Minimal left ideals in some endomorphism semirings of semilattices

Barbora Batíková
Department of Mathematics
CULS
Kamýcká 129, 165 21 Praha 6-Suchdol
Czech Republic
batikova@tf.czu.cz

Tomáš Kepka
Department of Algebra
MFF UK
Sokolovská 83, 186 75 Praha 8
Czech Republic
kepka@karlin.mff.cuni.cz

Petr Němec
Department of Mathematics
CULS
Kamýcká 129, 165 21 Praha 6-Suchdol
Czech Republic
nemec@tf.czu.cz

Abstract. Minimal left ideals in some endomorphism semirings of semilattices are investigated.

Keywords: semiring, semimodule, semilattice, ideal, endomorphism.

1. Preliminaries

1.1 Semirings. A semiring is an algebraic structure possessing two associative binary operations (addition and multiplication), where the addition is commutative and the multiplication distributes over the addition.

Let S be a semiring. A non-empty subset I of S is called

- a left (right) ideal if $(I + I) \cup SI \subseteq I$ and $(I + I) \cup IS \subseteq I$;
- an ideal if $(I + I) \cup SI \cup IS \subseteq I$;
- a bi-ideal if $(S + I) \cup SI \cup IS \subseteq I$.

A (left, right, bi-) ideal I is called minimal if $|I| \geq 2$ and $K = I$ whenever K is a (left, right, bi-) ideal such that $K \subseteq I$ and $|K| \geq 2$. The semiring S is called
(left-, right-, bi-) ideal-simple if it is non-trivial and has no proper non-trivial (left, right, bi-) ideal.

1.2 Semilattices. A semilattice $M (= M(\langle \rangle))$ is a commutative idempotent semigroup. A non-empty subset A of M is an ideal if $M + A = A$. Such an ideal is called prime if the set $M \setminus A$ is a subsemilattice of M. We have the basic order on M defined by $a \leq b$ iff $a + b = b$.

An element $w \in M$ is neutral (absorbing) if $x + w = x$ for every $x \in M$. Such an element is unique (provided that it exists - this fact is denoted by $0_M \in M$) and is denoted by $0 = 0_M$ in the sequel. The fact that no such element exists is denoted by $0_M \notin M$.

1.3 Semimodules. Let S be a semiring. A (left S-) semimodule is a commutative semigroup $M (= M(\langle \rangle))$ together with a scalar multiplication $S \times M \to M$. The semimodule M is called

- minimal if $|M| \geq 2$ and $N = M$ whenever N is a non-trivial subsemimodule of M;
- simple if it has just two congruence relations;
- faithful if for all $a, b \in S$, $a \neq b$, there is at least one $x \in M$ with $ax \neq bx$.

1.4 Endomorphism semirings. Let $M (= M(\langle \rangle))$ be a commutative semigroup. The set $E = E(M) = \text{End}(M)$ of endomorphisms of M is a semiring via $(f + g)(x) = f(x) + g(x)$ and $(fg)(x) = f(g(x))$ for all $f, g \in E$ and $x \in M$. The semiring E is unitary and the multiplicatively neutral element is the identity automorphism id_M of M.

2. 0-preserving endomorphisms

Let M be a non-trivial semilattice such that $0_M \in M$. The set $E_0 = \{ f \in E \mid f(0_M) = 0_M \}$ is a unitary subsemiring of E and the constant endomorphism ξ, $\xi(M) = \{0_M\}$, is the zero element of the semiring E_0. For all $u, v \in M$, we have $q_{u,v} \in E_0$, where $q_{u,v}(x) = 0_M$ for $x \leq u$ and $q_{u,v}(y) = v$ for $y \notin u$. Thus $q_{u,v}(M) = \{0_M, v\}$ for $u \neq o_M$, $q_{o_M,v} = \xi$ (if $o_M \in M$) and $q_{u,0_M} = \xi$.

Now, let E be a subsemiring of E_0 such that $q_{u,v} \in E$ for all $u, v \in M$. For every $u \in N = M \setminus \{o_M\}$, put $T_u = \{ q_{u,v} \mid v \in M \}$. The following observations are quite easy.

Lemma 2.1. (i) $q_{u,v_1} + q_{u,v_2} = q_{u,v_1 + v_2}$.
(ii) $f q_{u,v} = q_{u,f(v)}$ for every $f \in E_0$.
(iii) $q_{u,v_1} q_{pu, v_2} = \xi$ for $v_2 \leq u$.
$q_{u,v_1} q_{u,v_2} = q_{u,v_1}$ for $v_2 \notin u$.
(v) $q_{u,v} q_{u,v} = \xi$ for $v \leq u$.
(vi) $q_{u,v} q_{u,v} = q_{u,v}$ for $v \notin u$. □
Proposition 2.2. The set T_u is a minimal left ideal of the semiring E for every $u \in N$. The mapping $v \mapsto q_{u,v}$ is an isomorphism of the semimodule EM onto the semimodule ET_u.

Proof. It follows immediately from 2.1 that T_u is a left ideal of E and that the map $v \mapsto q_{u,v}$ is an isomorphism of the semimodules. Furthermore, if $v \neq 0_M$ then $q_{0_M,v_1}q_{u,v} = q_{u,v_1}$ for every $v_1 \in M$. Now, it is clear that T_u is a minimal left ideal of E.

Proposition 2.3. (i) $T_uq_{u,v} = \{\xi\}$ for $v \leq u$.
(ii) $T_uq_{u,v} = T_u$ for $v \not\leq u$.

Proof. Use 2.1(iii),(iv).

Proposition 2.4. (i) The set $\{q_{u,v} \mid v \leq u\}$ is an ideal of the semiring T_u and it is the greatest proper ideal of that semiring.
(ii) The $\{q_{u,v} \mid v \not\leq u\} \cup \{\xi\}$ is just the set of the multiplicative idempotents of T_u ($\xi = q_{u,0_M}$).
(iii) The semiring T_u is multiplicatively idempotent iff $u = 0_M$.
(iv) The semiring T_u is (left-) ideal-simple iff $u = 0_M$.

Proof. It is easy.

Proposition 2.5. The semimodule ET_u is simple.

Proof. Let $\alpha \neq \text{id}$ be a congruence of T_u. Then $(q_{u,v_1}, q_{u,v_2}) \in \alpha$ for some $v_1 < v_2$, and hence $(\xi, q_{u,v_2}) = (q_{v_1,v_2}q_{u,v_1}^t, q_{v_1,v_2}^tq_{u,v_2}) \in \alpha$. Consequently, $(\xi, q_{u,v_2}) = (q_{0_M,v_3}^t, q_{0_M,v_3}^tq_{u,v_2}) \in \alpha$ for every $v_3 \in M$. Thus $\alpha = T_u \times T_u$.

Proposition 2.6. The semimodule T_u is faithful.

Proof. Use 2.1(ii).

Lemma 2.7. If I is a non-trivial ideal of E then $\bigcup_{u \in N} T_u \subseteq I$.

Proof. We have $IT_u \subseteq I \cap T_u$ and the latter set is a left ideal of E. If $T_u \not\subseteq I$ then $IT_u = I \cap T_u = \{\xi\}$ and it means that $q_{u,f(v)} = fq_{u,v} = \xi$ for every $f \in I$ and $v \in M$. Since $u \neq 0_M$, we get $f(v) = 0_M$ and $f = \xi$. Thus $I = \{\xi\}$, a contradiction.

Corollary 2.8. The set $\{q_{u_1,v_1}f_1 + \cdots + q_{u_n,v_n}f_n \mid n \geq 1, u_i \in N, v_i \in M, f_i \in E\}$ is just the smallest non-trivial ideal of the semiring E.

2.9 Let K be a minimal left ideal of the semiring E such that $K \neq T_u$ for every $u \in N$.

Lemma 2.9.1. $K \cap T_u = \{\xi\}$ for every $u \in N$.

Proof. It is obvious.
Lemma 2.9.2. \(Ef = K \) for every \(f \in K \setminus \{ \xi \} \).

Proof. The set \(K_1 = \{ f \in K \mid Ef = \{ \xi \} \} \) is a left ideal of \(E \). If \(K_1 = K \) then \(EK = \{ \xi \} \) and \(K = \{ \xi, f_0 \} \) is two-element. Now, \(q_{0_M, f_0} = \xi \), and hence \(f_0 = \xi \), a contradiction. It follows that \(K_1 = \{ \xi \} \) and \(Ef = K \), since \(Ef \) is a left ideal of \(E \).

Lemma 2.9.3. There are subsemilattices \(A \) and \(B \) of \(M \) such that:

(i) \(A \cup B = M \) and \(A \cap B = \emptyset \).

(ii) \(A = \{x \in M \mid f(x) \neq 0_M\} \) and \(B = \{x \in M \mid f(x) = 0_M\} \) for every \(f \in K \setminus \{\xi\} \).

(iii) \(A + M = A \) (i.e., \(A \) is a prime ideal of the semilattice \(M \)).

(iv) \(o_B \notin B \) (i.e., the prime ideal \(A \) is not principal).

Proof. If \(f, g \in K \setminus \{\xi\} \) then \(g = hf \) for some \(h \in E \) by 2.9.2 and we see that \(g(x) \neq 0_M \) implies \(f(x) \neq 0_M \). Clearly, \(A + M = A \) and \(B + B = B \). We have \(0_M \in B \) and \(A \neq \emptyset \), since \(f \neq \xi \). If \(u = o_B \in B \) then \(u \neq o_M \) and \(q_{0_M, f} = q_{u, v} \in K \) for every \(v \in M \), a contradiction.

Lemma 2.9.4. If \(f \in K \setminus \{\xi\} \) and \(v \in M \) then \(q_{0_M, f} = q_{A, v} \in K \), where \(q_{A, v}(B) = \{0_M\} \) and \(q_{A, v}(A) = \{v\} \).

Proof. It is obvious.

Proposition 2.9.5. (i) \(K = \{q_{A, v} \mid v \in M\} \).

(ii) The mapping \(v \mapsto q_{A, v} \) is an isomorphism of the semimodule \(EM \) onto the semimodule \(EK \).

(iii) \(Kq_{A, v} = \{\xi\} \) for every \(v \in B \).

(iv) \(Kq_{A, v} = K \) for every \(v \in A \).

(v) The set \(\{q_{A, v} \mid v \in B\} \) is an ideal of the semiring \(K \) and it is the greatest proper left ideal of that semiring.

(vi) The set \(\{q_{A, v} \mid v \in A\} \cup \{\xi\} \) is just the set of the multiplicative idempotents of \(K \) (\(\xi = q_{A, 0_M}\)).

(vii) The semiring \(K \) is neither multiplicatively idempotent nor ideal-simple.

Proof. According to 2.9.4, \(T_A = \{q_{A, v} \mid v \in M\} \subseteq K \). The rest is clear (see 2.2, 2.4 and 2.4).

Theorem 2.10. (i) The set \(T_u = \{q_{u, v} \mid v \in M\} \) is a minimal left ideal of the semiring \(E \) for every \(u \in N \).

(ii) If \(K \) is a minimal left ideal of \(E \) such that \(K \neq T_u \) for every \(u \in N \) then there is a non-principal prime ideal \(A \) of the semilattice \(M \) such that \(K = T_A = \{q_{A, v} \mid v \in M\} \).

(iii) If \(A \) is a non-principal prime ideal of \(M \) such that \(Q_{A, v} \in E \) for at least one \(v \in M \setminus \{0_M\} \) then \(T_A \subseteq E \) and \(T_A \) is a minimal left ideal of \(E \) such that \(T_A \neq T_u \) for every \(u \in N \).
(iv) If \(K \) is a minimal left ideal of \(E \) then \(_EK \) is a faithful, simple and minimal \((\text{left } E)-\) semimodule and the semimodules \(_EK \) and \(_EM \) are isomorphic.

(v) If \(K \) is a minimal left ideal of \(E \) then the semiring \(K \) is multiplicatively idempotent if and only if \(K = T_{0M} \).

Proof. Combine the foregoing results. \(\square \)

Corollary 2.11. Denote by \(A \) the set of prime ideals \(A \) of \(M \) such that \(T_A \subseteq E \) (see 2.10(ii),(iii)). Then:

(i) \(\{ T_A \mid a \in A \} \) is just the set of \((\text{pairwise distinct})\) minimal left ideals of the semiring \(E \).

(ii) \(A_u = \{ x \in M \mid x \not\preceq u \} \in A \) for every \(u \in N \).

(iii) The set \(\sum T_A, A \in A, \) is just the smallest non-trivial ideal of the semiring \(E \). \(\square \)

3. 1-preserving endomorphisms (a)

Let \(M \) be a non-trivial semilattice such that \(o_M \in M \). The set \(E_1 = E_1(M) = \{ f \in E \mid f(o_M) = o_M \} \) is a unitary subsemiring of \(E \) and the constant endomorphism \(\zeta = \zeta_M, \zeta(M) = \{ o_M \}, \) is the bi-absorbing element of the semiring \(E_1 \). For all \(u, v \in M, u \neq o_M, \) we have \(p_{u,v} \in E_1, \) where \(p_{u,v}(x) = v \) for \(x \leq u \) and \(p_{u,v}(y) = o_M \) for \(y \not\preceq u \). Thus \(p_{u,v}(M) = \{ v, o_M \} \) and \(p_{u,o_M} = \zeta \).

Now, let \(F \) be a subsemiring of \(E_1 \) such that \(p_{u,v} \in F \) for all \(u, v \in M, u \neq o_M \). For every \(u \in N = M \setminus \{ o_M \}, \) put \(V_u = \{ p_{u,v} \mid v \in M \} \).

The following observations are quite easy.

Lemma 3.1. (i) \(p_{u,v_1} + p_{u,v_2} = p_{u,v_1+v_2} \).

(ii) \(fp_{u,v} = p_{u,f(v)} \) for every \(f \in E_1 \).

(iii) \(p_{u,v_1}p_{u,v_2} = \zeta \) for \(v_2 \not\preceq u \).

(iv) \(p_{u,v_1}p_{u,v_2} = p_{u,v_1} \) for \(v_2 \leq u \).

(v) \(p_{u,v}p_{u,v} = \zeta \) for \(v \not\preceq u \).

(vi) \(p_{u,v}p_{u,v} = p_{u,v} \) for \(v \leq u \). \(\square \)

Proposition 3.2. The set \(V_u \) is a minimal left ideal of the semiring \(F \) for every \(u \in N \). The mapping \(v \mapsto p_{u,v} \) is an isomorphism of the semimodule \(_FM \) onto the semimodule \(_FV_u \).

Proof. It follows immediately from 3.1 that \(V_u \) is a left ideal of \(F \) and the map \(v \mapsto p_{u,v} \) is an isomorphism of the semimodules. Furthermore, if \(v \neq o_M \) then \(p_{v,v_1}p_{u,v} = p_{u,v_1} \) for every \(v_1 \in M \). Now, it is clear that \(V_u \) is a minimal left ideal of \(F \). \(\square \)

Proposition 3.3. (i) \(V_u p_{u,v} = \{ \zeta \} \) for \(v \not\preceq u \).

(ii) \(V_u p_{u,v} = V_u \) for \(v \leq u \).

Proof. Use 3.1 (iii), (iv). \(\square \)
Proposition 3.4. (i) The set \(\{ p_{u,v} \mid v \not\leq u \} \) is a bi-ideal of the semiring \(V_u \) and it is the greatest proper left ideal of that semiring.

(ii) The set \(\{ p_{u,v} \mid v \leq u \} \cup \{ \zeta \} \) is just the set of multiplive idempotents of \(V_u (\zeta = p_{u,o_M}) \).

(iii) The semiring \(V_u \) is multiplicatively idempotent iff \(u = o_N \in N \).

(iv) The semiring \(V_u \) is (left-) ideal-simple iff \(u = o_N \in N \).

Proof. It is easy. \(\square \)

Proposition 3.5. The semimodule \(fV_u \) is simple.

Proof. Let \(\alpha \neq \text{id} \) be a congruence of \(fV_u \). Then \((p_{u,v_1}, p_{u,v_2}) \in \alpha \) for some \(v_1 < v_2 \) and hence \((p_{u,v_2}, \zeta) = (p_{v_1,v_2}p_{u,v_1}, p_{v_1,v_2}p_{u,v_2}) \in \alpha \). Consequently, \((p_{u,v_1}, \zeta) \in \alpha \) and, finally, \((p_{u,v_3}, \zeta) = (p_{v_1,v_3}p_{u,v_1}, p_{v_1,v_3}\zeta) \in \alpha \) for every \(v_3 \in M \). Thus \(\alpha = V_u \times V_u \).

Proof. Use 3.1(ii). \(\square \)

Lemma 3.7. If \(I \) is a non-trivial ideal of \(F \) then \(\bigcup_{u \in N} V_u \subseteq I \).

Proof. We can proceed similarly as in the proof of 2.7. \(\square \)

Corollary 3.8. The set \(\{ p_{u_1,v_1}f_1 + \ldots + p_{u_n,v_n}f_n \mid n \geq 1, u_i \in N, v_i \in M, f_i \in F \} \) is just the smallest non-trivial ideal of the semiring \(F \). \(\square \)

3.9 Let \(K \) be a minimal left ideal of the semiring \(F \) such that \(K \neq V_u \) for every \(u \in N \).

Lemma 3.9.1. \(K \cap V_u = \{ \zeta \} \) for every \(u \in N \).

Proof. It is obvious. \(\square \)

Lemma 3.9.2. \(Ff = K \) for every \(f \in K \setminus \{ \zeta \} \).

Proof. If \(f \in F \setminus \{ \zeta \} \) then \(f(v) \neq o_M \) for at least one \(v \in N \) and \(p_{f(v),v} \neq \zeta \). Now, we can proceed similarly as in the proof of 2.9.2. \(\square \)

Lemma 3.9.3. There is a proper ideal \(A \) of the semilattice \(M \) such that \(A = \{ x \in M \mid f(x) = o_M \} \) for every \(f \in K \setminus \{ \zeta \} \) and we put \(B = M \setminus A \).

Proof. Use 3.9.2. \(\square \)

Lemma 3.9.4. Let \(f \in K \setminus \zeta \), \(v \in M \), and let \(o_m \neq w \in f(M) \). Then \(p_{w,v}f = p_{A,v}K \), where \(p_{A,v}(B) = \{ v \} \) and \(p_{A,v}(A) = \{ o_M \} \).

Proof. We have \(g = p_{w,v}f \in K \) and, by 3.9.3, \(A = \{ x \in M \mid g(x) = o_M \} = \{ x \in M \mid f(x) \not\leq w \} \). Thus \(B = \{ y \in M \mid g(y) \neq o_M \} = \{ y \in M \mid f(y) \leq w \} \) and \(g(B) = \{ v \} \). \(\square \)
Proposition 3.9.5. (i) A is a prime ideal of M, $o_B \notin B$ and $K = \{ p_{A,v} \mid v \in M \} = V_A$.

(ii) The mapping $v \mapsto p_{A,v}$ is an isomorphism of the semimodule FM onto the semimodule FK.

(iii) $Kp_{A,v} = \{ \zeta \}$ for $v \in A$.

(iv) $Kp_{A,v} = K$ for $v \in B$.

(v) The set $\{ p_{A,v} \mid v \in A \}$ is a bi-ideal of the semiring K and it is the greatest proper left ideal of that semiring.

(vi) The set $\{ p_{A,v} \mid v \in B \} \cup \{ \zeta \}$ is just the set of multiplicative idempotents of K ($\zeta = p_{A,o_M}$).

(vii) The semiring K is neither multiplicatively idempotent nor bi-ideal-simple.

Proof. According to 3.9.4, $V_A = \{ p_{A,v} \mid v \in M \} \subseteq K$. The rest is clear (see 3.2, 3.3 and 3.4).

Theorem 3.10. (i) The set $V_u = \{ p_{u,v} \mid v \in M \}$ is a minimal left ideal of the semiring F for every $u \in N$.

(ii) If K is a minimal left ideal of F such that $K \neq V_u$ for every $u \in N$ then there is a non-principal prime ideal A of the semilattice M such that $K = V_A = \{ p_{A,v} \mid v \in M \}$.

(iii) If A is a non-principal prime ideal of M such that $p_{A,v} \in F$ for at least one $v \in M \setminus \{ o_M \}$ then $V_A \subseteq F$ and V_A is a minimal left ideal of F such that $V_A \neq V_u$ for every $u \in N$.

(iv) If K is a minimal left ideal of F then FK is a faithful, simple and minimal F-semimodule and the semimodules FK and FM are isomorphic.

(v) If K is a minimal left ideal of F then the semiring K is multiplicatively idempotent if and only if $o_N \in N$ and $K = V_{o_N}$.

Proof. See the foregoing results.

Corollary 3.11. Denote by B the set of prime ideals A of M such that $V_A \subseteq F$ (see 3.10(ii),(iii)). Then:

(i) $\{ V_A \mid A \in B \}$ is just the set of (pair-wise distinct) minimal left ideals of the semiring F.

(ii) $A_u = \{ x \in M \mid x \notin u \} \in B$ for every $u \in N$.

(iii) The set $\bigcup V_A$, $A \in B$, is just the smallest non-trivial ideal of the semiring F.

Proof. See the foregoing results.

4. 1-preserving endomorphisms (b)

Let M be an antichain, i.e., a semilattice containing at least three elements such that $o_M \in M$ and $x + y = o_M$ for all $x, y \in M$, $x \neq y$, and put $N = M \setminus \{ o_M \}$. Now, a transformation f of M belongs to E_1 if and only if $f(o_M) = o_M$ and $f(x) \neq f(y)$ for all $x, y \in M$ such that $x \neq y$ and $f(x) \neq o_M$.
Proposition 4.1. Let E be a subsemiring of of E_1 such that $\zeta \in E$. The following conditions are equivalent:

(i) The semimodule EM is minimal.

(ii) $N \subseteq E(x) = \{ f(x) \mid f \in E \}$ for every $x \in N$.

(iii) $E(x) = M$ for every $x \in N$.

(iv) The semimodule EM is simple.

Proof. Clearly, the first three conditions are equivalent. Now, let α be a congruence of EM and $P = \{ x \in M \mid (x, o_M) \in \alpha \}$. Then P is a subsemimodule of M and if M is minimal then $P = \{ o_M \}$. On the other hand, if $(x, y) \in \alpha$, $x \neq y$, then $(x, o_M) = (x + x, x + y) \in \alpha$ and $x \in P$. Thus (i) implies (iv). Conversely, for every $x \in M$, the relation $\alpha_x = (E(x) \times E(x)) \cup \text{id}_M$ is a congruence of EM. If $\alpha = M \times M$ then $E(x) = M$. If $\alpha_x = \text{id}_M$ then $E(x) = \{ o_M \}$ and $x \in Q = \{ y \in M \mid F(y) = \{ o_M \} \}$. Of course, Q is a subsemimodule of EM and $\beta = (Q \times Q) \cup \text{id}_M$ is a congruence of EM. If $\beta = \text{id}_M$ then $x = o_M$. If $\beta = M \times M$ then $Q = M$, $E(M) = \{ o_M \}$ and EM is not simple. Thus (iv) implies (iii). \qed

Lemma 4.2. Let $f, g \in E_1$. Then $f + g = \zeta$ iff $f(x) = o_M$ whenever $x \in M$ is such that $f(x) = g(x)$.

Proof. It is obvious. \qed

In the remaining part of this section, let E be a non-trivial subsemiring of E_1 satisfying the equivalent conditions of 4.1 and let K be a left ideal of E.

Lemma 4.3. Let $w \in M$. The mapping $\tau_w : f \mapsto f(w)$ is a homomorphism of the semimodule EK into the semimodule EM. If $K(w) \neq \{ o_M \}$ then $\tau(K) = M$.

Proof. It is easy. \qed

Proposition 4.4. If the semimodule EK is simple then K is a minimal left ideal of E and the semimodules EK and EM are isomorphic.

Proof. Since EK is simple, the left ideal K is non-trivial and, taking $f \in K \setminus \{ o_M \}$, we find $w \in M$ with $f(w) \neq o_M$. Then $K(w) = M$ and τ_w is an isomorphism of the semimodules (use 4.3). \qed

Lemma 4.5. For every $w \in M$, the set $L_w = \{ f \in E \mid f(w) = o_M \}$ is a left ideal of the semiring E.

Proof. It is obvious. \qed

Lemma 4.6. Let $w \in M$ be such that $K \cap L_w = \{ \zeta \}$ (e.g., if K is minimal and $K \not\subseteq L_w$). If $f, g \in K$ are such that $f(w) \neq g(w)$ then $f + g = \zeta$.

Proof. It is obvious. \qed
Proof. We have \(f + g \in K \cap L_w \).

Lemma 4.7. If \(K \) is minimal then \(f + g = \zeta \) for all \(f, g \in K \), \(f \neq g \).

Proof. Since \(f \neq g \), there is \(w \in M \) with \(f(w) \neq g(w) \). Clearly, \(K \nsubseteq L_w \) and 4.6 applies.

Theorem 4.8. If \(K \) is a minimal left ideal of the semiring \(E \) then the semimodules \(EK \) and \(EM \) are isomorphic.

Proof. Since \(K \) is non-trivial, there is \(w \in M \) with \(K(w) \neq M \) (equivalently, \(K \nsubseteq L_w \)). If \(f, g \in K \) are such that \(f(w) = g(w) \) then \(f(w) = (f + g)(w) = g(w) \) and either \(f(w) = o_M = g(w) \) and \(f = \zeta = g \), or \((f + g)(w) \neq o_M \), \(f + g \neq \zeta \) and \(f = g \) by 4.7.

Remark 4.9. Assume that \(K \) is a minimal left ideal and let \(w \in M \) be such that \(K(w) = M \) (equivalently, \(K \nsubseteq L_w \)). If \(f \in K \) then \(Kf = \{\zeta\} \) iff \(K \subseteq L_f(w) \). On the other hand, if \(Kf \neq \{\zeta\} \) then \(Kf = K, K(f(w)) = M \) and \(K \cap L_f(w) = \{\zeta\} \).

Lemma 4.10. If \(f \in E_1 \) is such that \(f^2 = f \) then \(f(x) \in \{x, o_M\} \) for every \(x \in M \).

Proof. It is obvious.

Lemma 4.11. Let \(K \) be a minimal left ideal, \(A = \{w \in N \mid K \subseteq L_w\} \) and let \(f \in K \) be such that \(f^2 = f \neq \zeta \). Then:

(i) \(f(x) = x \) for every \(x \in M \setminus A \).

(ii) \(f \) is right multiplicatively neutral in \(K \).

(iii) If \(A = \emptyset \) then \(f = \text{id}_M \) and \(K = E \).

(iv) If \(A \neq \emptyset \) then \(K = \bigcap L_w, w \in A \).

Proof. (i) This follows from 4.10.

(ii) If \(g \in K \) then \(gf(x) = g(x) \) for every \(x \in M \setminus A \) and \(gf(y) = o_M = g(y) \) for every \(y \in A \). Thus \(gf = g \).

(iii) By (i), \(f = \text{id}_M \).

(iv) If \(g \in \bigcap L_w \) then \(gf = g \).

Corollary 4.12. Let \(K \) be a minimal left ideal of \(E \). Then:

(i) \(K \) contains at most two multiplicatively idempotent elements.

(ii) \(K \) is not multiplicatively idempotent.
5. 1-preserving endomorphisms (c)

Let K and L be semilattices containing at least three elements and such that $o_K \in K$ and $o_L \in L$. The set $Q = \{(o_K) \times L\} \cup (K \times \{o_L\})$ is an ideal of the cartesian product $K \times L$ and we put $M = (K \times L) / Q \cup \{(o_M) \cup (K' \times L')\}$.

It is obvious.

Proof. According to 5.1 and 5.2, the set $K \times L$ is a subsemiring of $K \times L$ and we put $M = (K \times L) / Q \cup \{(o_M) \cup (K' \times L')\}$.

If $f \in E_1(K)$ and $g \in E_1(L)$ then $(f \times g)(Q) \subseteq Q$ and we put $f \ast g = (f \times g) / Q \in E_1(M)$. Thus $(f_1 \ast g_1) + (f_2 \ast g_2) = (f_1 + f_2) \ast (g_1 + g_2)$, $(f_1 \ast g_1)(f_2 \ast g_2) = f_1 f_2 \ast g_1 g_2$, and hence $E_1(K) \ast E_1(L)$ is a subsemiring of $E_1(M)$. In fact, if E is a subsemiring of $E_1(K)$ and F is a subsemiring of $E_1(L)$ then $E \ast F$ is a subsemiring of $E_1(M)$.

In the remaining part of this section, assume that L is an antichain and take a non-trivial subgroup G of $\text{Aut}(L)$ such that $f(x) \neq g(x)$ for all $x \in L'$, $f, g \in G$, $f \neq g$. Let S be a subsemiring of $E_1(K) \ast (G \cup \{\zeta_L\})$ such that $p_{u,v} \ast g \in S$ for all $u \in K'$, $v \in K$ and $g \in G$ (see the preceding two sections).

One checks easily that $o_S = \zeta_M = p_{u,o_K} \ast g \in S$ is the bi-absorbing element of S and $AA \subseteq A$, where $A = \{f \in E_1(K) \mid f \ast g \in S, g \in G\}$. Furthermore, $S \subseteq E_1(K) \ast G$ and $B = \{f \in E_1(K) \mid f \ast \text{id}_M \in S\}$ is a subsemiring of $E_1(K)$ such that $p_{u,v} \in B$ for all $u \in K'$ and $v \in K$.

Lemma 5.1. Let $u \in K'$, $v_1, v_2 \in K$ and $g_1, g_2 \in G$. Then:

(i) If $g_1 = g_2$ then $(p_{u,v_1} \ast g_1) + (p_{u,v_2} \ast g_2) = (p_{u,v_1 + v_2} \ast g_1)$.

(ii) If $g_1 \neq g_2$ then $(p_{u,v_1} \ast g_1) + (p_{u,v_2} \ast g_2) = \zeta_M$.

Proof. We have $(p_{u,v_1} \ast g_1) + (p_{u,v_2} \ast g_2) = (p_{u,v_1 + v_2} \ast (g_1 + g_2))$.

Lemma 5.2. Let $u \in K'$, $v \in K$, $g \in G$ and let $f \in E_1(K)$ and $h \in G$ be such that $f \ast h \in S$. Then $(f \ast h)(p_{u,v} \ast g) = p_{u,f(v)} \ast (hg)$.

Proof. It is obvious.

Proposition 5.3. For every $u \in K'$, the set $W_u = \{p_{u,v} \ast g \mid v \in K, g \in G\}$ is a minimal left ideal of the semiring S.

Proof. According to 5.1 and 5.2, the set W_u is a left ideal of S. If $v \in K'$, $w \in K$ and $g, h \in S$ then $p_{u,w} \ast hg^{-1}(p_{u,v} \ast g) = p_{u,w} \ast h$. Thus $S(p_{u,v} \ast g) = W_u$.

Lemma 5.4. Let $f_1, f_2 \in E_1(K)$ and $g_1, g_2 \in G$ be such that $f_1 \ast g_1 = f_2 \ast g_2$. Then $f_1 = f_2$ and if $f_1 \neq \zeta_K$ then $g_1 = g_2$.

Proof. Let $x_0 \in K$ be such that $f_1(x_0) \neq f_2(x_0)$. Then $x_0 \in K'$, $(f_1(x_0), g_1(y)) \in Q$ and $(f_2(x_0), g_2(y)) \in Q$ for every $y \in L'$. If $f_1(x_0) \neq o_K$ then $g_1(y) = o_L$, a contradiction. Thus $f_1(x_0) = o_K$ and, similarly, $f_2(x_0) = o_K$. It follows that $f_1 = f_2$. The rest is clear.

Lemma 5.5. Let $u \in K'$, $v_1, v_2 \in K$ and $g_1, g_2 \in G$. Then $p_{u,v_1} \ast g_1 = p_{u,v_2} \ast g_2$ iff $v_1 = v_2$ and either $g_1 = g_2$ or $v_1 = o_K$.

Proof. This follows from 5.4. \[\square\]

Proposition 5.6. Let \(u \in K' \) and \(z \in L' \). Define a mapping \(\nu_{u,z} : W_u \to M \) by \(\nu_{u,z}(p_{u,v} * g) = (v, g(z)) \) for \(v \in K' \) and \(\nu_{u,z}(o_M) = o_M \) (see 5.5). Then \(\nu_{u,z} \) is an injective homomorphism of the semimodule \(sW_u \) into the semimodule \(sM \). The homomorphism \(\nu_{u,z} \) is an isomorphism of the semimodules iff \(G(z) = L' \) (i.e., the group \(G \) operates transitively on \(L' \)).

Proof. Use 5.1, . . . , 5.5. \[\square\]

Proposition 5.7. Let \(u \in K' \). The semimodule \(sW_u \) is simple, minimal and faithful.

Proof. The semimodule is minimal due to 5.3. By 5.2, \((f * h)(p_{u,v} * id_L) = p_{u,f(v)} * h\) and, using 5.5, we conclude easily the our semimodule is faithful as well.

It remains to show that \(sW_u \) is simple. For, let \(\alpha \neq id \) be a congruence of the semimodule. Then \((p_{u,v1} * g1, p_{u,v2} * g2) \in \alpha \), where \(p_{u,v1} * g1 \neq p_{u,v2} * g2 \) and we can assume that \(v_1 \in K' \). If \(g1 \neq g2 \) then \((p_{u,v1} * g1, \zeta) \in \alpha\) follows from 5.1(ii). But \(S(p_{u,v1} * g1) = W_u \) by 5.3, and hence \(\alpha = W_u \times W_u \). Assume, therefore, that \(g1 = g2 = g \) and \(v_2 \neq v_1 \). Then \((p_{u,v1} * g, p_{u,v3} * g) \in \alpha \), where \(v_1 < v_3 = v_1 + v_2 \). From this, \((p_{u,v1} * g, \zeta) = ((p_{u,v1} * g)(p_{u,v1} * g), (p_{v1,vb4} * g)(p_{u,v1} * g)) \in \alpha\) for every \(v_4 \in K \). Thus \(\alpha = W_u \times W_u \). \[\square\]

Remark 5.8. \(S \) is a subsemiring of \(E_1(M) \), and so the (left \(S \)-) semimodule \(sM \) is faithful. In view of 5.6, the semimodule \(sM \) is minimal iff \(G \) operates transitively on \(L' \), and then the semimodules \(sM \) and \(sW_u \) are isomorphic, so that \(sM \) is simple by 5.7. If \(y \in L' \) then \(R = (K' \times G(y)) \cup \{o_M\} \) is an ideal of the semimodule \(sM \) and \((R \times R) \cup id_M \) is a congruence of \(sM \). If \(\tau = M \times M \) (e.g., if \(sM \) is simple) then \(R = M \) and \(G \) operates transitively on \(L' \).

Proposition 5.9. (i) \(W_u(p_{u,v} * g) = \{\zeta\} \) for \(v \not\leq u \).

(ii) \(W_u(p_{u,v} * g) = W_u \) for \(v \leq u \).

Proof. It is easy. \[\square\]

Proposition 5.10. (i) The set \(\{p_{u,v} \ast g \mid v \not\leq u\} \) is a bi-ideal of the semiring \(W_u \) and it is the greatest proper left ideal of that semiring.

(ii) The set \(\{p_{u,v} \ast id_L \mid v \leq u\} \cup \{\zeta\} \) is just the set of multiplicative idempotents of \(W_u \).

(iii) The semiring \(W_u \) is not multiplicatively idempotent.

(iv) The semiring \(W_u \) is not bi-ideal-simple.

Proof. Easy. \[\square\]
5.11 Let R be a minimal left ideal of the semiring S such that $R \neq W_u$ for every $u \in N$.

Lemma 5.11.1. $R \cap W_u = \{\zeta\}$.

Proof. It is obvious.

Lemma 5.11.2. $S(f \ast g) = R$ for every $f \ast g \in R \setminus \{\zeta\}$.

Proof. We have $f \in E_1(K) \setminus \{\zeta\}$, and hence $f(v) \neq o_K$ for at least one $v \in N$ and $(p_{f(v),v} \ast \id_M)(f \ast g) = (p_{f(v),v}f \ast g) \neq \zeta$. Now, we can proceed similarly as in the proof of 2.9.2.

Lemma 5.11.3. There is a proper ideal A of the semilattice K such that $A = \{ x \in K \mid f(x) \neq o_K \}$ for every $f \ast g \in R \setminus \{\zeta\}$.

Proof. Use 5.11.2.

Lemma 5.11.4. Let $f \ast g \in R \setminus \{\zeta\}$, $v \in M$ and let $o_K \neq w \in f(K)$. Then $p_{w,v}f \ast g = p_{A,v}g = K$, where $B = K \setminus A$, $p_{A,v}(B) = \{v\}$ and $p_{A,v}(A) = \{o_K\}$.

Proof. We have $p_{w,v}f \ast g = (p_{w,v} \ast \id_L)(f \ast g) \in R$ and, by 5.11.3, $A = \{ x \in K \mid p_{w,v}f(x) = o_K \} = \{ x \in K \mid f(x) \neq w \}$. Thus $B = \{ y \in K \mid f(y) \leq w \}$ and $p_{w,v}f(B) = \{v\}$.

Proposition 5.11.5. (i) A is a prime ideal of the semilattice K, $o_B \notin B$ and $W_A = \{ p_{A,v}g \mid v \in K, g \in G \} = R$.

(ii) The mapping $\nu_{A,z} : R \to M$, where $z \in L'$ and $\nu_{A,z}(p_{A,v}g) = (v,g(z))/Q$ is an injective homomorphism of the semimodule $\mathcal{S} \! R$ into the semimodule $\mathcal{S} \! M$. This homomorphism is an isomorphism of the semimodules iff G operates transitively on L'.

(iii) $R(p_{A,v}g) = \{\zeta\}$ for $v \in A$.

(iv) $R(p_{A,v}g) = R$ for $v \in B$.

(v) The set $\{ p_{A,v}g \mid v \in A, g \in G \}$ is a bi-ideal of the semiring R and it is the greatest proper left ideal of that semiring.

(vi) The set $\{ p_{A,v} \ast \id_L \mid v \in B \} \cup \{\zeta\}$ is just the set of multiplicative idempotents of R.

(vii) The semiring R is neither multiplicatively idempotent nor bi-ideal-simple.

Proof. (i) First, take $f \ast g \in R \setminus \{\zeta\}$. By 5.11, we get $p_{A,v} \ast g \in R$ for every $v \in K$. If $v \in K'$ and $h \in G$ then $p_{A,v} \ast h = (p_{A,v} \ast hg^{-1})(p_{A,v} \ast g) \in R$. Thus $W_A \subseteq R$. On the other hand, W_A is a non-trivial left ideal of S and, R being minimal, we find that $R = W_A$.

(ii) We can proceed similarly as in the proof of 5.6.

The remaining assertions are easy to check.
Theorem 5.12. (i) The set \(W_u = \{ p_{u,v} \ast g \mid v \in K, g \in G \} \) is a minimal left ideal of the semiring \(S \) for every \(u \in K' \).

(ii) if \(R \) is a minimal left ideal of \(S \) such that \(R \neq W_u \) for every \(u \in K' \) then there is a non-principal prime ideal \(A \) of the semilattice \(K \) such that \(R = W_A = \{ p_{A,v} \ast g \mid v \in K, g \in G \} \), where \(p_{A,v}(A) = \{ o_K \} \) and \(p_{A,v}(K \setminus A) = \{ v \} \).

(iii) If \(A \) is a non-principal prime ideal of \(K \) such that \(p_{A,v} \ast g \in S \) for at least one \(v \in K' \) and at least one \(g \in G \) then \(W_A \subseteq S \) and \(W_A \) is an minimal left ideal of \(S \) such that \(W_A \neq W_u \) for every \(u \in K' \).

(iv) If \(P \) is a minimal left ideal of \(S \) then \(SP \) is a faithful, simple and minimal (left \(S \)-) semimodule. Besides, if \(z \in L' \) then \(SP \) is isomorphic to the subsemimodule \(S(K \times G(z))/Q \) of \(SM \).

(v) If \(P_1 \) and \(P_2 \) are minimal left ideals of \(S \) then the semimodules \(SP_1 \) and \(SP_2 \) are isomorphic.

(vi) If \(P \) is a minimal left ideal of \(S \) then the semiring \(\mathcal{P} \) is neither multiplicatively idempotent nor bi-ideal-simple.

Proof. Combine the foregoing results.

Corollary 5.13. Denote by \(C \) the set of prime ideals \(A \) of \(K \) such that \(W_A \subseteq S \). Then:

(i) The set \(\{ W_A \mid A \in C \} \) is just the set of (pair-wise distinct) minimal left ideals of the semiring \(S \).

(ii) \(A_u = \{ x \in K \mid x \not\leq u \} \in C \) for every \(u \in K' \).

(iii) The set \(\bigcup W_A, A \in C \), is just the smallest non-trivial ideal of the semiring \(S \).

Proposition 5.14. The following conditions are equivalent:

(i) There is a minimal left ideal \(R \) of \(S \) such that \(R(+) \) is an antichain.

(ii) For every minimal left ideal \(P \) of the semiring \(S \), the semilattice \(P(+) \) is an antichain.

(iii) The semilattice \(K \) is an antichain.

(iv) The semilattice \(M \) is an antichain.

Proof. It is easy.

Lemma 5.15. The following conditions are equivalent for a minimal left ideal \(P \) of \(S \):

(i) The set \(P \backslash \{ \zeta \} \) is a subsemigroup of the multiplicative semigroup of \(P \).

(ii) \(K' + K' = K' \) and \(P = W_A \), where \(A = \{ o_K \} \).

Proof. It is easy.
6. 0,1-preserving endomorphisms

Let M be a non-trivial semilattice such that $0_M,o_M \in M$. The set $E_{0,1} = \{ f \in E \mid f(0_M) = 0_M, f(o_M) = o_M \}$ is a unitary subsemiring of E. For every $u \in N \setminus \{ o_M \}$, we have $r_u \in E_{0,1}$, where $r_u(x) = 0_M$ for $x \leq u$ and $r_u(y) = o_M$ for $y \not\leq u$. Clearly, r_{0_u} is additively absorbing.

Now, let E be a subsemiring of $E_{0,1}$ such that $r_u \in E$ for every $u \in N$. For every pair $(u,v) \in N \times N$, $u < v$, the set $X_{(u,v)} = \{ r_u,r_v \}$ is a minimal left ideal of E.

6.1 Let K be a minimal left ideal of E such that $K \neq X_{(u,v)}$ for all $u,v \in N$, $u < v$.

Lemma 6.1.1. Let $u \in N$, $f \in K$ and $A = A_f,u = \{ x \in M \mid f(x) \not\leq u \}$. Then:

(i) A is a prime ideal of M.

(ii) r_u,f and $r_A \in K$, where $r_A(A) = \{ o_M \}$ and $B = M \setminus A$.

(iii) If $u = o_B \in B$ then $r_A = r_{0_u}$.

Proof. It is easy. □

Lemma 6.1.2. Let A_1,A_2 be prime ideals of M such that $r_{A_1},r_{A_2} \in K$. Then either $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$.

Proof. Let, on the contrary, $A_1 \not\subseteq A_2 \not\subseteq A_1$. The set $A_3 = A_1 \cup A_2$ is a prime ideal and $r_{A_3} = r_{A_1} + r_{A_2} \in K$. Now, the sets $K_1 = \{ r_{A_1},r_{A_2} \}$ and $K_2 = \{ r_{A_2},r_{A_3} \}$ are two-element left ideals contained in K. Consequently, $K_1 = K_2 = K$, $r_{A_1} = r_{A_2}$ and $A_1 = A_2$, a contradiction. □

Corollary 6.1.3. Let A_1,A_2 be two different prime ideals such that $r_{A_1},r_{A_2} \in K$. Then $K = \{ r_{A_1},r_{A_2} \}$ and either $A_1 \subset A_2$ or $A_2 \subset A_1$. □

Now, assume that $r_A \in K$ for exactly one prime ideal A and put $B = M \setminus A$ (see 6.1.1).

Lemma 6.1.4. $f(A) = \{ o_M \}$ for every $f \in K$.

Proof. We have $A = \{ x \in M \mid f(x) \not\leq u \}$ for every $u \in N$ (use 6.1.1). Thus $f(A) = \{ o_M \}$. □

Lemma 6.1.5. $f(B) = \{ 0_M \}$ for every $f \in K$.

Proof. We have $B = M \setminus A = \{ y \in M \mid f(y) \leq 0_M \}$. □

Corollary 6.1.6. $K = \{ r_A \}$.

Theorem 6.2. (i) For all $u,v \in N$, $u < v$, the set $\{ r_u,r_v \}$ is a minimal left ideal of E.

(ii) If K is a minimal left ideal of E then there are prime ideals A_1,A_2 of M such that $A_1 \subset A_2$ and $K = \{ r_{A_1},r_{A_2} \}$.
Proof. See 6.1. □

Theorem 6.3. Denote by D the set of prime ideals of M such that $r_A \in E$ (see 6.1). Then:

(i) Minimal left ideals of the semiring E are just the two-element sets $\{r_{A_1}, r_{A_2}\}$, $A_1, A_2 \in D$, $A_1 \subset A_2$.

(ii) $A_u = \{ x \in M \mid x \not\preceq u \} \in D$ for every $u \in N$.

(iii) $P = M \setminus \{0_M\} \in D$ and $r_P = r_{0_M}$.

(iv) For every $A \in D$, $A \neq P$, the two-element set $\{r_A, r_{0_M}\}$ is a minimal left ideal of E.

(v) $\{r_A \mid A \in D\}$ is an ideal and it is the smallest right ideal of E.

Proof. It is easy (use 6.2). □

7. Non-preserving endomorphisms

Let M be a non-trivial semilattice and let E be a subsemiring of $E(M)$ containing all constant endomorphisms μ_u, $\mu_u(M) = \{u\}$, $u \in M$. Now, the set $Q = \{ \mu_u \mid u \in M \}$ is an ideal and, in fact, it is the smallest left ideal of the semiring E. The two-element sets $\{\mu_u, \mu_v\}$, where $u < v$, are minimal right ideals and there are no more. The semimodules E_M and EQ are isomorphic via $u \mapsto \mu_u$.

References

Accepted: 13.11.2019