Minimal left ideals in some endomorphism semirings of semilattices

Barbora Batíková

Department of Mathematics CULS Kamýcká 129, 165 21 Praha 6-Suchdol Czech Republic batikova@tf.czu.cz

Tomáš Kepka

Department of Algebra MFF UK Sokolovská 83, 186 75 Praha 8 Czech Republic kepka@karlin.mff.cuni.cz

$\mathbf{Petr}~\mathbf{N}\check{\mathbf{e}}\mathbf{mec}^*$

Department of Mathematics CULS Kamýcká 129, 165 21 Praha 6-Suchdol Czech Republic nemec@tf.czu.cz

Abstract. Minimal left ideals in some endomorphism semirings of semilattices are investigated.

Keywords: semiring, semimodule, semilattice, ideal, endomorphism.

1. Preliminaries

1.1 Semirings. A semiring is an algebraic structure possessing two associative binary operations (addition and multiplication), where the addition is commutative and the multiplication distributes over the addition.

Let S be a semiring. A non-empty subset I of S is called

- a left (right) ideal if $(I + I) \cup SI \subseteq I$ $((I + I) \cup IS \subseteq I)$;
- an *ideal* if $(I+I) \cup SI \cup IS \subseteq I$;
- a *bi-ideal* if $(S+I) \cup SI \cup IS \subseteq I$.

A (left, right, bi-) ideal I is called *minimal* if $|I| \ge 2$ and K = I whenever K is a (left, right, bi-) ideal such that $K \subseteq I$ and $|K| \ge 2$. The semiring S is called

^{*.} Corresponding author

(*left-, right-, bi-*) *ideal-simple* if it is non-trivial and has no proper non-trivial (left, right, bi-) ideal.

1.2 Semilattices. A semilattice M (= M(+)) is a commutative idempotent semigroup. A non-empty subset A of M is an *ideal* if M + A = A. Such an ideal is called *prime* if the set $M \setminus A$ is a subsemilattice of M. We have the basic order on M defined by $a \leq b$ iff a + b = b.

An element $w \in M$ is *neutral* (*absorbing*) if x + w = x (x + w = w) for every $x \in M$. Such an element is unique (provided that it exists - this fact is denoted by $0_M \in M$ ($o_M \in M$)) and is denoted by $0 = 0_M$ ($o = o_M$) in the sequel. The fact that no such element exists is denoted by $0_M \notin M$ ($o_M \notin M$).

1.3 Semimodules. Let S be a semiring. A (left S-) semimodule is a commutative semigroup M (= M(+)) together with a scalar multiplication $S \times M \to M$. The semimodule M is called

- minimal if $|M| \ge 2$ and N = M whenever N is a non-trivial subsemimodule of M;
- *simple* if it has just two congruence relations;
- faithful if for all $a, b \in S$, $a \neq b$, there is at least one $x \in M$ with $ax \neq bx$.

1.4 Endomorphism semirings. Let M (= M(+)) be a commutative semigroup. The set $\underline{E} = \underline{E}(M) = \text{End}(M)$ of endomorphisms of M is a semiring via (f+g)(x) = f(x) + g(x) and (fg)(x) = f(g(x)) for all $f, g \in \underline{E}$ and $x \in M$. The semiring \underline{E} is unitary and the multiplicatively neutral element is the identity automorphism id_M of M.

2. 0-preserving endomorphisms

Let M be a non-trivial semilattice such that $0_M \in M$. The set $\underline{E}_0 = \{f \in \underline{E} \mid f(0_M) = 0_M\}$ is a unitary subsemiring of \underline{E} and the constant endomorphism $\xi, \xi(M) = \{0_M\}$, is the zero element of the semiring \underline{E}_0 . For all $u, v \in M$, we have $q_{u,v} \in E_0$, where $q_{u,v}(x) = 0_M$ for $x \leq u$ and $q_{u,v}(y) = v$ for $y \not\leq u$. Thus $q_{u,v}(M) = \{0_M, v\}$ for $u \neq o_M, q_{o_M,v} = \xi$ (if $o_M \in M$) and $q_{u,0_M} = \xi$.

Now, let *E* be a subsemiring of \underline{E}_0 such that $q_{u,v} \in E$ for all $u, v \in M$. For every $u \in N = M \setminus \{o_M\}$, put $T_u = \{q_{u,v} | v \in M\}$. The following observations are quite easy.

Lemma 2.1. (i) $q_{u,v_1} + q_{u,v_2} = q_{u,v_1+v_2}$. (ii) $fq_{u,v} = q_{u,f(v)}$ for every $f \in \underline{E}_0$. (iii) $q_{u,v_1}q_Pu, v_2 = \xi$ for $v_2 \le u$.

 $\begin{array}{l} q_{u,v_1}q_{u,v_2} = q_{u,v_1} \ \text{for} \ v_2 \nleq u. \\ (v) \ q_{u,v}q_{u,v} = \xi \ \text{for} \ v \le u. \end{array}$

(vi) $q_{u,v}q_{u,v} = q_{u,v}$ for $v \leq u$.

Proposition 2.2. The set T_u is a minimal left ideal of the semiring E for every $u \in N$. The mapping $v \mapsto q_{u,v}$ is an isomorphism of the semimodule $_EM$ onto the semimodule $_ET_u$.

Proof. It follows immediately from 2.1 that T_u is a left ideal of E and that the map $v \mapsto q_{u,v}$ is an isomorphism of the semimodules. Furthermore, if $v \neq 0_M$ then $q_{0_M,v_1}q_{u,v} = q_{u,v_1}$ for every $v_1 \in M$. Now, it is clear that T_u is a minimal left ideal of E.

Proposition 2.3. (i) $T_u q_{u,v} = \{\xi\}$ for $v \leq u$. (ii) $T_u q_{u,v} = T_u$ for $v \leq u$.

Proof. Use 2.1(iii),(iv).

Proposition 2.4. (i) The set $\{q_{u,v} | v \leq u\}$ is an ideal of the semiring T_u and it is the greatest proper ideal of that semiring.

(ii) The $\{q_{u,v} | v \leq u\} \cup \{\xi\}$ is just the set of the multiplicative idempotents of T_u $(\xi = q_{u,0_M})$.

(iii) The semiring T_u is multiplicatively idempotent iff $u = 0_M$.

(iv) The semiring T_u is (left-) ideal-simple iff $u = 0_M$.

Proof. It is easy.

Proposition 2.5. The semimodule $_{E}T_{u}$ is simple.

Proof. Let $\alpha \neq id$ be a congruence of T_u . Then $(q_{u,v_1}, q_{u,v_2}) \in \alpha$ for some $v_1 < v_2$, and hence $(\xi, q_{u,v_2}) = (q_{v_1,v_2}q_{u,v_1}, q_{v_1,v_2}q_{u,v_2}) \in \alpha$. Consequently, $(\xi, q_{u,v_2}) = (q_{0_M,v_3}\xi, q_{0_M,v_3}q_{u,v_2}) \in \alpha$ for every $v_3 \in M$. Thus $\alpha = T_u \times T_u$.

Proposition 2.6. The semimodule T_u is faithful.

Proof. Use 2.1(ii).

Lemma 2.7. If I is a non-trivial ideal of E then $\bigcup_{u \in N} T_u \subseteq I$.

Proof. We have $IT_u \subseteq I \cap T_u$ and the latter set is a left ideal of E. If $T_u \notin I$ then $IT_u = I \cap T_u = \{\xi\}$ and it means that $q_{u,f(v)} = fq_{u,v} = \xi$ for every $f \in I$ and $v \in M$. Since $u \neq o_M$, we get $f(v) = 0_M$ and $f = \xi$. Thus $I = \{\xi\}$, a contradiction.

Corollary 2.8. The set $\{q_{u_1,v_1}f_1 + \cdots + q_{u_n,v_n}f_n \mid n \ge 1, u_i \in N, v_i \in M, f_i \in E\}$ is just the smallest non-trivial ideal of the semiring E.

2.9 Let K be a minimal left ideal of the semiring E such that $K \neq T_u$ for every $u \in N$.

Lemma 2.9.1. $K \cap T_u = \{\xi\}$ for every $u \in N$.

Proof. It is obvious.

Lemma 2.9.2. Ef = K for every $f \in K \setminus \{\xi\}$.

Proof. The set $K_1 = \{f \in K | Ef = \{\xi\}\}$ is a left ideal of E. If $K_1 = K$ then $EK = \{\xi\}$ and $K = \{\xi, f_0\}$ is two-element. Now, $q_{0_M,v}f_0 = \xi$, and hence $f_0 = \xi$, a contradiction. It follows that $K_1 = \{\xi\}$ and Ef = K, since Ef is a left ideal of E.

Lemma 2.9.3. There are subsemilattices A and B of M such that:

(i) $A \cup B = M$ and $A \cap B = \emptyset$.

(ii) $A = \{ x \in M | f(x) \neq 0_M \}$ and $B = \{ x \in M | f(x) = 0_M \}$ for every $f \in K \setminus \{\xi\}$.

(iii) A + M = A (i.e., A is a prime ideal of the semilattice M).

(iv) $o_B \notin B$ (i.e., the prime ideal A is not principal).

Proof. If $f, g \in K \setminus \{\xi\}$ then g = hf for some $h \in E$ by 2.9.2 and we see that $g(x) \neq 0_M$ implies $f(x) \neq 0_M$. Clearly, A + M = A and B + B = B. We have $0_M \in B$ and $A \neq \emptyset$, since $f \neq \xi$. If $u = o_B \in B$ then $u \neq o_M$ and $q_{0_M,v}f = q_{u,v} \in K$ for every $v \in M$, a contradiction.

Lemma 2.9.4. If $f \in K \setminus \{\xi\}$ and $v \in M$ then $q_{0_M,v}f = q_{A,v} \in K$, where $q_{A,v}(B) = \{0_M\}$ and $q_{A,v}(A) = \{v\}$.

Proof. It is obvious.

Proposition 2.9.5. (i) $K = \{ q_{A,v} | v \in M \}.$

(ii) The mapping $v \mapsto q_{A,v}$ is an isomorphism of the semimodule $_EM$ onto the semimodule $_EK$.

(iii) $Kq_{A,v} = \{\xi\}$ for every $v \in B$.

(iv) $Kq_{A,v} = K$ for every $v \in A$.

(v) The set $\{q_{A,v} | v \in B\}$ is an ideal of the semiring K and it is the greatest proper left ideal of that semiring.

(vi) The set $\{q_{A,v} | v \in A\} \cup \{\xi\}$ is just the set of the multiplicative idempotents of K ($\xi = q_{A,0_M}$).

(vii) The semiring K is neither multiplicatively idempotent nor ideal-simple.

Proof. According to 2.9.4, $T_A = \{q_{A,v} | v \in M\} \subseteq K$. The rest is clear (see 2.2, 2.4 and 2.4).

Theorem 2.10. (i) The set $T_u = \{q_{u,v} | v \in M\}$ is a minimal left ideal of the semiring E for every $u \in N$.

(ii) If K is a minimal left ideal of E such that $K \neq T_u$ for every $u \in N$ then there is a non-principal prime ideal A of the semilattice M such that $K = T_A = \{q_{A,v} | v \in M\}$.

(iii) If A is a non-principal prime ideal of M such that $Q_{A,v} \in E$ for at least one $v \in M \setminus \{0_M\}$ then $T_A \subseteq E$ and T_A is a minimal left ideal of E such that $T_A \neq T_u$ for every $u \in N$. (iv) If K is a minimal left ideal of E then $_EK$ is a faithful, simple and minimal (left E-) semimodule and the semimodules $_EK$ and $_EM$ are isomorphic.

(v) If K is a minimal left ideal of E then the semiring K is multiplicatively idempotent if and only if $K = T_{0_M}$.

Proof. Combine the foregoing results.

Corollary 2.11. Denote by **A** the set of prime ideals A of M such that $T_A \subseteq E$ (see 2.10(ii),(iii)). Then:

(i) $\{T_A | a \in \mathbf{A}\}$ is just the set of (pairwise distinct) minimal left ideals of the semiring E.

(ii) $A_u = \{ x \in M \mid x \leq u \} \in \mathbf{A} \text{ for every } u \in N.$

(iii) The set $\sum T_A$, $A \in \mathbf{A}$, is just the smallest non-trivial ideal of the semiring E.

3. 1-preserving endomorphisms (a)

Let M be a non-trivial semilattice such that $o_M \in M$. The set $\underline{E}_1 = \underline{E}_1(M) = \{f \in \underline{E} \mid f(o_M) = o_M\}$ is a unitary subsemiring of \underline{E} and the constant endomorphism $\zeta = \zeta_M, \zeta(M) = \{o_M\}$, is the bi-absorbing element of the semiring \underline{E}_1 . For all $u, v \in M, u \neq o_M$, we have $p_{u,v} \in \underline{E}_1$, where $p_{u,v}(x) = v$ for $x \leq u$ and $p_{u,v}(y) = o_M$ for $y \not\leq u$. Thus $p_{u,v}(M) = \{v, o_M\}$ and $p_{u,o_M} = \zeta$.

Now, let F be a subsemiring of \underline{E}_1 such that $p_{u,v} \in F$ for all $u, v \in M$, $u \neq o_M$. For every $u \in N = M \setminus \{o_M\}$, put $V_u = \{p_{u,v} \mid v \in M\}$.

The following observations are quite easy.

- Lemma 3.1. (i) $p_{u,v_1} + p_{u,v_2} = p_{u,v_1+v_2}$.
 - (ii) $fp_{u,v} = p_{u,f(v)}$ for every $f \in \underline{E}_1$.
 - (iii) $p_{u,v_1}p_{u,v_2} = \zeta$ for $v_2 \nleq u$.
 - (iv) $p_{u,v_1}p_{u,v_2} = p_{u,v_1}$ for $v_2 \le u$.
 - (v) $p_{u,v}p_{u,v} = \zeta$ for $v \nleq u$.
 - (vi) $p_{u,v}p_{uv} = p_{u,v}$ for $v \le u$.

Proposition 3.2. The set V_u is a minimal left ideal of the semiring F for every $u \in N$. The mapping $v \mapsto p_{u,v}$ is an isomorphism of the semimodule $_FM$ onto the semimodule $_FV_u$.

Proof. It follows immediately from 3.1 that V_u is a left ideal of F and the map $v \mapsto p_{u,v}$ is an isomorphism of the semimodules. Furthermore, if $v \neq o_M$ then $p_{v,v_1}p_{u,v} = p_{u,v_1}$ for every $v_1 \in M$. Now, it is clear that V_u is a minimal left ideal of F.

Proposition 3.3.(i) $V_u p_{u,v} = \{\zeta\}$ for $v \nleq u$. (ii) $V_u p_{u,v} = V_u$ for $v \le u$.

Proof. Use 3.1 (iii), (iv).

Proposition 3.4. (i) The set $\{p_{u,v} | v \leq u\}$ is a bi-ideal of the semiring V_u and it is the greatest proper left ideal of that semiring.

(ii) The set $\{ p_{u,v} | v \leq u \} \cup \{\zeta\}$ is just the set of multiplive idempotents of V_u ($\zeta = p_{u,o_M}$).

(iii) The semiring V_u is multiplicatively idempotent iff $u = o_N \in N$.

(iv) The semiring V_u is (left-) ideal-simple iff $u = o_N \in N$.

Proof. It is easy.

Proposition 3.5. The semimodule $_FV_u$ is simple.

Proof. Let $\alpha \neq id$ be a congruence of $_FV_u$. Then $(p_{u,v_1}, p_{u,v_2}) \in \alpha$ for some $v_1 < v_2$, and hence $(p_{u,v_2}, \zeta) = (p_{v_1,v_2}p_{u,v_1}, p_{v_1,v_2}p_{u,v_2}) \in \alpha$. Consequently, $(p_{u,v_1}, \zeta) \in \alpha$ and, finally, $(p_{u,v_3}, \zeta) = (p_{v_1,v_3}p_{u,v_1}, p_{v_1,v_3}\zeta) \in \alpha$ for every $v_3 \in M$. Thus $\alpha = V_u \times V_u$.

Proposition 3.6. The semimodule $_FV_u$ is faithful.

Proof. Use 3.1(ii).

Lemma 3.7. If I is a non-trivial ideal of F then $\bigcup_{u \in N} V_u \subseteq I$.

Proof. We can proceed similarly as in the proof of 2.7.

Corollary 3.8. The set $\{ p_{u_1,v_1}f_1 + \ldots p_{u_n,v_n}f_n \mid n \ge 1, u_i \in N, v_i \in M, f_i \in F \}$ is just the smallest non-trivial ideal of the semiring F.

3.9 Let K be a minimal left ideal of the semiring F such that $K \neq V_u$ for every $u \in N$.

Lemma 3.9.1. $K \cap V_u = \{\zeta\}$ for every $u \in N$.

Proof. It is obvious.

Lemma 3.9.2. Ff = K for every $f \in K \setminus \{\zeta\}$.

Proof. If $f \in F \setminus \{\zeta\}$ then $f(v) \neq o_M$ for at least one $v \in N$ and $p_{f(v),v} \neq \zeta$. Now, we can proceed similarly as in the proof of 2.9.2.

Lemma 3.9.3. There is a proper ideal A of the semilattice M such that $A = \{x \in M \mid f(x) = o_M\}$ for every $f \in K \setminus \{\zeta\}$ and we put $B = M \setminus A$.

Proof. Use 3.9.2.

Lemma 3.9.4. Let $f \in K \setminus \zeta$, $v \in M$, and let $o_m \neq w \in f(M)$. Then $p_{w,v}f = p_{A,v} \in K$, where $p_{A,v}(B) = \{v\}$ and $p_{A,v}(A) = \{o_M\}$.

Proof. We have $g = p_{w,v}f \in K$ and, by 3.9.3, $A = \{x \in M | g(x) = o_M\} = \{x \in M | f(x) \leq w\}$. Thus $B = \{y \in M | g(y) \neq o_M\} = \{y \in M | f(y) \leq w\}$ and $g(B) = \{v\}$.

$$\Box$$

Proposition 3.9.5. (i) A is a prime ideal of M, $o_B \notin B$ and $K = \{ p_{A,v} | v \in M \} = V_A$.

(ii) The mapping $v \mapsto p_{A,v}$ is an isomorphism of the semimodule $_FM$ onto the semimodule $_FK$.

(iii) $Kp_{A,v} = \{\zeta\}$ for $v \in A$.

(iv) $Kp_{A,v} = K$ for $v \in B$.

(v) The set $\{p_{A,v} | v \in A\}$ is a bi-ideal of the semiring K and it is the greatest proper left ideal of that semiring.

(vi) The set $\{p_{A,v} | v \in B\} \cup \{\zeta\}$ is just the set of multiplicative idempotents of K ($\zeta = p_{A,o_M}$).

(vii) The semiring K is neither multiplicatively idempotent nor bi-idealsimple.

Proof. According to 3.9.4, $V_A = \{ p_{A,v} | v \in M \} \subseteq K$. The rest is clear (see 3.2, 3.3 and 3.4)

Theorem 3.10. (i) The set $V_u = \{ p_{u,v} | v \in M \}$ is a minimal left ideal of the semiring F for every $u \in N$.

(ii) If K is a minimal left ideal of F such that $K \neq V_u$ for every $u \in N$ then there is a non-principal prime ideal A of the semilattice M such that $K = V_A = \{p_{A,v} | v \in M\}$.

(iii) If A is a non-principal prime ideal of M such that $p_{A,v} \in F$ for at least one $v \in M \setminus \{o_M\}$ then $V_A \subseteq F$ and V_A is a minimal left ideal of F such that $V_A \neq V_u$ for every $u \in N$.

(iv) If K is a minimal left ideal of F then $_FK$ is a faithful, simple and minimal F-semimodule and the semimodules $_FK$ and $_FM$ are isomorphic.

(v) If K is a minimal left ideal of F then the semiring K is multiplicatively idempotent if and only if $o_N \in N$ and $K = V_{o_N}$.

Proof. See the foregoing results.

Corollary 3.11. Denote by **B** the set of prime ideals A of M such that $V_A \subseteq F$ (see 3.10(ii),(iii)). Then:

(i) $\{V_A | A \in \mathbf{B}\}$ is just the set of (pair-wise distinct) minimal left ideals of the semiring F.

(ii) $A_u = \{ x \in M \mid x \nleq u \} \in \mathbf{B} \text{ for every } u \in N.$

(iii) The set $\bigcup V_A$, $A \in \mathbf{B}$, is just the smallest non-trivial ideal of the semiring F.

4. 1-preserving endomorphisms (b)

Let M be an *antichain*, i.e., a semilattice containing at least three elements such that $o_M \in M$ and $x + y = o_M$ for all $x, y \in M$, $x \neq y$, and put $N = M \setminus \{o_M\}$. Now, a transformation f of M belongs to \underline{E}_1 iff $f(o_M) = o_M$ and $f(x) \neq f(y)$ for all $x, y \in M$ such that $x \neq y$ and $f(x) \neq o_M$. **Proposition 4.1.** Let *E* be a subsemiring of of \underline{E}_1 such that $\zeta \in E$. The following conditions are equivalent:

- (i) The semimodule $_EM$ is minimal.
- (ii) $N \subseteq E(x) = \{ f(x) | f \in E \}$ for every $x \in N$.
- (iii) E(x) = M for every $x \in N$.
- (iv) The semimodule $_EM$ is simple.

Proof. Clearly, the first three conditions are equivalent. Now, let α be a congruence of $_EM$ and $P = \{x \in M \mid (x, o_M) \in \alpha\}$. Then P is a subsemimodule of M and if M is minimal then $P = \{o_M\}$. On the other hand, if $(x, y) \in \alpha, x \neq y$, then $(x, o_M) = (x + x, x + y) \in \alpha$ and $x \in P$. Thus (i) implies (iv). Conversely, for every $x \in M$, the relation $\alpha_x = (E(x) \times E(x)) \cup \operatorname{id}_M$ is a congruence of $_EM$. If $\alpha = M \times M$ then E(x) = M. If $\alpha_x = \operatorname{id}_M$ then $E(x) = \{o_M\}$ and $x \in Q = \{y \in M \mid F(y) = \{o_M\}\}$. Of course, Q is a subsemimodule of $_EM$ and $\beta = (Q \times Q) \cup \operatorname{id}_M$ is a congruence of $_EM$. If $\beta = \operatorname{id}_M$ then $x = o_M$. If $\beta = M \times M$ then Q = M, $E(M) = \{o_M\}$ and $_EM$ is not simple. Thus (iv) implies (iii).

Lemma 4.2. Let $f, g \in \underline{E}_1$. Then $f + g = \zeta$ iff $f(x) = o_M$ whenever $x \in M$ is such that f(x) = g(x).

Proof. It is obvious.

In the remaining part of this section, let E be a non-trivial subsemiring of \underline{E}_1 satisfying the equivalent conditions of 4.1 and let K be a left ideal of E.

Lemma 4.3. Let $w \in M$. The mapping $\tau_w : f \mapsto f(w)$ is a homomorphism of the semimodule $_EK$ into the semimodule $_EM$. If $K(w) \neq \{o_M\}$ then $\tau(K) = M$.

Proof. It is easy.

Proposition 4.4. If the semimodule $_EK$ is simple then K is a minimal left ideal of E and the semimodules $_EK$ and $_EM$ are isomorphic.

Proof. Since $_EK$ is simple, the left ideal K is non-trivial and, taking $f \in K \setminus \{o_M\}$, we find $w \in M$ with $f(w) \neq o_M$. Then K(w) = M and τ_w is an isomorphism of the semimodules (use 4.3).

Lemma 4.5. For every $w \in M$, the set $L_w = \{ f \in E \mid f(w) = o_M \}$ is a left ideal of the semiring E.

Proof. It is obvious.

Lemma 4.6. Let $w \in M$ be such that $K \cap L_w = \{\zeta\}$ (e.g., if K is minimal and $K \not\subseteq L_w$). If $f, g \in K$ are such that $f(w) \neq g(w)$ then $f + g = \zeta$.

Proof. We have $f + g \in K \cap L_w$.

Lemma 4.7. If K is minimal then $f + g = \zeta$ for all $f, g \in K, f \neq g$.

Proof. Since $f \neq g$, there is $w \in M$ with $f(w) \neq g(w)$. Clearly, $K \nsubseteq L_w$ and 4.6 applies.

Theorem 4.8. If K is a minimal left ideal of the semiring E then the semimodules $_{E}K$ and $_{E}M$ are isomorphic.

Proof. Since K is non-trivial, there is $w \in M$ with $K(w) \neq \{o_M\}$. Then $K \cap L_w = \{\zeta\}$ and, in view of 4.3, we have to show that ker $\tau_w = \operatorname{id}_K$. If $f, g \in K$ are such that f(w) = g(w) then f(w) = (f+g)(w) = g(w) and either $f(w) = o_M = g(w)$ and $f = \zeta = g$, or $(f+g)(w) \neq o_M$, $f+g \neq \zeta$ and f = g by 4.7.

Remark 4.9. Assume that K is a minimal left ideal and let $w \in M$ be such that K(w) = M (equivalently, $K \notin L_w$). If $f \in K$ then $Kf = \{\zeta\}$ iff $K \subseteq L_{f(w)}$. On the other hand, if $Kf \neq \{\zeta\}$ then Kf = K, K(f(w)) = M and $K \cap L_{f(w)} = \{\zeta\}$.

Lemma 4.10. If $f \in \underline{E}_1$ is such that $f^2 = f$ then $f(x) \in \{x, o_M\}$ for every $x \in M$.

Proof. It is obvious.

Lemma 4.11. Let K be a minimal left ideal, $A = \{ w \in N | K \subseteq L_w \}$ and let $f \in K$ be such that $f^2 = f \neq \zeta$. Then:

- (i) f(x) = x for every $x \in M \setminus A$.
- (ii) f is right multiplicatively neutral in K.

(iii) If $A = \emptyset$ then $f = id_M$ and K = E.

(iv) If $A \neq \emptyset$ then $K = \bigcap L_w, w \in A$.

Proof. (i) This follows from 4.10.

(ii) If $g \in K$ then gf(x) = g(x) for every $x \in M \setminus A$ and $gf(y) = o_M = g(y)$ for every $y \in A$. Thus gf = g. (iii) By (i), $f = id_M$.

(iv) If $g \in \bigcap L_w$ then gf = g.

Corollary 4.12. Let K be a minimal left ideal of E. Then:

(i) K contains at most two multiplicatively idempotent elements.

(ii) K is not multiplicatively idempotent.

5. 1-preserving endomorphisms (c)

Let K and L be semilattices containing at least three elements and such that $o_K \in K$ and $o_L \in L$. The set $Q = (\{o_K\} \times L) \cup (K \times \{o_L\})$ is an ideal of the cartesian product $K \times L$ and we put $M = (K \times L)/Q = \{o_M\} \cup (K' \times L'), K' = K \setminus \{o_K\}, L' = L \setminus \{o_L\}$. Clearly, $|M| \ge 5$.

If $f \in \underline{E}_1(K)$ and $g \in \underline{E}_1(L)$ then $(f \times g)(Q) \subseteq Q$ and we put $f * g = (f \times g)/Q \in \underline{E}_1(M)$. Thus $(f_1 * g_1) + (f_2 * g_2) = (f_1 + f_2) * (g_1 + g_2), (f_1 * g_1)(f_2 * g_2) = f_1 f_2 * g_1 g_2$, and hence $\underline{E}_1(K) * \underline{E}_1(L)$ is a subsemiring of $\underline{E}_1(M)$. In fact, if E is a subsemiring of $\underline{E}_1(K)$ and F is a subsemiring of $\underline{E}_1(L)$ then E * F is a subsemiring of $\underline{E}_1(M)$.

In the remaining part of this section, assume that L is an antichain and take a non-trivial subgroup G of $\operatorname{Aut}(L)$ such that $f(x) \neq g(x)$ for all $x \in L'$, $f, g \in G, f \neq g$. Let S be a subsemiring of $\underline{E}_1(K) * (G \cup \{\zeta_L\})$ such that $p_{u,v} * g \in S$ for all $u \in K', v \in K$ and $g \in G$ (see the preceding two sections). One checks easily that $o_S = \zeta_M = p_{u,o_K} * g \in S$ is the bi-absorbing element of S and $AA \subseteq A$, where $A = \{f \in \underline{E}_1(K) \mid f * g \in S, g \in G\}$,. Furthermore, $S \subseteq \underline{E}_1(K) * G$ and $B = \{f \in \underline{E}_1(K) \mid f * \operatorname{id}_M \in S\}$ is a subsemiring of $\underline{E}_1(K)$ such that $p_{u,v} \in B$ for all $u \in K'$ and $v \in K$.

Lemma 5.1. Let $u \in K'$, $v_1, v_2 \in K$ and $g_1, g_2 \in G$. Then:

- (i) If $g_1 = g_2$ then $(p_{u,v_1} * g_1) + (p_{u,v_2} * g_2) = p_{u,v_1+v_2} * g_1$.
- (ii) If $g_1 \neq g_2$ then $(p_{u,v_1} * g_1) + (p_{u,v_2} * g_2) = \zeta_M$.

Proof. We have $(p_{u,v_1} * g_1) + (p_{u,v_2} * g_2) = (p_{u,v_1+v_2} * (g_1 + g_2)).$

Lemma 5.2. Let $u \in K'$, $v \in K$, $g \in G$ and let $f \in \underline{E}_1(K)$ and $h \in G$ be such that $f * h \in S$. Then $(f * h)(p_{u,v} * g) = p_{u,f(v)} * (hg)$.

Proof. It is obvious.

Proposition 5.3. For every $u \in K'$, the set $W_u = \{ p_{u,v} * g | v \in K, g \in G \}$ is a minimal left ideal of the semiring S.

Proof. According to 5.1 and 5.2, the set W_u is a left ideal of S. If $v \in K'$, $w \in K$ and $g, h \in S$ then $p_{v.w} * hg^{-1}(p_{u,v} * g) = p_{u,w} * h$. Thus $S(p_{u,v} * g) = W_u$. \Box

Lemma 5.4. Let $f_1, f_2 \in \underline{E}_1(K)$ and $g_1, g_2 \in G$ be such that $f_1 * g_1 = f_2 * g_2$. Then $f_1 = f_2$ and if $f_1 \neq \zeta_K$ then $g_1 = g_2$.

Proof. Let $x_0 \in K$ be such that $f_1(x_0) \neq f_2(x_0)$. Then $x_0 \in K'$, $(f_1(x_0), g_1(y)) \in Q$ and $(f_2(x_0), g_2(y)) \in Q$ for every $y \in L'$. If $f_1(x_0) \neq o_K$ then $g_1(y) = o_L$, a contradiction. Thus $f_1(x_0) = o_K$ and, similarly, $f_2(x_0) = o_K$. It follows that $f_1 = f_2$. The rest is clear.

Lemma 5.5. Let $u \in K'$, $v_1, v_2 \in K$ and $g_1, g_2 \in G$. Then $p_{u,v_1} * g_1 = p_{u,v_2} * g_2$ iff $v_1 = v_2$ and either $g_1 = g_2$ or $v_1 = o_K$.

Proof. This follows from 5.4.

Proposition 5.6. Let $u \in K'$ and $z \in L'$. Define a mapping $\nu_{u,z} : W_u \to M$ by $\nu_{u,z}(p_{u,v} * g) = (v, g(z)) \text{ for } v \in K' \text{ and } \nu_{u,z}(o_S) = o_M \text{ (see 5.5). Then } \nu_{u,z} \text{ is an}$ injective homomorphism of the semimodule ${}_{S}W_{u}$ into the semimodule ${}_{S}M$. The homomorphism $\nu_{u,z}$ is an isomorphism of the semimodules iff G(z) = L' (i.e., the group G operates transitively on L').

Proof. Use 5.1,...,5.5.

Proposition 5.7. Let $u \in K'$. The semimodule ${}_{S}W_{u}$ is simple, minimal and faithful.

Proof. The semimodule is minimal due to 5.3. By 5.2, $(f * h)(p_{u,v} * id_L) =$ $p_{u,f(v)} * h$ and, using 5.5, we conclude easily the our semimodule is faithful as well.

It remains to show that ${}_{S}W_{u}$ is simple. For, let $\alpha \neq id$ be a congruence of the semimodule. Then $(p_{u,v_1} * g_1, p_{u,v_2} * g_2) \in \alpha$, where $p_{u,v_1} * g_1 \neq p_{u,v_2} * g_2$ and we can assume that $v_1 \in K'$. If $g_1 \neq g_2$ then $(p_{u,v_1} * g_1, \zeta) \in \alpha$ follows from 5.1(ii). But $S(p_{u,v_1} * g_1) = W_u$ by 5.3, and hence $\alpha = W_u \times W_u$. Assume, therefore, that $g_1 = g_2 = g$ and $v_2 \not\leq v_1$. Then $(p_{U,v_1} * g, p_{u,v_3} * g) \in \alpha$, where $v_1 < v_3 = v_1 + v_2$. From this, $(p_{u,v_4} * g, \zeta) = ((p_{v_1,v_4} * g)(p_{u,v_1} * g), (p_{v_1,vb_4} * g)(p_{u,v_3} * g)) \in \alpha$ for every $v_4 \in K$. Thus $\alpha = W_u \times W_u$.

Remark 5.8. S is a subsemiring of $\underline{E}_1(M)$, and so the (left S-) semimodule $_{S}M$ is faithful. In view of 5.6, the semimodule $_{S}M$ is minimal iff G operates transitively on L', and then the semimodules ${}_{S}M$ and ${}_{S}W_{u}$ are isomorphic, so that ${}_{S}M$ is simple by 5.7. If $y \in L'$ then $R = (K' \times G(y)) \cup \{o_M\}$ is an ideal of the semimodule ${}_{S}M$ and $(R \times R) \cup \mathrm{id}_{M}$ is a congruence of ${}_{S}M$. If $\tau = M \times M$ (e.g., if $_{S}M$ is simple) then R = M and G operates transitively on L'.

Proposition 5.9. (i) $W_u(p_{u,v} * g) = \{\zeta\}$ for $v \leq u$. (ii) $W_u(p_{u,v} * g) = W_u$ for $v \le u$.

Proof. It is easy.

Proposition 5.10. (i) The set $\{p_{u,v} * g | v \leq u\}$ is a bi-ideal of the semiring W_u and it is the greatest proper left ideal of that semiring.

(ii) The set $\{ p_{u,v} * id_L | v \leq u \} \cup \{\zeta\}$ is just the set of multiplicative idempotents of W_u .

(iii) The semiring W_u is not multiplicatively idempotent.

(iv) The semiring W_u is not bi-ideal-simple.

Proof. Easy.

5.11 Let R be a minimal left ideal of the semiring S such that $R \neq W_u$ for every $u \in N$.

Lemma 5.11.1. $R \cap W_u = \{\zeta\}.$

Proof. It is obvious.

Lemma 5.11.2. S(f * g) = R for every $f * g \in R \setminus \{\zeta\}$.

Proof. We have $f \in \underline{E}_1(K) \setminus \{\zeta_K\}$, and hence $f(v) \neq o_K$ for at least one $v \in N$ and $(p_{f(v),v} * \mathrm{id}_M)(f * g) = (p_{f(v),v}f * g) \neq \zeta$. Now, we can proceed similarly as in the proof of 2.9.2.

Lemma 5.11.3. There is a proper ideal A of the semilattice K such that $A = \{x \in K \mid f(x) \neq o_K\}$ for every $f * g \in R \setminus \{\zeta\}$.

Proof. Use 5.11.2.

Lemma 5.11.4. Let $f * g \in R \setminus \{\zeta\}$, $v \in M$ and let $o_K \neq w \in f(K)$. Then $p_{w,v}f * g = p_{A,v} * g \in K$, where $B = K \setminus A$, $p_{A,v}(B) = \{v\}$ and $p_{A,v}(A) = \{o_K\}$.

Proof. We have $p_{w,v}f * g = (p_{w,v} * \mathrm{id}_L)(f * g) \in R$ and, by 5.11.3, $A = \{x \in K | p_{w,v}f(x) = o_K\} = \{x \in K | f(x) \nleq w\}$. Thus $B = \{y \in K | f(x) \neq o_K\} = \{y \in K | f(y) \le w\}$ and $p_{w,v}f(B) = \{v\}$.

Proposition 5.11.5. (i) A is a prime ideal of the semilattice K, $o_B \notin B$ and $W_A = \{ p_{A,v} * g \mid v \in K, g \in G \} = R.$

(ii) The mapping $\nu_{A,z} : R \to M$, where $z \in L'$ and $\nu_{A,z}(p_{A,v}*g) = (v, g(z))/Q$ is an injective homomorphism of the semimodule $_{S}R$ into the semimodule $_{S}M$. This homomorphism is an isomorphism of the semimodules iff G operates transitively on L'.

(iii) $R(p_{A,v} * g) = \{\zeta\}$ for $v \in A$.

(iv) $R(p_{A,v} * g) = R$ for $v \in B$.

(v) The set $\{p_{A,v} * g | v \in A, g \in G\}$ is a bi-ideal of the semiring R and it is the greatest proper left ideal of that semiring.

(vi) The set $\{ p_{A,v} * id_L | v \in B \} \cup \{\zeta\}$ is just the set of multiplicative idempotents of R.

(vii) The semiring R is neither multiplicatively idempotent nor bi-idealsimple.

Proof. (i) First, take $f * g \in R \setminus \{\zeta\}$. By 5.11, we get $p_{A,v} * g \in R$ for every $v \in K$. If $v \in K'$ and $h \in G$ then $p_{A,v} * h = (p_{A,v} * hg^{-1})(p_{A,v} * g) \in R$. Thus $W_A \subseteq R$. On the other hand, W_A is a non-trivial left ideal of S and, R being minimal, we find that $R = W_A$.

(ii) We can proceed similarly as in the proof of 5.6.

The remaining assertions are easy to check.

Theorem 5.12. (i) The set $W_u = \{ p_{u,v} * g | v \in K, g \in G \}$ is a minimal left ideal of the semiring S for every $u \in K'$.

(ii) if R is a minimal left ideal of S such that $R \neq W_u$ for every $u \in K'$ then there is a non-principal prime ideal A of the semilattice K such that $R = W_A = \{p_{A \leq v} * g \mid v \in K, g \in G\}$, where $p_{A,v}(A) = \{o_K\}$ and $p_{A,v}(K \setminus A) = \{v\}$.

(iii) If A is a non-principal prime ideal of K such that $p_{A,v} * g \in S$ for at least one $v \in K'$ and at least one $g \in G$ then $W_A \subseteq S$ and W_A is aminimal left ideal of S such that $W_A \neq W_u$ for every $u \in K'$.

(iv) If P is a minimal left ideal of S then ${}_{S}P$ is a faithful, simple and minimal (left S-) semimodule. Besides, if $z \in L'$ then ${}_{S}P$ is isomorphic to the subsemimodule ${}_{S}(K \times G(z))/Q$ of ${}_{S}M$.

(v) If P_1 and P_2 are minimal left ideals of S then the semimodules ${}_SP_1$ and ${}_SP_2$ are isomorphic.

(vi) If P is a minimal left ideal of S then the semiring P is neither multiplicatively idempotent nor bi-ideal-simple.

Proof. Combine the foregoing results.

Corollary 5.13. Denote by **C** the set of prime ideals A of K such that $W_A \subseteq S$. Then:

(i) The set $\{ W_A | A \in \mathbf{C} \}$ is just the set of (pair-wise distinct) minimal left ideals of the semiring S.

(ii) $A_u = \{ x \in K \mid x \nleq u \} \in \mathbf{C} \text{ for every } u \in K'.$

(iii) The set $\bigcup W_A$, $A \in \mathbf{C}$, is just the smallest non-trivial ideal of the semiring S.

Proposition 5.14. The following conditions are equivalent:

- (i) There is a minimal left ideal R of S such that R(+) is an antichain.
- (ii) For every minimal left ideal P of the semiring S, the semklattice P(+) is an antichain.
- (iii) The semilattice K is an antichain.
- (iv) The semilattice M is an antichain.

Proof. It is easy.

Lemma 5.15. The following conditions are equivalent for a minimal left ideal *P* of *S*:

- (i) The set $P \setminus \{\zeta\}$ is a subsemigroup of the multiplicative semigroup of P.
- (ii) K' + K' = K' and $P = W_A$, where $A = \{o_K\}$.

Proof. It is easy.

6. 0,1-preserving endomorphisms

Let M be a non-trivial semilattice such that $0_M, o_M \in M$. The set $\underline{E}_{0,1} = \{f \in \underline{E} \mid f(0_M) = 0_M, f(o_M) = o_M\}$ is a unitary subsemiring of \underline{E} . For every $u \in N \setminus \{o_M\}$, we have $r_u \in \underline{E}_{0,1}$, where $r_u(x) = 0_M$ for $x \leq u$ and $r_u(y) = o_M$ for $y \leq u$. Clearly, r_{0_M} is additively absorbing.

Now, let *E* be a subsemiring of $\underline{E}_{0,1}$ such that $r_u \in E$ for every $u \in N$. For every pair $(u, v) \in N \times N$, u < v, the set $X_{(u,v)} = \{r_u, r_v\}$ is a minimal left ideal of *E*.

6.1 Let K be a minimal left ideal of E such that $K \neq X_{(u,v)}$ for all $u, v \in N$, u < v.

Lemma 6.1.1. Let $u \in N$, $f \in K$ and $A = A_{f,u} = \{ x \in M \mid f(x) \nleq u \}$. Then: (i) A is a prime ideal of M.

(ii) $r_u f = r_A \in K$, where $r_A(A) = \{o_M\}$ and $r_A(B) = \{0_M\}$, $B = M \setminus A$. (iii) If $u = o_B \in B$ then $r_A = r_U$.

Proof. It is easy.

Lemma 6.1.2. Let A_1, A_2 be prime ideals of M such that $r_{A_1}, r_{A_2} \in K$. Then either $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$.

Proof. Let, on the contrary, $A_1 \not\subseteq A_2 \not\subseteq A_1$. The set $A_3 = A_1 \cup A_2$ is a prime ideal and $r_{A_3} = r_{A_1} + r_{A_2} \in K$. Now, the sets $K_1 = \{r_{A_1}, r_{A_3}\}$ and $K_2 = \{r_{A_2}, r_{A_3}\}$ are two-element left ideals contained in K. Consequently, $K_1 = K_2 = K$, $r_{A_1} = r_{A_2}$ and $A_1 = A_2$, a contradiction.

Corollary 6.1.3. Let A_1, A_2 be two different prime ideals such that $r_{A_1}, r_{A_2} \in K$. Then $K = \{r_{A_1}, r_{A_2}\}$ and either $A_1 \subset A_2$ or $A_2 \subset A_1$.

Now, assume that $r_A \in K$ for exactly one prime ideal A and put $B = M \setminus A$ (see 6.1.1).

Lemma 6.1.4. $f(A) = \{o_M\}$ for every $f \in K$.

Proof. We have $A = \{x \in M \mid f(x) \leq u\}$ for every $u \in N$ (use 6.1.1). Thus $f(A) = \{o_M\}$.

Lemma 6.1.5. $f(B) = \{0_M\}$ for every $f \in K$.

Proof. We have
$$B = M \setminus A = \{ y \in M \mid f(y) \le 0_M \}.$$

Corollary 6.1.6. $K = \{r_A\}.$

Theorem 6.2. (i) For all $u, v \in N$, u < v, the set $\{r_u, r_v\}$ is a minimal left ideal of E.

(ii) If K is a minimal left ideal of E then there are prime ideals A_1, A_2 of M such that $A_1 \subset A_2$ and $K = \{r_{A_1}, r_{A_2}\}$.

Proof. See 6.1.

Theorem 6.3. Denote by **D** the set of prime ideals of M such that $r_A \in E$ (see 6.1). Then:

(i) Minimal left ideals of the semiring E are just the two-element sets $\{r_{A_1}, r_{A_2}\}$, $A_1, A_2 \in \mathbf{D}, A_1 \subset A_2$.

(ii) $A_u = \{ x \in M \mid x \nleq u \} \in \mathbf{D} \text{ for every } u \in N.$

(iii) $P = M \setminus \{0_M\} \in \mathbf{D} \text{ and } r_P = r_{0_M}.$

(iv) For every $A \in \mathbf{D}$, $A \neq P$, the two-element set $\{r_A, r_{0_M}\}$ is a minimal left ideal of E.

(v) $\{r_A | A \in \mathbf{D}\}$ is an ideal and it is the smallest right ideal of E.

Proof. It is easy (use 6.2).

7. Non-preserving endomorphisms

Let M be a non-trivial semilattice and let E be a subsemiring of $\underline{E}(M)$ containing all constant endomorphisms μ_u , $\mu_u(M) = \{u\}$, $u \in M$. Now, the set $Q = \{\mu_u | u \in M\}$ is an ideal and, in fact, it is the smallest left ideal of the semiring E. The two-element sets $\{\mu_u, \mu_v\}$, where u < v, are minimal right ideals and there are no more. The semimodules $_EM$ and $_EQ$ are isomorphic via $u \mapsto \mu_u$.

References

- B. Batíková, T. Kepka and P. Němec, Minimal left ideals in semirings, (to appear in Ital. J. Pure Appl. Math.)
- [2] R. El Bashir and T. Kepka, Congruence-simple semirings, Semigroup Forum, 75 (2007), 588-608.

Accepted: 13.11.2019