Prime-valent one-regular graphs of order $8p$

De-Xue Li
Henan Polytechnic Institute
Nanyang 473000 P.R. China
784245478@qq.com

Abstract. A graph is one-regular and arc-transitive if its automorphism group acts on its arcs irregularly and transitively, respectively. In this paper, we classify one-regular graphs of prime valency and order $8p$ for each prime p. By analyzing the structure of the full automorphism group of such graphs and using the classification of arc-transitive graphs of order $2p$, we prove that there are only two infinite families of such graphs: one is the cycle C_{8p} with valency 2, the other is the Z_p-cover CQ_{3p} of hypercube Q_3 with valency 3 and $3|p-1$.

Keywords: one-regular graph, arc-transitive graph, covering graph.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and undirected. For group-theoretic concepts or graph-theoretic terms not defined here we refer the reader to [14, 16] or [1, 2], respectively. Let G be a permutation group on a set Ω and $v \in \Omega$. Denote by G_v the stabilizer of v in G, that is, the subgroup of G fixing the point v. We say that G is semiregular on Ω if $G_v = 1$ for every $v \in \Omega$ and regular if G is transitive and semiregular.

For a graph X, denote by $V(X)$, $E(X)$ and $\text{Aut}(X)$ its vertex set, its edge set and its full automorphism group, respectively. A graph X is said to be G-vertex-transitive if $G \leq \text{Aut}(X)$ acts transitively on $V(X)$. X is simply called vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an ordered $(s + 1)$-tuple $(v_0, v_1, \cdots , v_{s-1}, v_s)$ of vertices of the graph X such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup $G \leq \text{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not $(G, s+1)$-arc-transitive. In particular, a $(G, 1)$-arc-transitive graph is called G-symmetric. A graph X is simply called s-arc-transitive, s-regular or s-transitive if it is $(\text{Aut}(X), s)$-arc-transitive, $(\text{Aut}(X), s)$-regular or $(\text{Aut}(X), s)$-transitive, respectively.

We denote by C_n and K_n the cycle and the complete graph of order n, respectively. Denote by D_{2n} the dihedral group of order $2n$. As we all known that there is only one connected 2-valent graph of order n, that is, the cycle
C_n, which is 1-regular with full automorphism group D_{2n}. Let p be a prime. Classifying s-transitive and s-regular graphs has received considerable attention. The classification of s-transitive graphs of order p and $2p$ was given in [3] and [4], respectively. Wang [15] characterized the prime-valent s-transitive graphs of order $4p$. The classification of cubic, pentavalent and heptavalent s-transitive graphs of order $8p$ was given in [8], [13] and [12], respectively.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic case, s-transitivity always means s-regularity by Miller [7]. However, for the other prime-valent case, this is not true, see for example [9] for pentavalent case and [10] for heptavalent case. Thus, characterization and classification of prime-valent s-regular graphs is very interesting and also reveals the s-regular global and local actions of the permutation groups on s-arcs of such graphs. In particular, 1-regular action is the most simple and typical situation. In this paper, we classify prime-valent one-regular graphs of order $8p$ for each prime p.

2. Preliminary results

Let X be a connected G-symmetric-transitive graph with $G \leq \text{Aut}(X)$, and let N be a normal subgroup of G. The quotient graph X_N of X relative to N is defined as the graph with vertices the orbits of N on $V(X)$ and with two orbits adjacent if there is an edge in X between those two orbits. In view of [11, Theorem 9], we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with $G \leq \text{Aut}(X)$ and prime valency $q \geq 3$, and let N be a normal subgroup of G. Then one of the following holds:

1. N is transitive on $V(X)$;
2. X is bipartite and N is transitive on each part of the bipartition;
3. N has $r \geq 3$ orbits on $V(X)$, N acts semiregularly on $V(X)$, the quotient graph X_N is a connected q-valent G/N-symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of order $2p$ for a prime p from Cheng and Oxley [4], we introduce the graphs $G(2p, q)$. Let V and V' be two disjoint copies of \mathbb{Z}_p, say $V = \{0, 1, \ldots, p - 1\}$ and $V' = \{0', 1', \ldots, (p - 1)'\}$. Let q be a positive integer dividing $p - 1$ and $H(p, q)$ the unique subgroup of \mathbb{Z}_p^* of order q. Define the graph $G(2p, q)$ to have vertex set $V \cup V'$ and edge set $\{xy' \mid x - y \in H(p, q)\}$.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order $2p$ with p, q primes. Then X is isomorphic to K_{2p} with $q = 2p - 1$, $K_{p,p}$ or $G(2p, q)$ with $q|(p - 1)$. Furthermore, if $(p, q) \neq (11, 5)$ then $\text{Aut}(G(2p, q)) = (\mathbb{Z}_p \times \mathbb{Z}_q) \rtimes \mathbb{Z}_2$; if $(p, q) = (11, 5)$ then $\text{Aut}(G(2p, q)) = \text{PGL}(2, 11)$.

From [6, pp.12-14], we can deduce the non-abelian simple groups whose orders have at most three different prime divisors.
Proposition 2.3. Let G be a non-abelian simple group. Suppose that the order $|G|$ has at most three different prime divisors. Then G is called K_3 simple group and isomorphic to one of the following groups.

Table 1: Non-abelian simple $(2,3,p)$-groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Order</th>
<th>Group</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_5</td>
<td>$2^4 \cdot 3 \cdot 5$</td>
<td>PSL(2,17)</td>
<td>$2^4 \cdot 3^2 \cdot 17$</td>
</tr>
<tr>
<td>A_6</td>
<td>$2^3 \cdot 3^2 \cdot 5$</td>
<td>PSL(3,3)</td>
<td>$2^4 \cdot 3^3 \cdot 13$</td>
</tr>
<tr>
<td>PSL$(2,7)$</td>
<td>$2^3 \cdot 3 \cdot 7$</td>
<td>PSU$(3,3)$</td>
<td>$2^5 \cdot 3^3 \cdot 7$</td>
</tr>
<tr>
<td>PSL$(2,8)$</td>
<td>$2^3 \cdot 3^2 \cdot 7$</td>
<td>PSU$(4,2)$</td>
<td>$2^6 \cdot 3^4 \cdot 5$</td>
</tr>
</tbody>
</table>

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order $8p$ for each prime p. Let q be a prime. In what follows, we always denote by X a connected q-valent one-regular graph of order $8p$. Set $A = Aut(X), v \in V(X)$. Then the vertex stabilizer $A_v \cong \mathbb{Z}_q$ and hence $|A| = 8pq$. Clearly, if $q = 2$, then $X \cong C_{8p}$ with $A \cong D_{16p}$.

Let $q = 3$. Then by [8, Theorem 5.1], we can have the classification of cubic one-regular graphs of order $8p$. For convenience, we use the same notation CQ_p as in [8] to denote the cyclic Z_p-covering graph of the three-dimensional hypercube Q_3.

Lemma 3.1. If $q = 3$, then $X \cong CQ_p$ and $A \cong \mathbb{Z}_p \rtimes (A_4 \times \mathbb{Z}_2)$ with $3|(p-1)$.

For $q = 5$ or 7, by [13, Theorem 3.1] and [12, Theorem 1.1], it is easy to see that there is no new graph. For $p = 2$ or 3, by [5], there is no prime-valent one-regular graph of order 16 or 24. Thus, we treat with the case $p \geq 5$ and $q > 7$ by proving the following lemma.

Lemma 3.2. Let $p \geq 5$ and $q > 7$. Then there is no new graph.

Proof. Recall that $|A| = 8pq$ and $A_v \cong \mathbb{Z}_q$. By Proposition 2.3, the order of each K_3 simple group has a divisor 3. It forces that A is solvable. We divide the proof into the following two cases: $p = q$ and $p \neq q$.

Case 1: Suppose that $p = q$. Then $|A| = 8p^2$ and $A_v \cong \mathbb{Z}_p$.

Let P be a Sylow p-subgroup of A. Then $|P| = p^2$. Note that $p = q > 7$. Thus, by Sylow Theorem, we have that P is normal in A. This means that P is the only Sylow p-subgroup of A. Since $A_v \cong \mathbb{Z}_p$, we have that $A_v \leq P$, that is, $A_v = P_v \neq 1$. By Proposition 2.1, P is transitive or has two orbits on $V(X)$. Clearly, both are impossible because $|P| = p^2$ and $|V(X)| = 8p$.

- **Case 2:** Suppose that $p \neq q$.
Case 2: Suppose that $p \neq q$. Then $|A| = 8pq$ and $A_v \cong \mathbb{Z}_q$.

Since $|A| = 8pq$ and $A_v \cong \mathbb{Z}_q$, we have that A_v is a Sylow q-subgroup of A. It forces that the Sylow q-subgroups of A cannot be normal in A. Recall that A is solvable. Thus, all normal subgroups of A are solvable. It follows that A has a maximal normal r-subgroup with $r = 2$ or p.

Assume that A has a maximal normal p-subgroup M. Then $M \cong \mathbb{Z}_p$ because $|A| = 8pq$. Clearly, M acting on $V(X)$ has 8 orbits. By Proposition 2.1, X_M is a q-valent symmetric graph of order 8. By [5], $X_M \cong Q_4$ with $q = 3$ or K_8 with $q = 7$. This contradicts our hypothesis. Thus, the Sylow p-subgroup of A cannot be normal in A.

Assume that A has a maximal normal 2-subgroup N. Since N is a 2-subgroup, we have that N acting on $V(X)$ has at least p orbits. By Proposition 2.1, X_N is a q-valent symmetric graph of order $8p/|N|$. Recall that $q > 7$ is an odd prime and there is no graph of odd order and odd valency. Thus, $|N| \neq 8$ and $|N| = 2$ or 4.

Let $|N| = 2$. Then X_N is a q-valent symmetric graph of order $4p$ and $|A/N| = 4pq$. Note that A is solvable. Thus, A/N is also solvable. Since $A_v \cong \mathbb{Z}_q$, we have that A/N has no normal q-subgroup. If A/N has a normal p-subgroup $K/N \cong \mathbb{Z}_p$. Then $|K| = 2p$. Since $p \geq 5$, we have that K has a normal Sylow p-subgroup M by Sylow Theorem. It forces that M is characteristic in K and hence normal in A. By the above argument, this is impossible. This implies that A/N has a non-trivial normal 2-subgroup, this contradicts the maximality of N.

Let $|N| = 4$. Then X_N is a q-valent symmetric graph of order $2p$ and $|A/N| = 2pq$. Recall that $q \neq p$ and $q \neq 5$. By Proposition 2.2, $X_N \cong K_{2p}$ with $q = 2p - 1$ or $G(2p, q)$ with $A \cong (\mathbb{Z}_p \times \mathbb{Z}_q) \times \mathbb{Z}_2$. For the former, $q = 2p - 1$ is a prime. Thus, $A/N \cong S_{2p}$ and A/N is 2-transitive on $V(X)$. By Burnside’s Theorem, any 2-transitive permutation group is almost simple or affine. Since A/N is solvable, we have that A/N is affine. It forces that A/N must have a normal subgroup isomorphic to \mathbb{Z}_p. By the above argument, this is impossible. For the latter, $A/N \cong (\mathbb{Z}_p \times \mathbb{Z}_q) \times \mathbb{Z}_2$. It is easy to see that A/N has a normal Sylow p-subgroup. Similarly, since $p \geq 5$, we can easily deduce that A has a normal Sylow p-subgroup, a contradiction. \(\square \)

Combining the above arguments with the cases $q = 2, 5, 7$ and $p = 2, 3$, and by Lemmas 3.1-3.2, we have the following result.

Theorem 3.3. Let p, q be two primes and X a connected q-valent one-regular graph of order $8p$. Then $X \cong C_{8p}$ with $\text{Aut}(X) \cong D_{16p}$ or $X \cong CQ_p$ with $\text{Aut}(X) \cong \mathbb{Z}_p \times (A_4 \times \mathbb{Z}_2)$ and $3|(p - 1)$.

References

Accepted: 26.07.2019