Ideals in LA-rings

Nasreen Kausar
Department of Mathematics and Statistics
University of Agriculture Faisalabad
Pakistan
kausar.nasreen57@gmail.com

Mohammad Munir
Department of Mathematics
Government Postgraduate College
Abbottabad
Pakistan
dr.mohammadmunir@gpgc-atd.edu.pk

Badar ul Islam
Department of Electrical Engineering
NFC IEFR FSD
Pakistan
badar.utp@gmail.com

Meshari Alesemi
Department of Mathematics
Jazan University, Jazan
Kingdom of Saudi Arabia
malesemi@jazanu.edu.sa

Salahuddin
Department of Mathematics
Jazan University, Jazan
Kingdom of Saudi Arabia
drsalah12@hotmail.com

Muhammad Gulzar
Department of Mathematics
Government College University Faisalabad
Pakistan
98kohly@gmail.com

Abstract. Our aim is to encourage research and maturity of associative algebraic structures by studying a class of non-associative and non-commutative algebraic structures (LA-ring).

Keywords: (left, right, interior, quasi-, bi-, generalized bi-) ideals, regular (intra-regular) LA-rings.

*. Corresponding author
1. Introduction

In ternary operations, the commutative law is given by \(abc = cba \). Kazim et al \[6\] have generalized this notion by introducing the parenthesis on the left side of this equation to get a new pseudo associative law, that is \((ab)c = (cb)a\). This law \((ab)c = (cb)a\) is the left invertive law. A groupoid \(S \) is a left almost semigroup (abbreviated as LA-semigroup), if it satisfies the left invertive law. An LA-semigroup is a midway structure between a commutative semigroup and a groupoid. Ideals in LA-semigroups have been investigated by Protic et al \[7\].

In \[2\] (resp. \[1\]), a groupoid \(S \) is to be medial (resp. paramedial) if \((ab)(cd) = (ac)(bd)\) (resp. \((ab)(cd) = (db)(ca))\). In \[6\], an LA-semigroup is medial, but in general an LA-semigroup needs not to be paramedial. Every LA-semigroup with left identity is paramedial by Protic et al \[7\] and also satisfies \(a(bc) = b(ac), (ab)(cd) = (dc)(ba)\).

Kamran \[3\], extended the notion of LA-semigroup to the left almost group (LA-group). An LA-semigroup \(G \) is a left almost group, if there exists a left identity \(e \in G \) such that \(ea = a \) for all \(a \in G \) and for every \(a \in G \) there exists \(b \in G \) such that \(ba = e \).

Shah et al \[8\], discussed the left almost ring (LA-ring) of finitely nonzero functions which is a generalization of commutative semigroup ring. By a left almost ring, we mean a non-empty set \(R \) with at least two elements such that \((R, +)\) is an LA-group, \((R, \cdot)\) is an LA-semigroup, both left and right distributive laws hold. For example, from a commutative ring \((R, +, \cdot)\), we can always obtain an LA-ring \((R, \oplus, \cdot)\) by defining for all \(a, b \in R, a \oplus b = b - a \) and \(a \cdot b \) is same as in the ring. Although the structure is non-associative and non-commutative, nevertheless, it possesses many interesting properties which we usually find in associative and commutative algebraic structures.

In this paper, we will define the left (resp. right, interior, quasi-, bi-, generalized bi-) ideals of an LA-ring \(R \). We will establish a study by discussing the different properties of such ideals. We will also characterize regular (resp. intra-regular, both regular and intra-regular) LA-rings in terms of left (resp. right, quasi-, bi-, generalized bi-) ideals.

2. Ideals in LA-rings

We initiate the concept of LA-subrings and left (resp. right, interior, quasi-, bi-, generalized bi-) ideals of an LA-ring \(R \).

A non-empty subset \(A \) of an LA-ring \(R \) is called an LA-subring of \(R \) if \(a - b \) and \(ab \in A \) for all \(a, b \in A \). \(A \) is called a left (resp. right) ideal of \(R \), if \((A, +)\) is an LA-group and \(RA \subseteq A \) (resp. \(AR \subseteq A \)). \(A \) is called an ideal of \(R \), if it is both a left ideal and a right ideal of \(R \).
Example 1. Let $R = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Define $+$ and \cdot in R as follows:

\[
\begin{array}{cccccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 2 & 0 & 3 & 1 & 6 & 4 & 7 \\
1 & 2 & 1 & 3 & 0 & 2 & 5 & 7 & 4 \\
2 & 3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 \\
3 & 0 & 3 & 3 & 0 & 0 & 0 & 0 & 0 \\
4 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\
5 & 6 & 4 & 7 & 5 & 2 & 0 & 3 & 1 \\
6 & 5 & 7 & 4 & 6 & 1 & 3 & 0 & 2 \\
7 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\cdot & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 4 & 0 & 0 & 4 & 4 & 0 & 0 \\
2 & 0 & 4 & 0 & 0 & 4 & 4 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 3 & 0 & 0 & 3 & 3 & 0 & 0 \\
5 & 0 & 7 & 0 & 0 & 7 & 7 & 0 & 0 \\
6 & 0 & 7 & 0 & 0 & 7 & 7 & 0 & 0 \\
7 & 0 & 3 & 0 & 0 & 3 & 3 & 0 & 0 \\
\end{array}
\]

Let $A = \{0, 4\}$ be a subset of R. Since $(A, +)$ is an LA-subgroup and $A_2 = AA = \{0, 4\}\{0, 4\} = \{0\} \subseteq A$.

Thus A is an LA-subring of R, but not right ideal of R.

A non-empty subset A of an LA-ring R is an interior ideal of R, if $(A, +)$ is an LA-group and $(RA)R \subseteq A$. A non-empty subset A of R is a quasi-ideal of R, if $(A, +)$ is an LA-group and $AR \cap RA \subseteq A$. An LA-subring A of an LA-ring R is a bi-ideal of R if $(AR)A \subseteq A$. A non-empty subset A of an LA-ring R is a generalized bi-ideal of R if $(A, +)$ is an LA-group and $(AR)A \subseteq A$. An ideal I of an LA-ring R is an ideal of R if $A^2 = A$.

Now we give the central properties of such ideals of an LA-ring R, which will be very helpful for further sections.

Lemma 2.1. Let R be an LA-ring with left identity e, then $RR = R$ and $eR = R = Re$.

Proof. Since $RR \subseteq R$ and $x = ex \in RR$, i.e., $R \subseteq RR$, thus $RR = R$. Obviously, $eR = R$ and $Re = (RR)e = (eR)R = RR = R$. \(\square\)

Lemma 2.2 ([4, Lemma 8]). Let R be an LA-ring with left identity e and $a \in R$. Then Ra is the smallest left ideal of R containing a.

Lemma 2.3 ([4, Lemma 9]). Let R be an LA-ring with left identity e and $a \in R$. Then Ra is a left ideal of R.

Proposition 2.1 ([4, Proposition 5]). Let R be an LA-ring with left identity e and $a \in R$. Then $aR \cup Ra$ is the smallest right ideal of R containing a.

Lemma 2.4. Let R be an LA-ring with left identity e. Then every right ideal of R is an ideal of R.
Proof. Let I be a right ideal of R. Let $a \in I$ and $r \in R$. Now $ra = (er)a = (ar)e \in IR \subseteq I$. Thus I is an ideal of R.

Lemma 2.5. Every two-sided ideal of R is an interior ideal of R, but the converse is not true.

Proof. Straight forward.

Example 2. Let $A = \{0, 1, 2, 3\}$ be a subset of R, defined as in example 1. Since $(A, +)$ is an LA-subgroup and

$$
(RA)R = (\{0, 1, 2, 3, 4, 5, 6, 7\}\{0, 1, 2, 3\})\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 3\} \subseteq A.
$$

$$
RA = \{0, 1, 2, 3, 4, 5, 6, 7\}\{0, 1, 2, 3\} = \{0, 3, 4, 7\} \not\subseteq A.
$$

$$
AR = \{0, 1, 2, 3\}\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 4\} \not\subseteq A.
$$

Thus A is an interior ideal of R, but not an ideal of R.

Proposition 2.2. Let R be an LA-ring with left identity e. Then any non-empty subset I of R is an ideal of R if and only if I is an interior ideal of R.

Proof. Let I be an interior ideal of R. Let $a \in I$ and $r \in R$. Now $ar = (ea)r \in (RI)R \subseteq I$, i.e., I is a right ideal of R. Thus I is an ideal of R by the Lemma 2.4. Converse is true by the Lemma 2.5.

Lemma 2.6. Every left (resp. right, two-sided) ideal of R is a bi-ideal of R.

Proof. Straight forward.

Example 3. Let $A = \{0, 4\}$ be a subset of R defined as in example 1. Since $(A, +)$ is an LA-subgroup and

$$
A^2 = AA = \{0, 4\}\{0, 4\} = \{0\} \subseteq A.
$$

$$
(AR)A = (\{0, 4\}\{0, 1, 2, 3, 4, 5, 6, 7\})\{0, 4\}
= \{0, 3\}\{0, 4\} = \{0\} \subseteq A.
$$

$$
AR = \{0, 4\}\{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 3\} \not\subseteq A.
$$

Thus A is a bi-ideal of R, but not right ideal of R.

Lemma 2.7. Every bi-ideal of R is a generalized bi-ideal of R.

Proof. Obvious.

Lemma 2.8. Every left (resp. right, two-sided) ideal of R is a quasi-ideal of R.

Proof. Let I be a left ideal of R and $IR \cap RI \subseteq RI \subseteq I$, i.e., I is a quasi-ideal of R.

Proposition 2.3. Let I be a right ideal and L be a left ideal of an LA-ring R, respectively. Then $I \cap L$ is a quasi-ideal of R.

Proof. Since $(I \cap L)R \cap R(I \cap L) \subseteq IR \cap RL \subseteq I \cap L$, i.e., $I \cap L$ is a quasi-ideal of R. \hfill \Box

Lemma 2.9. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then every quasi-ideal of R is a bi-ideal of R.

Proof. Let Q be a quasi-ideal of R. Now $(QR)Q \subseteq RQ$ and $(QR)Q \subseteq (QR)R = (QR)(eR) = (Qe)(RR) = (Qe)R = QR$, thus $(QR)Q \subseteq QR \cap RQ \subseteq Q$. Hence Q is a bi-ideal of R. \hfill \Box

3. Regular LA-rings

An LA-ring R is regular, if for every $a \in R$, there exists an element $x \in R$ such that $a = (ax)a$. We characterize regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Lemma 3.1. Every right ideal of a regular LA-ring R is an ideal of R.

Proof. Suppose that I is a right ideal of R. Let $a \in I$ and $r \in R$. This implies that there exists an element $x \in R$, such that $r = (rx)r$. Now $ra = ((rx)r)a = (ar)(rx) \in IR \subseteq I$. Hence I is an ideal of R. \hfill \Box

Lemma 3.2. Every ideal of a regular LA-ring R is an idempotent.

Proof. Let I be an ideal of R. Since $I^2 \subseteq I$ and $a \in I$. This means that there exists an element $x \in R$ such that $a = (ax)a$. Now $a = (ax)a \in (IR)I \subseteq II = I^2$, i.e., $I \subseteq I^2$. Thus $I^2 = I$. \hfill \Box

Remark 1. Every right ideal of a regular LA-ring R is an idempotent.

Proposition 3.1. Let R be a regular LA-ring. Then any non-empty subset I of R is an ideal of R if and only if I is an interior ideal of R.

Proof. Assume that I is an interior ideal of R. Let $a \in I$ and $r \in R$. Then there exists an element $x \in R$, such that $a = (ax)a$. Now $ar = ((ax)a)r = (ra)(ax) \in (RI)R \subseteq I$, i.e., $IR \subseteq I$. Thus I is an ideal of R by the Lemma 3.1. Converse is true by the Lemma 2.5. \hfill \Box

Proposition 3.2. Let R be a regular LA-ring with left identity e. Then $IR \cap RI = I$ for every right ideal I of R.

Proof. Let I be a right ideal of R. This implies that $IR \cap RI \subseteq I$, because every right ideal of R is a quasi-ideal of R. Let $a \in I$, this means that there exists an element $x \in R$ such that $a = (ax)a$. Now $a = (ax)a \in (IR)I \subseteq II \subseteq IR$, i.e., $I \subseteq IR$ and $a = (ax)a = (ax)(ea) = (ae)(xa) \in I(RI) = R(II) = RI$, i.e., $I \subseteq RI$. Thus $I \subseteq IR \cap RI$, hence $IR \cap RI = I$. \hfill \Box
Lemma 3.3. Let R be a regular LA-ring. Then $DL = D \cap L$ for every right ideal D and for every left ideal L of R.

Proof. Since $DL \subseteq D \cap L$ is obvious. Let $a \in D \cap L$, then there exists an element $x \in R$ such that $a = (ax)a$. Now $a = (ax)a \in (DR)L \subseteq DL$, i.e., $D \cap L \subseteq DL$. Hence $DL = D \cap L$. \hfill \Box

Theorem 1. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

(2) $D \cap L = DL$ for every right ideal D and for every left ideal L of R.

(3) $Q = (QR)Q$ for every quasi-ideal Q of R.

Proof. Suppose that (1) holds. Let Q be a quasi-ideal of R and $a \in Q$, this implies that there exists an element $x \in R$ such that $a = (ax)a$. Now $a = (ax)a \in (QR)Q$, i.e., $Q \subseteq (QR)Q \subseteq Q$, because every quasi-ideal of R is a bi-ideal of R. Hence $Q = (QR)Q$, i.e., $(1) \Rightarrow (3)$. Assume that (3) holds, let D be a right ideal and L be a left ideal of R. Then D and L be quasi-ideals of R by the Lemma 2.8, so $D \cap L$ be also a quasi-ideal of R. Now $D \cap L = ((D \cap L)R)(D \cap L) \subseteq (DR)L \subseteq DL$. Since $DL \subseteq D \cap L$, so $DL = D \cap L$, i.e., $(3) \Rightarrow (2)$. Suppose that (2) is true, let $a \in R$, then Ra is a left ideal of R containing a by the Lemma 2.2 and $aR \cup Ra$ is a right ideal of R containing a by the Proposition 2.1. By our supposition

$$(aR \cup Ra) \cap Ra = (aR \cup Ra)(Ra) = (aR)(Ra) \cup (Ra)(Ra).$$

Now $(Ra)(Ra) = (((Ra)a)(Ra) = ((Ra)(Ra) = (aR)(Ra)).$

Thus

$$(aR \cup Ra) \cap Ra = (aR)(Ra) \cup (Ra)(Ra)$$

$$= (aR)(Ra) \cup (aR)(Ra) = (aR)(Ra).$$

Since $a \in (aR \cup Ra) \cap Ra$, implies $a \in (aR)(Ra)$. Then $a = (ax)(ya) = (((ya)a)x)a = (((ya)a)x)a = ((ya)(ay))a$

$= (a((xe)y))a \in (aR)a$ for any $x, y \in R$, i.e., $a \in (aR)a$. Hence a is a regular, so R is a regular, i.e., $(2) \Rightarrow (1)$. \hfill \Box

Theorem 2. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

(1) R is a regular.

(2) $Q = (QR)Q$ for every quasi-ideal Q of R.

(3) $B = (BR)B$ for every bi-ideal B of R.

(4) $G = (GR)G$ for every generalized bi-ideal G of R.

Proof. $(1) \Rightarrow (4)$, is obvious. $(4) \Rightarrow (3)$, since every bi-ideal of R is a generalized bi-ideal of R by the Lemma 2.7. $(3) \Rightarrow (2)$, since every quasi-ideal of R is bi-ideal of R by the Lemma 2.9. $(2) \Rightarrow (1)$, by the Theorem 1. \hfill \Box
Theorem 3. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular.
2. $Q \cap I = (QI)Q$ for every quasi-ideal Q and for every ideal I of R.
3. $B \cap I = (B\cap I)B$ for every bi-ideal B and for every ideal I of R.
4. $G \cap I = (GI)G$ for every generalized bi-ideal G and for every ideal I of R.

Proof. Suppose that (1) holds. Let G be a generalized bi-ideal and I be an ideal of R. Now $(GI)G \subseteq (RI)R \subseteq I$ and $(GI)G \subseteq (GR)G \subseteq G$, thus $(GI)G \subseteq G \cap I$. Let $a \in G \cap I$, this means that there exists an element $x \in R$ such that $a = (ax)a$. Now $a = (ax)a = ((ax)a)x = (xa)(ax))a = (a((xa)x))a \in (GI)G$, thus $G \cap I \subseteq (GI)G$. Hence $G \cap I = (GI)G$, i.e., (1) \Rightarrow (4). (4) \Rightarrow (3), since every bi-ideal of R is a generalized bi-ideal of R by the Lemma 2.9. Assume that (2) is true. Now $Q \cap R = (QR)Q$, i.e., $Q = (QR)Q$, where Q is a quasi-ideal of R. Hence R is a regular by the Theorem 1, i.e., (2) \Rightarrow (1).

Theorem 4. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular.
2. $D \cap Q \subseteq DQ$ for every quasi-ideal Q and for every right ideal D of R.
3. $D \cap B \subseteq DB$ for every bi-ideal B and for every right ideal D of R.
4. $D \cap G \subseteq DG$ for every generalized bi-ideal G and for every right ideal D of R.

Proof. Since (1) \Rightarrow (4), is obvious. (4) \Rightarrow (3), since every bi-ideal of R is a generalized bi-ideal of R. (3) \Rightarrow (2), since every quasi-ideal of R is a bi-ideal of R. Suppose that (2) is true. Now $D \cap Q \subseteq DQ$, where Q is a left ideal and D is right ideal of R, because every left ideal of R is a quasi-ideal of R. Since $DQ \subseteq D \cap Q$, thus $D \cap Q = DQ$. Hence R is a regular by the Theorem 1, i.e., (2) \Rightarrow (1).

Theorem 5. Let R be an LA-ring with left identity e, such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular.
2. $Q \cap D \cap L \subseteq (QD)L$ for every quasi-ideal Q, every right ideal D and for every left ideal L of R.
3. $B \cap D \cap L \subseteq (BD)L$ for every bi-ideal B, every right ideal D and for every left ideal L of R.
4. $G \cap D \cap L \subseteq (GD)L$ for every generalized bi-ideal G, every right ideal D and for every left ideal L of R.

Proof. Suppose that (1) holds. Let $x \in G \cap D \cap L$, where G is a generalized bi-ideal, D is a right ideal and L is a left ideal of R. Let $x \in R$, this implies that
there exists an element \(a \in R \) such that \(x = (xa)x \). Now

\[
x = (xa)x.
\]
\[
xa = ((xa)x)a = (ax)(xa) = x((ax)a).
\]
\[
(ax)a = (a((xa)x))a = ((xa)(ax))a = (a(ax))((xa)a)
\]
\[
= x((a(ax))a) = x((ea)(ax)a) = x(((xa)(ae))a)
\]
\[
= x(x((ae)(n)a)) = x(xm).
\]
\[
\Rightarrow xa = x((ax)a) = x(x(xm)) = (ex)(x(xm)) = ((xm)x)(xe).
\]

Thus \(x = (xa)x = (((xm)x)(xe))x \in (GD)L \), i.e., \(G \cap D \cap L \subseteq (GD)L \). Hence (1) \(\Rightarrow \) (4). It is clear that (4) \(\Rightarrow \) (3) and (3) \(\Rightarrow \) (2). Assume that (2) is true. Then \(Q \cap R \cap L \subseteq (Q \circ R) \circ L \), where \(Q \) is a right ideal of \(R \), i.e., \(Q \cdot L \subseteq Q \circ L \). Since \(Q \circ L \subseteq Q \cap L \), so \(Q \circ L = Q \cap L \). Therefore \(R \) is a regular by the Theorem 1, i.e., (2) \(\Rightarrow \) (1).

4. Intra-regular LA-rings

An LA-ring \(R \) is an intra-regular, if for every \(a \in R \), there exist elements \(x_i, y_i \in R \) such that \(a = \sum_{i=1}^{n}(x_i a^2)y_i \). We characterize intra-regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Lemma 4.1. Every left (right) ideal of an intra-regular LA-ring \(R \) is an ideal of \(R \).

Proof. Suppose that \(I \) is a right ideal of \(R \). Let \(i \in I \) and \(a \in R \). This implies that there exist elements \(x_i, y_i \in R \), such that \(a = \sum_{i=1}^{n}(x_i a^2)y_i \). Now \(ai = ((x_i a^2)y_i) = (y_i)((x_i a^2)I \subseteq I. \) Hence \(I \) is an ideal of \(R \).

Lemma 4.2. Every ideal of an intra-regular LA-ring \(R \) with left identity \(e \) is an idempotent.

Proof. Let \(I \) be an ideal of \(R \). Since \(I^2 \subseteq I \) and \(a \in I \), this means that there exist elements \(x_i, y_i \in R \) such that \(a = \sum_{i=1}^{n}(x_i a^2)y_i \). Now

\[
a = (x_i a^2)y_i = (x_i(aa))y_i = (a(x_i a))y_i
\]
\[
= (a(x_i a))(ey_i) = (ae)((x_i a)y_i) = (x_i a)((ae)y_i) \in II.
\]

Thus \(I \subseteq I^2 \), i.e., \(I^2 = I \).

Proposition 4.1. Let \(R \) be an intra-regular LA-ring with left identity \(e \). Then any non-empty subset \(I \) of \(R \) is an ideal of \(R \) if and only if \(I \) is an interior ideal of \(R \).
Proof. Assume that I is an interior ideal of R. Let $i \in I$ and $a \in R$. Then there exist elements $x_i, y_i \in R$ such that
\[a = \sum_{i=1}^{n} (x_i a^2) y_i. \]
Now
\[ia = i((x_i a^2) y_i) = i((x_i(aa)) y_i) = i((a(x_i a)) (ey_i)) = i((ae)((x_i a)(y_i)) = (x_i a)(i((ae)y_i)) = (x_i i)((ae)y_i) \in (RI)R \subseteq I. \]

Thus I is a right ideal of R. Therefore I is an ideal of R by the Lemma 4.1. Converse is obvious.

Lemma 4.3. Let R be an intra-regular LA-ring. Then $L \cap D \subseteq LD$ for every left ideal L and every right ideal D of R.

Proof. Let $a \in L \cap D$, where L is a left ideal and D is a right ideal of R. This implies that there exist elements $x_i, y_i \in R$ such that
\[a = \sum_{i=1}^{n} (x_i a^2) y_i. \]
Now
\[a = (x_i a^2) y_i = (x_i(aa)) y_i = (a(x_i a)) y_i = (a(x_i a)) (ey_i) = (ae)((x_i a)(y_i)) = (x_i a)((ae)y_i) \in LD. \]

Thus $L \cap D \subseteq LD$.

Theorem 6. Let R be an LA-ring with left identity e such that $(xe) R = xR$ for all $x \in R$. Then the following conditions are equivalent.
1. R is an intra-regular.
2. $L \cap D \subseteq LD$ for every left ideal L and for every right ideal D of R.

Proof. (1) \Rightarrow (2) is true by the Lemma 4.3. Suppose that (2) holds and $a \in R$, then Ra is a left ideal of R containing a by the Lemma 2.2 and $aR \cup Ra$ is a right ideal of R containing a by the Proposition 2.1. By our supposition
\[Ra \cap (aR \cup Ra) \subseteq (Ra)(aR \cup Ra) = (Ra)(aR) \cup (Ra)(Ra). \]
Now
\[(Ra)(aR) = (Ra)((ea)R) = (Ra)((Ra)e) = (Ra)((Re)(ae)) = (Ra)(R(Re)) = (Ra)(Ra). \]

Thus
\[(aR \cup Ra) \cap Ra \subseteq (Ra)(aR) \cup (Ra)(Ra) = (Ra)(Ra) \cup (Ra)(Ra). \]
\[= (Ra)(Ra) = R a^2 = (RR)(a^2 e) = (ea^2)(RRR)(Re) = (Ra^2)R. \]

Since $a \in (aR \cup Ra) \cap Ra$, implies $a \in (Ra^2)R$, thus a is an intra regular. Hence R is an intra-regular, i.e., (2) \Rightarrow (1).
Theorem 7. Let \(R \) be an LA-ring with left identity \(e \) such that \((xe)R = xR\) for all \(x \in R \). Then the following conditions are equivalent.

1. \(R \) is an intra-regular.
2. \(Q \cap I = (QI)Q \) for every quasi-ideal \(Q \) and for every ideal \(I \) of \(R \).
3. \(B \cap I = (BI)B \) for every bi-ideal \(B \) and for every ideal \(I \) of \(R \).
4. \(G \cap I = (GI)G \) for every generalized bi-ideal \(G \) and for every ideal \(I \) of \(R \).

Proof. Suppose that (1) holds. Let \(a \in G \cap I \), where \(G \) is a generalized bi-ideal and \(I \) is an ideal of \(R \), this implies that there exist elements \(x_i, y_i \in R \) such that

\[
a = \sum_{i=1}^{n} (x_i a^2) y_i.
\]

Thus \(a = (x_i a^2) y_i = (y_i (x_i a)) y_i = (y_i (x_i a)) a \),

\[
y_i (x_i a) = y_i (x_i ((x_i a^2) y_i)) = y_i ((x_i a^2) (x_i y_i)) = (x_i a^2) (y_i (x_i y_i))
\]

\[
= ((x_i a^2) (x_i y_i^2)) = (x_i (aa)) m_i, \text{ say } x_i y_i^2 = m_i
\]

\[
m_i (x_i a) = m_i (x_i ((x_i a^2) y_i)) = m_i ((x_i a^2) (x_i y_i)) = (x_i a^2) (m_i (x_i y_i))
\]

\[
= (x_i (aa)) n_i, \text{ say } m_i (x_i y_i) = n_i
\]

\[
= (a(x_i) a) n_i = (n_i (x_i a)) a
\]

\[
= v_i a, \text{ say } n_i (x_i a) = v_i
\]

\[
\Rightarrow y_i (x_i a) = (m_i (x_i a)) a = (v_i a) a = (v_i e)(aa) = a((v_i e)a).
\]

Thus \(a = (x_i a^2) y_i = (y_i (x_i a)) a = (a((v_i e) a)) a \in (GI)G \), i.e., \(G \cap I \subseteq (GI)G \). Now \((GI)G \subseteq (RI)R \subseteq I \) and \((GI)G \subseteq (GR)G \subseteq G \), thus \((GI)G \subseteq G \cap I \). Hence \(G \cap I = (GI)G \), i.e., (1) \(\Rightarrow \) (4). (4) \(\Rightarrow \) (3), every bi-ideal of \(R \) is a generalized bi-ideal of \(R \) by the Lemma 2.7. (3) \(\Rightarrow \) (2), every quasi-ideal of \(R \) is a bi-ideal of \(R \) by the Lemma 2.9. Assume that (2) is true and let \(Q \) be a right ideal and \(I \) be a two-sided ideal of \(R \). Now \(I \cap Q = (QI)Q \subseteq (RI)Q \subseteq I Q \), since every right ideal of \(R \) is a quasi-ideal of \(R \). Therefore \(R \) is an intra-regular by the Theorem 6, i.e., (2) \(\Rightarrow \) (1). \(\square \)

Theorem 8. Let \(R \) be an LA-ring with left identity \(e \) such that \((xe)R = xR\) for all \(x \in R \). Then the following conditions are equivalent.

1. \(R \) is an intra-regular.
2. \(L \cap Q \subseteq L Q \) for every quasi-ideal \(Q \) and for every left ideal \(L \) of \(R \).
3. \(L \cap B \subseteq L B \) for every bi-ideal \(B \) and for every left ideal \(L \) of \(R \).
4. \(L \cap G \subseteq L G \) for every generalized bi-ideal \(G \) and for every left ideal \(L \) of \(R \).

Proof. Suppose that (1) holds. Let \(a \in L \cap G \), where \(L \) is a left ideal and \(G \) is a generalized bi-ideal of \(R \), this means that there exist elements \(x_i, y_i \in R \) such that

\[
a = \sum_{i=1}^{n} (x_i a^2) y_i.
\]

Now \(a = (x_i a^2) y_i = (x_i (aa)) y_i = (a(x_i a)) y_i = \).
(y_i(x,a))a \in LG, i.e., a \in LG. Thus \(L \cap G \subseteq LG \), i.e., (1) \(\Rightarrow (4) \). (4) \(\Rightarrow (3) \), every bi-ideal of \(R \) is a generalized bi-ideal of \(R \). (3) \(\Rightarrow (2) \), every quasi-ideal of \(R \) is a bi-ideal of \(R \). Assume that (2) is true and let \(Q \) be a right ideal and \(L \) be a left ideal of \(R \). Now \(L \cap Q \subseteq LQ \), where \(Q \) is a quasi-ideal of \(R \). Hence \(R \) is an intra-regular by the Theorem 6, i.e., (2) \(\Rightarrow (1) \).

Theorem 9. Let \(R \) be an LA-ring with left identity \(e \) such that \((xe)R = xR \) for all \(x \in R \). Then the following conditions are equivalent.

1. \(R \) is an intra-regular.
2. \(L \cap Q \cap D \subseteq (LQ)D \) for every quasi-ideal \(Q \), every right ideal \(D \) and for every left ideal \(L \) of \(R \).
3. \(L \cap B \cap D \subseteq (LB)D \) for every bi-ideal \(B \), every right ideal \(D \) and for every left ideal \(L \) of \(R \).
4. \(L \cap G \cap D \subseteq (LG)D \) for every generalized bi-ideal \(G \), every right ideal \(D \) and for every left ideal \(L \) of \(R \).

Proof. Suppose that (1) holds. Let \(a \in G \cap L \cap D \), where \(G \) is a generalized bi-ideal, \(L \) is a left ideal and \(D \) is a right ideal of \(R \), this implies that there exist elements \(x_i, y_i \in R \) such that \(a = \sum_{i=1}^{n}(x_i a^2)y_i \). Now

\[
\begin{align*}
 a &= (x_i a^2)y_i = (x_i(aa))y_i = (a(x_a))y_i = (y_i(x_i a))a. \\
 y_i(x_i a) &= y_i(x_i((x_i a^2)y_i)) = y_i((x_i a^2)(x_i y_i)) = (x_i a^2)(y_i(x_i y_i)) \\
 &= (x_i a^2)(x_i y_i^2) = (x_i(aa))m_i, \text{ say } x_i y_i^2 = m_i \\
 &= (a(x_i a))m_i = (m_i(x_i a))a.
\end{align*}
\]

Thus \(a = (x_i a^2)y_i = (y_i(x_i a))a = ((m(x,a))a)a \in (LG)R \), i.e., \(a \in (LG)D \). Hence \(G \cap L \cap D \subseteq (LG)D \), i.e., (1) \(\Rightarrow (4) \). (4) \(\Rightarrow (3) \), every bi-ideal of \(R \) is a generalized bi-ideal of \(R \). (3) \(\Rightarrow (2) \), every quasi-ideal of \(R \) is a bi-ideal of \(R \). Assume that (2) is true. Now

\[
L \cap R \cap D \subseteq (LR)D = ((eL)R)D = ((RL)e)D \subseteq (Le)D = (e(Le))D \subseteq (R(Le))D \subseteq (RL)D \subseteq LD.
\]

\[
\Rightarrow L \cap D \subseteq LD.
\]

Hence \(R \) is an intra-regular by the Theorem 6, i.e., (2) \(\Rightarrow (1) \).

5. Regular and intra-regular LA-rings

We characterize both regular and intra-regular LA-rings by the properties of (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 10. Let \(R \) be an LA-ring with left identity \(e \) such that \((xe)R = xR \) for all \(x \in R \). Then the following conditions are equivalent.

1. \(R \) is a regular and an intra-regular.
2. \(B^2 = B \) for every bi-ideal \(B \) of \(R \).
3. \(B_1 \cap B_2 = B_1 B_2 \cap B_2 B_1 \) for all bi-ideals \(B_1, B_2 \) of \(R \).
Proof. Suppose that (1) holds. Let B be a bi-ideal of R and $B^2 \subseteq B$. Let $a \in B$, this implies that there exists an element $x \in R$ such that $a = (ax)a$, also there exist elements $y, z \in R$ such that $a = (y^2)z$. Now

$$
\begin{align*}
 a &= (ax)a = (ax)((y^2)z) = (((y^2)z)x)a. \\
((y^2)z)x &= (xz)(y^2) = m_i(y^2), \text{ say } m_i = xz, \\
&= m_i(y(aa)) = m_i(a(ya)) = a(m_i(ya)) \\
&= ((ax)a)(m_i(ya)) = (ax)m_i(a(ya)) \\
&= (m_i(x)a)(a(ya)) = (n_i)(a(ya)), \text{ say } n_i = m_ix \\
&= (en_i)(a)(ya) = (en_i)(a)(ya) \\
&= (an_i)(a)(ya) = (an_i)(a)(ya) = (s_i)(a)(ya), \text{ say } s_i = an_i \\
&= (aa)(yis_i) = (aa)t_i, \text{ say } t_i = yis_i \\
&= (((ax)a)t_i = ((aa)(ax))t_i = (t_i(ax))(aa) \\
&= (a(t_i,x))(aa) = (aw_i)(aa), \text{ say } w_i = t_ix.
\end{align*}
$$

Thus $a = (((y^2)z)x)a = ((aw_i)(aa))a \in ((BR)B)B \subseteq B^2$, i.e., $B \subseteq B^2$. Hence $B^2 = B$, i.e., (1) \Rightarrow (3). Assume that (2) is true. Let B_1, B_2 be bi-ideals of R, then $B_1 \cap B_2$ be also a bi-ideal of R. Now $B_1 \cap B_2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_1B_2$ and $B_1 \cap B_2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_2B_1$, thus $B_1 \cap B_2 \subseteq B_1B_2 \cap B_2B_1$. Now we show that B_1B_2 is a bi-ideal of R. It is enough to show that $((B_1B_2)R)(B_1B_2) \subseteq B_1B_2$. Now

$$
\begin{align*}
((B_1B_2)R)(B_1B_2) &= ((B_1B_2)(R)(B_1B_2)) \\
&= ((B_1)(B_2)R)(B_1B_2) \\
&= ((B_1)(B_2)R)(B_1B_2) \subseteq B_1B_2. \\
\Rightarrow ((B_1B_2)R)(B_1B_2) \subseteq B_1B_2.
\end{align*}
$$

Thus B_1B_2 is a bi-ideal of R, similarly B_2B_1 is also a bi-ideal of R. Then $B_1B_2 \cap B_2B_1$ is also a bi-ideal of R. Now

$$
\begin{align*}
B_1B_2 \cap B_2B_1 &= (B_1B_2 \cap B_2B_1)(B_1B_2 \cap B_2B_1) \\
&\subseteq (B_1B_2)(B_2B_1) \subseteq (B_1)(B_2) \subseteq B_1B_2 \cap B_2B_1 \\
&= ((RB_1)R)B_1 = (((RB_1)R)B_1)B_1 \\
&= (((RB_1)R)B_1)B_1 = ((B_1)(B_2)R)B_1 \\
&= ((RB_1)B_1)B_1 = (RB_1)B_1 \\
&= ((RB_1)B_1)B_1 = (RB_1)B_1 \\
&= (B_1)(B_2)R \subseteq B_1, \\
\Rightarrow B_1B_2 \cap B_2B_1 \subseteq B_1.
\end{align*}
$$

Similarly, we have $B_1B_2 \cap B_2B_1 \subseteq B_2$, thus $B_1B_2 \cap B_2B_1 \subseteq B_1 \cap B_2$. Therefore $B_1 \cap B_2 = B_1B_2 \cap B_2B_1$, i.e., (2) \Rightarrow (3). Suppose that (3) holds,
Let D be right ideal and I be an ideal of R. Then D and I be bi-ideals of R, because every right ideal and two-sided ideal of R is bi-ideal of R by the Lemma 2.6. Now $D \cap I = DI \cap ID$, this implies that $D \cap I \subseteq DI \cap ID$. Thus $D \cap I \subseteq DI$ and $D \cap I \subseteq ID$, where I is also a left ideal of R. Since $DI \subseteq D \cap I$, i.e., $DI = D \cap I$. Thus R is regular by the Theorem 1. Also, $D \cap I \subseteq ID$, Thus R is an intra-regular by the Theorem 6. Hence $(3) \Rightarrow (1)$. □

Theorem 11. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular and an intra-regular.
2. Every quasi-ideal of R is an idempotent.

Proof. Suppose that (1) holds. Let Q be a quasi-ideal of R and $Q^2 \subseteq Q$. Let $a \in Q$, this implies that there exists an element $x \in R$ such that $a = (ax)a$, also there exist elements $y_i, z_i \in R$ such that $a = (y_ia^2)z_i$. Now $a = (ax)a = (ax)((y_ia^2)z_i) = (((y_ia^2)z_i)x)a = ((aw_1)(aa))a$, where $((y_ia^2)z_i)x = (aw_1)(aa)$, by the Theorem 10. Thus $a = ((aw_1)(aa))a \in ((QR)Q)Q \subseteq QQ \subseteq Q^2$, i.e., $Q \subseteq Q^2$, because every quasi-ideal of R is a bi-ideal of R by the Lemma 2.9. Thus $Q^2 = Q$, i.e., $(1) \Rightarrow (2)$. Assume that (2) is true. Let $a \in R$, then Ra is a left ideal of R containing a, i.e., Ra is a quasi-ideal of R, because every left ideal of R is a quasi-ideal of R. Now $Ra = (Ra)^2 = (Ra)(Ra)$, i.e., $a \in (Ra)(Ra)$, thus R is an intra-regular by the Theorem 6. Now $Ra = (Ra)(Ra) = ((Re)a)(Ra) = ((ae)R)(Ra) = (aR)(Ra)$, i.e., $a \in (aR)(Ra)$, thus R is regular by the Theorem 1. Hence $(2) \Rightarrow (1)$. □

Theorem 12. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular and an intra-regular.
2. Every quasi-ideal of R is an idempotent.
3. Every bi-ideal of R is an idempotent.

Proof. $(1) \Rightarrow (3)$, by the Theorem 10. $(3) \Rightarrow (2)$, every quasi-ideal of R is a bi-ideal of R, by the Lemma 2.9. $(2) \Rightarrow (1)$, by the Theorem 11. □

Theorem 13. Let R be an LA-ring with left identity e such that $(xe)R = xR$ for all $x \in R$. Then the following conditions are equivalent.

1. R is a regular and an intra-regular.
2. $Q_1 \cap Q_2 \subseteq Q_1Q_2$ for all quasi-ideals Q_1, Q_2 of R.
3. $Q \cap B \subseteq QB$ for every quasi-ideal Q and for every bi-ideal B of R.
4. $B \cap Q \subseteq BQ$ for every bi-ideal B and for every quasi-ideal Q of R.
5. $B_1 \cap B_2 \subseteq B_1B_2$ for all bi-ideals B_1, B_2 of R.

Proof. Suppose that (1) holds. Let B_1, B_2 be bi-ideals of R, then $B_1 \cap B_2$ be also a bi-ideal of R. Since every bi-ideal of R is an idempotent by the Theorem 10, then $B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2)(B_1 \cap B_2) \subseteq B_1B_2$, i.e., $(1) \Rightarrow (5)$. Since $(5) \Rightarrow (4) \Rightarrow (2)$ and $(5) \Rightarrow (3) \Rightarrow (2)$, because every quasi-ideal of R is
a bi-ideal of R by the Lemma 2.9. Assume that (2) is true. Now $D \cap L \subseteq DL$, where D is a right ideal and L is a left ideal of R. Since $DL \subseteq D \cap L$, i.e., $D \cap L = DL$, thus R is regular. Again by (2) $L \cap D \subseteq LD$, thus R is an intra-regular. Hence (2) \Rightarrow (1).

References

Accepted: 16.05.2019