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On the power of simulation map for almost Z− contraction in
G-metric space with applications to the solution of the integral
equation
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Abstract. In this manuscript, we explore the presence and uniqueness of a fixed point
of almost Z−contraction by means of simulation map in the framework of G−metric
spaces. Also, an illustrative example and an application to solve integral equation are
given to help accessibility of the got outcomes.
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1. Introduction

The Banach contraction rule is a one of the predominant outcomes in analysis
and has continuously been at the front line of making and providing remark-
able speculations for its researchers. Numerous authors have summed up and
used the Banach principle in their relevant research ([1-4]). Along these lines,
we can without much of a stretch presume that the biggest part of the fixed
point theory has been involved by different speculations of the Banach contrac-
tion rule. Further, Khojasteh and Shukla [6] presented an alternate thought
of simulation map by utilizing an idea of [3] and explored some fundamental
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properties. Subsequently, Argoubi [7] demonstrated fixed point results for non
linear contraction in the casing of metric space.

Throughout the paper, N denotes set of natural numbers, R denotes set of
real numbers.

Next, we review some essential definitions about contraction and the out-
comes from the writing. Wardowski [1] defined the F -contraction as follows:

Definition 1.1. Let (X, d) be a metric space and let f : X → X be a self-
mapping. Then f is called an F − contraction on (X, d) if there exist F ∈ ℑ for
all x, y ∈ X, d(fx, fy) > 0 ⇒ γ + F (d(fx, fy)) ≤ F (d(x, y)), where ℑ be class
of all mappings F : (0,∞) → R such that:

(F1) F is strictly increasing function, that is, for all a, b ∈ (0,∞), if a <
b,then F (a) < F (b).

(F2) For every sequence {an} of natural numbers, limn→∞ an = 0 if and only
if limn→∞ F (an) = −∞.

(F3) There exists q ∈ (0, 1) such that lima→0+(a
qF (a)) = 0.

F -weak contraction was established by Wardowski and Dung [2] in 2014
which is defined as follows:

Definition 1.2. [2] Let (X, d) be a metric space and T : X → X be a
function. T is known as F -weak contraction on (X, d) if there exist F ∈
ℑ and γ > 0 such that for all x, y ∈ X, d(T x, T y) > 0 ⇒ γ + F (d(T x, T y)) ≤
F (max{d(x, y), d(T x, x), d(y, T y), d(x,T y)+d(y,T x)

2 }).

Definition 1.3 ([3, 4]). Let (X, d) be a metric space and let σ : X → X be a
self-mapping. Then σ is called an almost Z− contraction on (X, d) if there exist
β ≥ 0 and β1 < 1 such that for all x, y ∈ X, d(σx, σy) ≤ β1d(x, y) + βf(x, y).

Definition 1.4 ([5]). The mapping θ : [0,∞)× [0,∞) → R is said to be a sim-
ulation function, if the following properties hold: (θ1)θ(0, 0) = 0, (θ2)θ(a, b) <
b − a, for all a, b > 0, (θ3) if {an}, {bn} are sequences in (0,∞) such that
limn→∞{an} = limn→∞{bn} = ℓ ∈ (0,∞), then limn→∞ sup θ(an, bn) < 0.

The family of all simulation functions θ : [0,∞)× [0,∞) → R is denoted by
Z.

Definition 1.5 ([6]). Let (X, d) be a metric space and θ ∈ Z. The self map
σ : X → X is Z−contraction with respect to θ if for each x, y ∈ X,

(1.1) θ(d(σx, σy), d(x, y)) ≥ 0.

Definition 1.6 ([8]). Let (X, d) be a metric space and θ ∈ Z. Then, the self
map σ : X → X is said to be almost Z−contraction if for each x, y ∈ X, we can
find a positive constant β such that

(1.2) θ(d(σx, σy), d(x, y) + βm(x, y)) ≥ 0,

where

m(x, y) = min{d(x, σx), d(y, σy), d(x, σy), d(y, σx)}.
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Definition 1.7 ([9]). Let X be a non void set and G : X3 → [0, ∞) be a map
which fulfils the accompanying conditions:

(i) G(x1, y1, z1) = 0 if x1 = y1 = z1;

(ii) 0 < G(x1, x1, y1) whenever x1 ̸= y1, for all x1, y1 ∈ X;

(iii) G(x1, x1, y1) ≤ G(x1, y1, z1), y1 ̸= z1;

(iv) G(x1, y1, z1) = G(x1, z1, y1) = G(y1, x1, z1) = G(z1, x1, y1)
= G(y1, z1, x1) = G(z1, y1, x1);

(v) G(x1, y1, z1) ≤ G(x1, a1, a1) + G(a1, y1, z1);
for every x1, y1, z1, a1 ∈ X, then the function G is said to be G−metric on X
and (X, G) is known as G−metric space.

In this paper, we consolidate the view of simulation map, G−metric space and
indispensable nature of contractive mappings to construct fixed point hypotheses
in the casing of generalized metric space.

The principle point of our examination is to talk about the reasonability
of application to solve the integral equation with the assistance of our main
theorem.

2. Main results

Definition 2.1. Let (X,G) be a G−metric space and θ ∈ Z. Then, the self map
σ : X → X is said to be almost Z−contraction if for each x, y, z ∈ X, we can
find a positive constant β such that

(2.1) θ(G(σx, σy, σz),G(x, y, z) + βm(x, y, z)) ≥ 0,

where

m(x, y, z) = min{G(x, σy, σy),G(y, σx, σx),G(y, σz, σz),G(z, σy, σy),
G(z, σx, σx),G(x, σz, σz)}.(2.2)

Remark 2.2. If σ is almost Z−contraction with respect to θ ∈ Z, then we have
G(σx, σy, σz) < G(x, y, z) + βm(x, y, z), where x, y, z ∈ X.

Theorem 2.3. Let (X,G) be a complete G metric space and σ : X → X be an
almost Z contraction with respect to θ ∈ Z. Then, σ has a fixed point. Moreover,
the sequence {σsz0} converges to fixed point of σ for each z0 ∈ X.

Proof. Step 1. Suppose that, zs+1 = σsz0 = σzs, where s ∈ N and z0 ∈ X.

If ∃ s ∈ N such that zs+1 = zs, then σzs = zs. So, zs is fixed point of σ.

Let us suppose that zs ̸= zs+1 for each s ∈ N . Then, G(zs, zs+1, zs+1) > 0
for all s ∈ N .
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Firstly, we prove that G(zs, zs+1, zs+1) = 0. On account of (2.2), we get that

f(zs−1, zs, zs) = min{G(zs−1, σzs, σzs),G(zs, σzs−1, σzs−1),G(zs, σzs, σzs),
G(zs, σzs, σzs),G(zs, σzs−1, σzs−1),G(zs−1, σzs, σzs)}

= min{G(zs−1, zs+1, zs+1),G(zs, zs, zs),
G(zs, zs+1, zs+1),G(zs, zs+1, zs+1),G(zs, zs, zs),G(zs−1, zs+1, zs+1)}

= 0.(2.3)

On account of inequality (2.1), we get that

θ(G(σzs−1, σzs, σzs),G(zs−1, zs, zs) + βf(zs−1, zs, zs)) ≥ 0.

Taking (2.3) into account, we obtain

0 ≤ θ(G(σzs−1, σzs, σzs),G(zs−1, zs, zs))

= θ(G(zs, zs+1, zs+1),G(zs−1, zs, zs))

< G(zs−1, zs, zs)− G(zs, zs+1, zs+1)

which implies that

G(zs, zs+1, zs+1) < G(zs−1, zs, zs).

Therefore, {G(xs+1, xs, xs)} is non negative decreasing sequence of real numbers
where s ∈ N . So, ∃λ ≥ 0 such that

lim
s→∞

G(zs, zs+1, zs+1) = λ.

Now, we will indicate that

lim
s→∞

G(zs, zs+1, zs+1) = 0.

Suppose that λ > 0. Let {cs} and {ds} be sequences such that G(zs, zs+1, zs+1) =
cs and G(zs−1, zs, zs) = ds.

Now,

lim
s→∞

cs = lim
s→∞

ds = λ.

Accordingly, from θ3 we deduce that

0 ≤ lim
n→∞

sup θ((G(zs, zs+1, zs+1),G(zs−1, zs, zs)) < 0,

which is a contradiction. Thus, we have

lim
n→∞

G(zs, zs+1, zs+1) = 0.(2.4)

Step 2. We assert that {zs} is bounded.
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Suppose, on the contrary, that {zs} is unbounded. So, there exists a subse-
quence {zsu} so that s1 = 1 and su+1 is the smallest integer larger than su such
that G(zsu+1 , zsu , zsu) > 1 and G(zu, zr, zr) ≤ 1, for every r ∈ [su, su+1 − 1].

With the assistance of triangle inequality, we obtain

1 < G(zsu+1 , zsu , zsu)

≤ G(zsu+1 , zsu+1−1, zsu+1−1) + G(zsu+1−1, zsu , zsu)

≤ 1 + G(zsu+1 , zsu+1−1, zsu+1−1).

Making u → ∞ and using(2.4), we get

(2.5) lim
u→∞

G(zsu+1 , zsu , zsu) = 1.

Since, σ is an almost Z contraction with respect to θ, we conclude that

G(zsu+1, zsu , zsu) ≤ G(zsu+1−1, zsu−1, zsu−1).

On account of triangle inequality, we obtain

1 < G(zsu+1 , zsu , zsu)

≤ G(zsu+1−1, zsu−1, zsu−1)

≤ G(zsu+1−1, zsu , zsu) + G(zsu , zsu−1, zsu−1)

≤ 1 + G(zsu , zsu−1, zsu−1).

Letting u → ∞ and using (2.4), we get

(2.6) lim
u→∞

G(zsu+1−1, zsu−1, zsu−1) = 1.

Now, taking(2.2) into account

f(zsu+1−1, zsu−1, zsu−1) = min{G(zsu+1−1, σzsu−1, σzsu−1),

G(zsu−1, σzsu+1−1, σzsu+1−1),

G(zsu−1, σzsu−1, σzsu−1),G(zsu−1, σzsu−1, σzsu−1),

G(zsu−1, σzsu+1−1, σzsu+1−1),G(zsu+1−1, σzsu−1, σzsu−1)}.

Letting u → ∞ and using(2.4), we get

(2.7) f(zsu+1−1, zsu−1, zsu−1) = 1.

With the assistance of (2.1) and θ2, we obtain

0 ≤ θ(G(σzsu+1−1, σzsu−1, σzsu−1),

G(zsu+1−1, zsu−1, zsu−1) + βf(zsu+1−1,

zsu−1, zsu−1)) < G(zsu+1−1, zsu−1, zsu−1)

+ βf(zsu+1−1, zsu−1, zsu−1)− G(σzsu+1−1, σzsu−1, σzsu−1)

= G(zsu+1−1, zsu−1, zsu−1) + βf(zsu+1−1, zsu−1, zsu−1)− G(zsu+1 , zsu , zsu)
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which yields that

G(zsu+1 , zsu , zsu) < G(zsu+1−1, zsu−1, zsu−1) + βf(zsu+1−1, zsu−1, zsu−1).

Let {wu} and {vu} be sequences such that G(zsu+1 , zsu , zsu) = wu and
G(zsu+1−1, zsu−1, zsu−1) + βf(zsu+1−1, zsu−1, zsu−1) = vu.

Accordingly, from (2.5), (2.6) and (2.7), we get limu→∞ G(zsu+1 , zsu , zsu)=1=
limu→∞ G(zsu+1−1, zsu−1, zsu−1)+βf(zsu+1−1, zsu−1, zsu−1).On account of assum-
ption of θ3, we obtain limu→∞ sup θ(G(zsu+1 , zsu , zsu),G(zsu+1−1, zsu−1, zsu−1)
+βf(zsu+1−1, zsu−1, zsu−1))<0 which is a contradiction. Therefore, {zs} is boun-
ded.

Step 3. We assert that {zs} is a cauchy sequence. Let us suppose

Os = sup{G(zc, zd, zd) : c, d ≥ s}.

Now, {Os} is decreasing sequence of positive entries, therefore, there exists
O ≥ 0 such that

lim
s→∞

Os = O.

When O > 0, then applying the definition of Os, there exists ru, su satisfying
ru > su ≥ u and Os − 1

s < G(zru , zsu , zsu) ≤ Os which yields that

(2.8) O = lim
s→∞

G(zru , zsu , zsu)

Again, with the assistance of triangle inequality, we obtain G(zru , zsu , zsu) ≤
G(zru−1, zsu−1, zsu−1) ≤ G(zru−1, zru , zru)+G(zru , zsu , zsu)+G(zsu , zsu−1, zsu−1).
Letting u → ∞ and taking (2.6), (2.8) into account, we obtain

(2.9) G(zru−1, zsu−1, zsu−1) = O.

With the aid of remark(2.2), we have

(2.10) G(zru , zsu , zsu) < G(zru−1, zsu−1, zsu−1) + βf(zru−1, zsu−1, zsu−1).

Accordingly, from (2.4), we get

(2.11) lim
u→∞

f(zru−1, zsu−1, zsu−1) = 0.

Let {wu} and {vu} be sequences such that G(zru , zsu , zsu) = wu and
G(zru−1, zsu−1, zsu−1) + βf(zru−1, zsu−1, zsu−1) = vu.

Using (2.8) to (2.11), we obtain

lim
u→∞

G(zru , zsu , zsu) = O = lim
u→∞

G(zru−1, zsu−1, zsu−1)+ βf(zru−1, zsu−1, zsu−1).

On account of assumption of θ3, we obtain

lim
u→∞

sup θ(G(zru , zsu , zsu),G(zru−1, zsu−1, zsu−1) + βf(zru−1, zsu−1, zsu−1)) < 0.
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which is a contradiction. Therefore, O = 0, which yields that {zs} is a Cauchy
sequence. Due to completeness of G metric space, there exists ϱ ∈ X so that
lims→∞ zs = ϱ.

Step 4. In the last step, we assert that ϱ is fixed point of σ.
Let σϱ ̸= ϱ. Thus, G(ϱ, σϱ, σϱ) > 0. With the assistance of (2.1), θ2 and θ3,

we obtain

0 ≤ lim
u→∞

sup θ[G(σzs, σϱ, σϱ),G(zs, ϱ, ϱ) + βf(zs, ϱ, ϱ)]

< lim
u→∞

sup[G(zs, ϱ, ϱ) + βf(zs, ϱ, ϱ)− G(σzs, σϱ, σϱ)] = −G(ϱ, σϱ, σϱ),

which yields that G(ϱ, σϱ, σϱ) = 0. Thus, σϱ = ϱ, which proves that ϱ is fixed
point of σ.

Theorem 2.4. Let (X,G) be a complete G metric space and σ : X → X be an
almost Z contraction with respect to θ ∈ Z. If, σ has a fixed point, then it is
unique.

Proof. In view of Theorem 2.3, we ensure the presence of settled point of map
σ, that is ϱ = σϱ. Next, we claim that if ϱ1 and ϱ2 are the fixed points of σ,
then ϱ1 = ϱ2. On account of (2.1), we acquire that

0 ≤ θ[G(σϱ1, σϱ2, σϱ2),G(ϱ1, ϱ2, ϱ2) + βf(ϱ1, ϱ2, ϱ2)]

= θ[G(σϱ1, σϱ2, σϱ2),G(ϱ1, ϱ2, ϱ2) + βmin{G(ϱ1, σϱ2, σϱ2),G(ϱ2, σϱ1, σϱ1),
G(ϱ2, σϱ2, σϱ2),G(ϱ2, σϱ2, σϱ2),G(ϱ2, σϱ1, σϱ1),G(ϱ1, σϱ2, σϱ2)}

= θ[G(σϱ1, σϱ2, σϱ2),G(ϱ1, ϱ2, ϱ2)]
< G(σϱ1, σϱ2, σϱ2)− G(σϱ1, σϱ2, σϱ2) = 0,

which is contradiction. Consequently, ϱ1 = ϱ2, which indicates that fixed point
of σ is unique.

Illustrative Example 2.5. Let X = [0, 1] and G be defined as G(x1, y1, z1) =|
x1 − y1 | + | y1 − z1 | + | z1 − x1 | .

Now, we define σ : X → X as σz = 1
2 − z, for each z ∈ X. We shall prove

that σ : X → X is an almost Z contraction with respect to θ ∈ Z, but σ is not
Z contraction with respect to θ ∈ Z, where for each a, b > 0, θ(a, b) = δb − a,
where δ ∈ [0, 1). For each distict elements z1, z2 of X,

θ(G(σz1, σz2, σz2),G(z1, z2, z2)) = δG(z1, z2, z2)− G(σz1, σz2, σz2)

= δ2 | z1 − z2 | −2

∣∣∣∣12 − z1 − (
1

2
− z2)

∣∣∣∣
= 2(δ | z1 − z2 | − | z1 − z2 |)
< 2(| z1 − z2 | − | z1 − z2 |)
= 2× 0 = 0.
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which yields that σ is not Z contraction with respect to θ ∈ Z, but σ has a
unique fixed point z = 1

4 . Now, G(z1, σz2, σz2) = 2|z1−σz2| = 2|z1− (12 − z2)| =
2|z1 + z2 − 1

2 |. Thus,

f(z1, z2, z3) = min{G(z1, σz2, σz2),G(z2, σz1, σz1),G(z2, σz3, σz3),
G(z3, σz2, σz2),G(z3, σz1, σz1),G(z1, σz3, σz3)}

= min{2|z1 + z2 −
1

2
|, 2|z1 + z2 −

1

2
|, 2|z3 + z2 −

1

2
|,

2|z3 + z2 −
1

2
|, 2|z1 + z3 −

1

2
|, 2|z1 + z3 −

1

2
|}.

Further,

θ(G(σz1, σz2, σz2),G(z1, z2, z2) + βf(z1, z2, z3))

= δ[G(z1, z2, z2) + βf(z1, z2, z3)]− G(σz1, σz2, σz2)

= δ[2 | z1 − z2 | +βmin{2|z1 + z2 −
1

2
|, 2|z1 + z2 −

1

2
|,

2|z3 + z2 −
1

2
|, 2|z3 + z2 −

1

2
|, 2|z1 + z3 −

1

2
|,

2|z1 + z3 −
1

2
|}]− 2 | z1 − z2 | .

Two cases arise:

Case 1. When z1 = z2 = z3, then

θ(G(σz1, σz2, σz2),G(z1, z2, z2) + βf(z1, z2, z3)) = 2δβ|2z1 −
1

2
| ≥ 0.

Case 2. Let z1>z2>z3, then θ(G(σz1, σz2, σz2),G(z1, z2, z2)+βf(z1, z2, z3))
= 2δ|z1 − z2|+ 2δβ|z2 + z3 − 1

2 | − 2|z1 − z2|. Now, choose β = 1
3 and δ = 15, we

acquire θ(G(σz1, σz2, σz2),G(z1, z2, z2)+βf(z1, z2, z3)) = 30 | z1− z2 | +2× 1
3 ×

15|z2+ z3− 1
2 |− 2× | z1− z2 |= 28 | z1− z2 | +10|z2+ z3− 1

2 | ≥ 0. Therefore, all
the assumptions of Theorem (2.3) are satisfied. Consequently, σ has a unique
fixed point σ = 1

4 .

Corollary 2.6 ([10]). Let (X,G) be a G metric space where θ ∈ Z, β < 1 and
the self map σ satisfies the following condition

(2.12) θ(G(σx, σy, σz),G(x, y, z)) ≥ 0,

for each x, y, z ∈ X, Then, σ has a unique fixed pint.

Proof. The result follows if δ = 0 and θ(a, b) = βb− a in Theorem 2.3.

Corollary 2.7 ([10]). Let (X,G) be a G metric space where θ ∈ Z, α is a
self map which is upper semi continuous fulfilling α(s) < s and the self map σ
satisfies the following condition

(2.13) θ(G(σx, σy, σz), α(G(x, y, z)) ≥ 0,

for each x, y, z ∈ X. Then, σ has a unique fixed pint.
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3. Application

Let self map σ be defined as

(3.1) σα(γ) = κ(γ) + β

∫ n

m
S(γ, x, x)η(x, α(x), α(x))dx,

where γ ∈ [m,n]. Let X be equipped with the metric G which is defined as
G(α, κ, κ) = 2 sup |α(γ)− κ(γ)|.

Theorem 3.1. The integral equation (3.1) has a unique solution if the following
conditions are fulfilled:

(i) sup
∫ n
m S(γ, x, x)dx ≤ 1

2n−2m ;
(ii) G(x, α, α)− G(x, κ, κ) ≤ τ(|α− κ|);
(iii) |β| ≤ 1,

where τ is non decreasing continuous map having τ(s) < s, for each s > 0.

Proof. Now,

G(σα1, σα2, σα2) = 2 sup |σα1(γ)− σα2(γ)|

= 2 sup |κ(γ) + β

∫ n

m
S(γ, x, x)η(x, α1(x), α1(x))dx− κ(γ)−

β

∫ n

m
S(γ, x, x)η(x, α2(x), α2(x))dx|

= 2|β| sup
∣∣∣∣ ∫ n

m
S(γ, x, x)(η(x, α1(x), α1(x))− η(x, α2(x), α2(x)))dx

∣∣∣∣
≤ 2|β| sup

[ ∫ n

m
S(γ, x, x)dx

∫ n

m
(η(x, α1(x), α1(x))− η(x, α2(x), α(x)))|dx

]
≤ 2|β| × 1

2n− 2m

[ ∫ n

m
τ(|α1(x)− α2(x)|)dx

]
≤ |β| × 1

n−m

[ ∫ n

m
τ(G(α1, α2, α2))dx

]
= |β| × 1

n−m
τ(G(α1, α2, α2))× n−m

= |β|τ(G(α1, α2, α2)) ≤ τ(G(α1, α2, α2)).

Therefore, σ has a unique solution in X, which means that (3.1) has a unique
solution in X.
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