_i a))a)a \in (LG)R$, i.e., $a \in (LG)D$. Hence $G \cap L \cap D \subseteq (LG)D$, i.e., $(1) \Rightarrow (4)$. $(4) \Rightarrow (3)$, every bi-ideal of R is a generalized bi-ideal of R. $(3) \Rightarrow (2)$, every quasi-ideal of R is a bi-ideal of R. Assume that (2) is true. Now

$$L \cap R \cap D \subseteq (LR)D = ((eL)R)D = ((RL)e)D \subseteq (Le)D$$
$$= (e(Le))D \subseteq (R(Le))D \subseteq (RL)D \subseteq LD.$$
$$\Rightarrow L \cap D \subseteq LD.$$

Hence R is an intra-regular by the Theorem 6, i.e., $(2) \Rightarrow (1)$.

5. Regular and intra-regular LA-rings

We characterize both regular and intra-regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 10. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

- (1) R is a regular and an intra-regular.
- (2) $B^2 = B$ for every bi-ideal B of R.
- (3) $B_1 \cap B_2 = B_1 B_2 \cap B_2 B_1$ for all bi-ideals B_1, B_2 of R.

Proof. Suppose that (1) holds. Let B be a bi-ideal of R and $B^2 \subseteq B$. Let $a \in B$, this implies that there exists an element $x \in R$ such that a = (ax)a, also there exist elements $y_i, z_i \in R$ such that $a = (y_i a^2) z_i$. Now

$$a = (ax)a = (ax)((y_ia^2)z_i) = (((y_ia^2)z_i)x)a.$$

$$((y_ia^2)z_i)x = (xz_i)(y_ia^2) = m_i(y_ia^2), \text{ say } m_i = xz_i$$

$$= m_i(y_i(aa)) = m_i(a(y_ia)) = a(m_i(y_ia))$$

$$= ((ax)a)(m_i(y_ia)) = ((ax)m_i)(a(y_ia))$$

$$= ((m_ix)a)(a(y_ia)) = (n_ia)(a(y_ia)), \text{ say } n_i = m_ix$$

$$= ((en_i)a)(a(y_ia)) = ((an_i)e)(a(y_ia))$$

$$= ((an_i)a)(e(y_ia)) = ((an_i)a)(y_ia) = (s_ia)(y_ia), \text{ say } s_i = an_i$$

$$= (aa)(y_is_i) = (aa)t_i, \text{ say } t_i = y_is_i$$

$$= (((ax)a)a)t_i = ((aa)(ax))t_i = (t_i(ax))(aa)$$

$$= (a(t_ix))(aa) = (aw_i)(aa), \text{ say } w_i = t_ix.$$

Thus $a = (((y_i a^2)z_i)x)a = ((aw_i)(aa))a \in ((BR)B)B \subseteq B^2$, i.e., $B \subseteq B^2$. Hence $B^2 = B$, i.e., $(1) \Rightarrow (3)$. Assume that (2) is true. Let B_1, B_2 be bi-ideals of R, then $B_1 \cap B_2$ be also a bi-ideal of R. Now $B_1 \cap B_2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_1B_2$ and $B_1 \cap B_2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_2B_1$, thus $B_1 \cap B_2 \subseteq B_1B_2 \cap B_2B_1$. Now we show that B_1B_2 is a bi-ideal of R. It is enough to show that $((B_1B_2)R)(B_1B_2) \subseteq B_1B_2$. Now

$$\begin{aligned} ((B_1B_2)R)(B_1B_2) &= ((B_1B_2)(RR))(B_1B_2) \\ &= ((B_1R)(B_2R))(B_1B_2) \\ &= ((B_1R)B_1)((B_2R)B_2) \subseteq B_1B_2. \\ &\Rightarrow ((B_1B_2)R)(B_1B_2) \subseteq B_1B_2. \end{aligned}$$

Thus B_1B_2 is a bi-ideal of R, similarly B_2B_1 is also a bi-ideal of R. Then $B_1B_2 \cap B_2B_1$ is also a bi-ideal of R. Now

$$B_{1}B_{2} \cap B_{2}B_{1} = (B_{1}B_{2} \cap B_{2}B_{1})(B_{1}B_{2} \cap B_{2}B_{1})$$

$$\subseteq (B_{1}B_{2})(B_{2}B_{1}) \subseteq (B_{1}R)(RB_{1})$$

$$= ((RB_{1})R)B_{1} = (((Re)B_{1})R)B_{1}$$

$$= (((B_{1}e)R)R)B_{1} = ((B_{1}R)R)B_{1}$$

$$= ((RR)B_{1})B_{1} = (RB_{1})B_{1}$$

$$= ((Re)B_{1})B_{1} = ((B_{1}e)R)B_{1}$$

$$= (B_{1}R)B_{1} \subseteq B_{1}.$$

$$\Rightarrow B_{1}B_{2} \cap B_{2}B_{1} \subseteq B_{1}.$$

Similarly, we have $B_1B_2 \cap B_2B_1 \subseteq B_2$, thus $B_1B_2 \cap B_2B_1 \subseteq B_1 \cap B_2$. Therefore $B_1 \cap B_2 = B_1B_2 \cap B_2B_1$, i.e., (2) \Rightarrow (3). Suppose that (3) holds, let D be right ideal and I be an ideal of R. Then D and I be bi-ideals of R, because every right ideal and two-sided ideal of R is bi-ideal of R by the Lemma 2.6. Now $D \cap I = DI \cap ID$, this implies that $D \cap I \subseteq DI \cap ID$. Thus $D \cap I \subseteq DI$ and $D \cap I \subseteq ID$, where I is also a left ideal of R. Since $DI \subseteq D \cap I$, i.e., $DI = D \cap I$. Thus R is regular by the Theorem 1. Also, $D \cap I \subseteq ID$, thus R is an intra-regular by the Theorem 6. Hence $(3) \Rightarrow (1)$.

Theorem 11. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

- (1) R is a regular and an intra-regular.
- (2) Every quasi-ideal of R is an idempotent.

Proof. Suppose that (1) holds. Let Q be a quasi-ideal of R and $Q^2 \subseteq Q$. Let $a \in Q$, this implies that there exists an element $x \in R$ such that a = (ax)a, also there exist elements $y_i, z_i \in R$ such that $a = (y_ia^2)z_i$. Now $a = (ax)a = (ax)((y_ia^2)z_i) = (((y_ia^2)z_i)x)a = ((aw_i)(aa))a$, where $((y_ia^2)z_i)x = (aw_i)(aa)$, by the Theorem 10. Thus $a = ((aw_i)(aa))a \in ((QR)Q)Q \subseteq QQ \subseteq Q^2$, i.e., $Q \subseteq Q^2$, because every quasi-ideal of R is a bi-ideal of R by the Lemma 2.9. Thus $Q^2 = Q$, i.e., $(1) \Rightarrow (2)$. Assume that (2) is true. Let $a \in R$, then Ra is a left ideal of R containing a, i.e., Ra is a quasi-ideal of R, because every left ideal of R is a nintra-regular by the Theorem 6. Now Ra = (Ra)(Ra), i.e., $a \in (Ra)(Ra)$, thus R is an intra-regular by the Theorem 6. Now Ra = (Ra)(Ra) = ((Re)a)(Ra) = ((ae)R)(Ra) = (aR)(Ra), i.e., $a \in (aR)(Ra)$, thus R is regular by the Theorem 1. Hence $(2) \Rightarrow (1)$.

Theorem 12. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

- (1) R is a regular and an intra-regular.
- (2) Every quasi-ideal of R is an idempotent.
- (3) Every bi-ideal of R is an idempotent.

Proof. $(1) \Rightarrow (3)$, by the Theorem 10. $(3) \Rightarrow (2)$, every quasi-ideal of R is a bi-ideal of R, by the Lemma 2.9. $(2) \Rightarrow (1)$, by the Theorem 11.

Theorem 13. Let R be an LA-ring with left identity e such that (xe) R = xR for all $x \in R$. Then the following conditions are equivalent.

- (1) R is a regular and an intra-regular.
- (2) $Q_1 \cap Q_2 \subseteq Q_1 Q_2$ for all quasi-ideals Q_1, Q_2 of R.
- (3) $Q \cap B \subseteq QB$ for every quasi-ideal Q and for every bi-ideal B of R.
- (4) $B \cap Q \subseteq BQ$ for every bi-ideal B and for every quasi-ideal Q of R.
- (5) $B_1 \cap B_2 \subseteq B_1 B_2$ for all bi-ideals B_1, B_2 of R.

Proof. Suppose that (1) holds. Let B_1, B_2 be bi-ideals of R, then $B_1 \cap B_2$ be also a bi-ideal of R. Since every bi-ideal of R is an idempotent by the Theorem 10, then $B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_1B_2$, i.e., $(1) \Rightarrow (5)$. Since $(5) \Rightarrow (4) \Rightarrow (2)$ and $(5) \Rightarrow (3) \Rightarrow (2)$, because every quasi-ideal of R is

a bi-ideal of R by the Lemma 2.9. Assume that (2) is true. Now $D \cap L \subseteq DL$, where D is a right ideal and L is a left ideal of R. Since $DL \subseteq D \cap L$, i.e., $D \cap L = DL$, thus R is regular. Again by (2) $L \cap D \subseteq LD$, thus R is an intra-regular. Hence (2) \Rightarrow (1).

References

- J. R. Cho, J. Jezek and T. Kepka, *Paramedial groupoids*, Czechoslovak Math. J., 49 (1999), 277-290.
- [2] J. Jezek and T. Kepka, *Medial groupoids*, Rozpravy CSAV Rada mat. a prir. ved 93/2, 1983, 93 pp.
- [3] M. S. Kamran, Conditions for LA-semigroups to resemble associative structures, Ph.D. Thesis, Quaid-i-Azam University, Islamabad, 1993.
- [4] N. Kausar, A. Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, European Journal of Pure and Applied Mathematics, 12 (2019), 226-250.
- [5] N. Kausar, Direct product of finite intuitionistic fuzzy normal subrings over non-associative rings, European Journal of Pure and Applied Mathematics, 12 (2019), 622-648.
- [6] M. A. Kazim and M. Naseerudin, On almost semigroups, Alig. Bull. Math., 2 (1972), 1-7.
- [7] P. V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl., 6 (1995), 371-383.
- [8] T. Shah and I. Rehman, On LA-rings of finitely non-zero functions, Int. J. Contempt. Math. Sci., 5 (2010), 209-222.
- [9] T. Shah, N. Kausar, I. Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. St. Univ. Ovidius Constanţa, 20 (2012), 369-386.

Accepted: 16.05.2019