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1. Preliminaries

1.1 Semirings. A semiring is an algebraic structure possesing two associative
binary operations (addition and multiplication), where the addition is commu-
tative and the multiplication distributes over the addition.

Let S be a semiring. A non-empty subset I of S is called

- a left (right) ideal if (I + I) ∪ SI ⊆ I ((I + I) ∪ IS ⊆ I);

- an ideal if (I + I) ∪ SI ∪ IS ⊆ I;

- a bi-ideal if (S + I) ∪ SI ∪ IS ⊆ I.

A (left, right, bi-) ideal I is called minimal if |I| ≥ 2 and K = I whenever K is
a (left, right, bi-) ideal such that K ⊆ I and |K| ≥ 2. The semiring S is called
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(left-, right-, bi-) ideal-simple if it is non-trivial and has no proper non-trivial
(left, right, bi-) ideal.

1.2 Semilattices. A semilattice M (= M(+)) is a commutative idempotent
semigroup. A non-empty subset A of M is an ideal if M +A = A. Such an ideal
is called prime if the set M \ A is a subsemilattice of M . We have the basic
order on M defined by a ≤ b iff a+ b = b.

An element w ∈ M is neutral (absorbing) if x+w = x (x+w = w) for every
x ∈ M . Such an element is unique (provided that it exists - this fact is denoted
by 0M ∈ M (oM ∈ M)) and is denoted by 0 = 0M (o = oM ) in the sequel. The
fact that no such element exists is denoted by 0M /∈ M (oM /∈ M).

1.3 Semimodules. Let S be a semiring. A (left S−) semimodule is a commuta-
tive semigroup M (= M(+)) together with a scalar multiplication S×M → M .
The semimodule M is called

- minimal if |M | ≥ 2 and N = M whenever N is a non-trivial subsemimod-
ule of M ;

- simple if it has just two congruence relations;

- faithful if for all a, b ∈ S, a ̸= b, there is at least one x ∈ M with ax ̸= bx.

1.4 Endomorphism semirings. Let M (= M(+)) be a commutative semi-
group. The set E = E(M) = End(M) of endomorphisms of M is a semiring via
(f +g)(x) = f(x)+g(x) and (fg)(x) = f(g(x)) for all f, g ∈ E and x ∈ M . The
semiring E is unitary and the multiplicatively neutral element is the identity
automorphism idM of M .

2. 0-preserving endomorphisms

Let M be a non-trivial semilattice such that 0M ∈ M . The set E0 = { f ∈
E | f(0M ) = 0M } is a unitary subsemiring of E and the constant endomorphism
ξ, ξ(M) = {0M}, is the zero element of the semiring E0. For all u, v ∈ M , we
have qu,v ∈ E0, where qu,v(x) = 0M for x ≤ u and qu,v(y) = v for y � u. Thus
qu,v(M) = {0M , v} for u ̸= oM , qoM ,v = ξ (if oM ∈ M) and qu,0M = ξ.

Now, let E be a subsemiring of E0 such that qu,v ∈ E for all u, v ∈ M . For
every u ∈ N = M \ {oM}, put Tu = { qu,v | v ∈ M }. The following observations
are quite easy.

Lemma 2.1. (i) qu,v1 + qu,v2 = qu,v1+v2.
(ii) fqu,v = qu,f(v) for every f ∈ E0.
(iii) qu,v1qPu, v2 = ξ for v2 ≤ u.
qu,v1qu,v2 = qu,v1 for v2 � u.
(v) qu,vqu,v = ξ for v ≤ u.
(vi) qu,vqu,v = qu,v for v � u.
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Proposition 2.2. The set Tu is a minimal left ideal of the semiring E for every
u ∈ N . The mapping v 7→ qu,v is an isomorphism of the semimodule EM onto
the semimodule ETu.

Proof. It follows immediately from 2.1 that Tu is a left ideal of E and that the
map v 7→ qu,v is an isomorphism of the semimodules. Furthermore, if v ̸= 0M
then q0M ,v1qu,v = qu,v1 for every v1 ∈ M . Now, it is clear that Tu is a minimal
left ideal of E.

Proposition 2.3. (i) Tuqu,v = {ξ} for v ≤ u.
(ii) Tuqu,v = Tu for v � u.

Proof. Use 2.1(iii),(iv).

Proposition 2.4. (i) The set { qu,v | v ≤ u } is an ideal of the semiring Tu and
it is the greatest proper ideal of that semiring.

(ii) The { qu,v | v � u } ∪ {ξ} is just the set of the multiplicative idempotents
of Tu (ξ = qu,0M ).

(iii) The semiring Tu is multiplicatively idempotent iff u = 0M .
(iv) The semiring Tu is (left-) ideal-simple iff u = 0M .

Proof. It is easy.

Proposition 2.5. The semimodule ETu is simple.

Proof. Let α ̸= id be a congruence of Tu. Then (qu,v1 , qu,v2) ∈ α for some v1 <
v2, and hence (ξ, qu,v2) = (qv1,v2qu,v1 , qv1,v2qu,v2) ∈ α. Consequently, (ξ, qu,v2) =
(q0M ,v3ξ, q0M ,v3qu,v2) ∈ α for every v3 ∈ M . Thus α = Tu × Tu.

Proposition 2.6. The semimodule Tu is faithful.

Proof. Use 2.1(ii).

Lemma 2.7. If I is a non-trivial ideal of E then
∪

u∈N Tu ⊆ I.

Proof. We have ITu ⊆ I ∩ Tu and the latter set is a left ideal of E. If Tu * I
then ITu = I ∩ Tu = {ξ} and it means that qu,f(v) = fqu,v = ξ for every f ∈ I
and v ∈ M . Since u ̸= oM , we get f(v) = 0M and f = ξ. Thus I = {ξ},
a contradiction.

Corollary 2.8. The set { qu1,v1f1+· · ·+qun,vnfn |n ≥ 1, ui ∈ N, vi ∈ M,fi ∈ E }
is just the smallest non-trivial ideal of the semiring E.

2.9 Let K be a minimal left ideal of the semiring E such that K ̸= Tu for every
u ∈ N .
Lemma 2.9.1. K ∩ Tu = {ξ} for every u ∈ N .

Proof. It is obvious.
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Lemma 2.9.2. Ef = K for every f ∈ K \ {ξ}.

Proof. The set K1 = { f ∈ K |Ef = {ξ} } is a left ideal of E. If K1 = K
then EK = {ξ} and K = {ξ, f0} is two-element. Now, q0M ,vf0 = ξ, and hence
f0 = ξ, a contradiction. It follows that K1 = {ξ} and Ef = K, since Ef is a
left ideal of E.

Lemma 2.9.3. There are subsemilattices A and B of M such that:

(i) A ∪B = M and A ∩B = ∅.
(ii) A = {x ∈ M | f(x) ̸= 0M } and B = {x ∈ M | f(x) = 0M } for every

f ∈ K \ {ξ}.
(iii) A+M = A (i.e., A is a prime ideal of the semilattice M).

(iv) oB /∈ B (i.e., the prime ideal A is not principal).

Proof. If f, g ∈ K \ {ξ} then g = hf for some h ∈ E by 2.9.2 and we see
that g(x) ̸= 0M implies f(x) ̸= 0M . Clearly, A + M = A and B + B = B.
We have 0M ∈ B and A ̸= ∅, since f ̸= ξ. If u = oB ∈ B then u ̸= oM and
q0M ,vf = qu,v ∈ K for every v ∈ M , a contradiction.

Lemma 2.9.4. If f ∈ K \ {ξ} and v ∈ M then q0M ,vf = qA,v ∈ K, where
qA,v(B) = {0M} and qA,v(A) = {v}.

Proof. It is obvious.

Proposition 2.9.5. (i) K = { qA,v | v ∈ M }.
(ii) The mapping v 7→ qA,v is an isomorphism of the semimodule EM onto

the semimodule EK.

(iii) KqA,v = {ξ} for every v ∈ B.

(iv) KqA,v = K for every v ∈ A.

(v) The set { qA,v | v ∈ B } is an ideal of the semiring K and it is the greatest
proper left ideal of that semiring.

(vi) The set { qA,v | v ∈ A } ∪ {ξ} is just the set of the multiplicative idempo-
tents of K (ξ = qA,0M ).

(vii) The semiring K is neither multiplicatively idempotent nor ideal-simple.

Proof. According to 2.9.4, TA = { qA,v | v ∈ M } ⊆ K. The rest is clear (see
2.2, 2.4 and 2.4).

Theorem 2.10. (i) The set Tu = { qu,v | v ∈ M } is a minimal left ideal of the
semiring E for every u ∈ N .

(ii) If K is a minimal left ideal of E such that K ̸= Tu for every u ∈ N then
there is a non-principal prime ideal A of the semilattice M such that K = TA =
{ qA,v | v ∈ M }.

(iii) If A is a non-principal prime ideal of M such that QA,v ∈ E for at least
one v ∈ M \ {0M} then TA ⊆ E and TA is a minimal left ideal of E such that
TA ̸= Tu for every u ∈ N .
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(iv) If K is a minimal left ideal of E then EK is a faithful, simple and
minimal (left E-) semimodule and the semimodules EK and EM are isomorphic.

(v) If K is a minimal left ideal of E then the semiring K is multiplicatively
idempotent if and only if K = T0M .

Proof. Combine the foregoing results.

Corollary 2.11. Denote by A the set of prime ideals A of M such that TA ⊆ E
(see 2.10(ii),(iii)). Then:

(i) {TA | a ∈ A } is just the set of (pairwise distinct) minimal left ideals of
the semiring E.

(ii) Au = {x ∈ M |x � u } ∈ A for every u ∈ N .

(iii) The set
∑

TA, A ∈ A, is just the smallest non-trivial ideal of the semir-
ing E.

3. 1-preserving endomorphisms (a)

Let M be a non-trivial semilattice such that oM ∈ M . The set E1 = E1(M) =
{ f ∈ E | f(oM ) = oM } is a unitary subsemiring of E and the constant endo-
morphism ζ = ζM , ζ(M) = {oM}, is the bi-absorbing element of the semiring
E1. For all u, v ∈ M , u ̸= oM , we have pu,v ∈ E1, where pu,v(x) = v for x ≤ u
and pu,v(y) = oM for y � u. Thus pu,v(M) = {v, oM} and pu,oM = ζ.

Now, let F be a subsemiring of E1 such that pu,v ∈ F for all u, v ∈ M ,
u ̸= oM . For every u ∈ N = M \ {oM}, put Vu = { pu,v | v ∈ M }.

The following observations are quite easy.

Lemma 3.1. (i) pu,v1 + pu,v2 = pu,v1+v2.

(ii) fpu,v = pu,f(v) for every f ∈ E1.

(iii) pu,v1pu,v2 = ζ for v2 � u.

(iv) pu,v1pu,v2 = pu,v1 for v2 ≤ u.

(v) pu,vpu,v = ζ for v � u.

(vi) pu,vpuv = pu,v for v ≤ u.

Proposition 3.2. The set Vu is a minimal left ideal of the semiring F for every
u ∈ N . The mapping v 7→ pu,v is an isomorphism of the semimodule FM onto
the semimodule FVu.

Proof. It follows immediately from 3.1 that Vu is a left ideal of F and the map
v 7→ pu,v is an isomorphism of the semimodules. Furthermore, if v ̸= oM then
pv,v1pu,v = pu,v1 for every v1 ∈ M . Now, it is clear that Vu is a minimal left
ideal of F .

Proposition 3.3.(i) Vupu,v = {ζ} for v � u.

(ii) Vupu,v = Vu for v ≤ u.

Proof. Use 3.1 (iii), (iv).
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Proposition 3.4. (i) The set { pu,v | v � u } is a bi-ideal of the semiring Vu

and it is the greatest proper left ideal of that semiring.
(ii) The set { pu,v | v ≤ u } ∪ {ζ} is just the set of multiplive idempotents of

Vu (ζ = pu,oM ).
(iii) The semiring Vu is multiplicatively idempotent iff u = oN ∈ N .
(iv) The semiring Vu is (left-) ideal-simple iff u = oN ∈ N .

Proof. It is easy.

Proposition 3.5. The semimodule FVu is simple.

Proof. Let α ̸= id be a congruence of FVu. Then (pu,v1 , pu,v2) ∈ α for some
v1 < v2, and hence (pu,v2 , ζ) = (pv1,v2pu,v1 , pv1,v2pu,v2) ∈ α. Consequently,
(pu,v1 , ζ) ∈ α and, finally, (pu,v3 , ζ) = (pv1,v3pu,v1 , pv1,v3ζ) ∈ α for every v3 ∈ M .
Thus α = Vu × Vu.

Proposition 3.6. The semimodule FVu is faithful.

Proof. Use 3.1(ii).

Lemma 3.7. If I is a non-trivial ideal of F then
∪

u∈N Vu ⊆ I.

Proof. We can proceed similarly as in the proof of 2.7.

Corollary 3.8. The set { pu1,v1f1+ . . . pun,vnfn |n ≥ 1, ui ∈ N, vi ∈ M,fi ∈ F }
is just the smallest non-trivial ideal of the semiring F .

3.9 Let K be a minimal left ideal of the semiring F such that K ̸= Vu for every
u ∈ N .

Lemma 3.9.1. K ∩ Vu = {ζ} for every u ∈ N .

Proof. It is obvious.

Lemma 3.9.2. Ff = K for every f ∈ K \ {ζ}.

Proof. If f ∈ F \ {ζ} then f(v) ̸= oM for at least one v ∈ N and pf(v),v ̸= ζ.
Now, we can proceed similarly as in the proof of 2.9.2.

Lemma 3.9.3. There is a proper ideal A of the semilattice M such that A =
{x ∈ M | f(x) = oM } for every f ∈ K \ {ζ} and we put B = M \A.

Proof. Use 3.9.2.

Lemma 3.9.4. Let f ∈ K \ ζ, v ∈ M , and let om ̸= w ∈ f(M). Then
pw,vf = pA,v ∈ K, where pA,v(B) = {v} and pA,v(A) = {oM}.

Proof. We have g = pw,vf ∈ K and, by 3.9.3, A = {x ∈ M | g(x) = oM } =
{x ∈ M | f(x) � w }. Thus B = { y ∈ M | g(y) ̸= oM } = { y ∈ M | f(y) ≤ w }
and g(B) = {v}.
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Proposition 3.9.5. (i) A is a prime ideal of M , oB /∈ B and K = { pA,v | v ∈
M } = VA.

(ii) The mapping v 7→ pA,v is an isomorphism of the semimodule FM onto
the semimodule FK.

(iii) KpA,v = {ζ} for v ∈ A.

(iv) KpA,v = K for v ∈ B.

(v) The set { pA,v | v ∈ A } is a bi-ideal of the semiring K and it is the
greatest proper left ideal of that semiring.

(vi) The set { pA,v | v ∈ B }∪{ζ} is just the set of multiplicative idempotents
of K (ζ = pA,oM ).

(vii) The semiring K is neither multiplicatively idempotent nor bi-ideal-
simple.

Proof. According to 3.9.4, VA = { pA,v | v ∈ M } ⊆ K. The rest is clear (see
3.2, 3.3 and 3.4)

Theorem 3.10. (i) The set Vu = { pu,v | v ∈ M } is a minimal left ideal of the
semiring F for every u ∈ N .

(ii) If K is a minimal left ideal of F such that K ̸= Vu for every u ∈ N then
there is a non-principal prime ideal A of the semilattice M such that K = VA =
{ pA,v | v ∈ M }.

(iii) If A is a non-principal prime ideal of M such that pA,v ∈ F for at least
one v ∈ M \ {oM} then VA ⊆ F and VA is a minimal left ideal of F such that
VA ̸= Vu for every u ∈ N .

(iv) If K is a minimal left ideal of F then FK is a faithful, simple and
minimal F -semimodule and the semimodules FK and FM are isomorphic.

(v) If K is a minimal left ideal of F then the semiring K is multiplicatively
idempotent if and only if oN ∈ N and K = VoN .

Proof. See the foregoing results.

Corollary 3.11. Denote by B the set of prime ideals A of M such that VA ⊆ F
(see 3.10(ii),(iii)). Then:

(i) {VA |A ∈ B } is just the set of (pair-wise distinct) minimal left ideals of
the semiring F .

(ii) Au = {x ∈ M |x � u } ∈ B for every u ∈ N .

(iii) The set
∪

VA, A ∈ B, is just the smallest non-trivial ideal of the semir-
ing F .

4. 1-preserving endomorphisms (b)

Let M be an antichain, i.e., a semilattice containing at least three elements such
that oM ∈ M and x+ y = oM for all x, y ∈ M , x ̸= y, and put N = M \ {oM}.
Now, a transformation f of M belongs to E1 iff f(oM ) = oM and f(x) ̸= f(y)
for all x, y ∈ M such that x ̸= y and f(x) ̸= oM .
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Proposition 4.1. Let E be a subsemiring of of E1 such that ζ ∈ E. The
following conditions are equivalent:

(i) The semimodule EM is minimal.

(ii) N ⊆ E(x) = { f(x) | f ∈ E } for every x ∈ N .

(iii) E(x) = M for every x ∈ N .

(iv) The semimodule EM is simple.

Proof. Clearly, the first three conditions are equivalent. Now, let α be a con-
gruence of EM and P = {x ∈ M | (x, oM ) ∈ α }. Then P is a subsemimodule of
M and if M is minimal then P = {oM}. On the other hand, if (x, y) ∈ α, x ̸= y,
then (x, oM ) = (x+ x, x+ y) ∈ α and x ∈ P . Thus (i) implies (iv). Conversely,
for every x ∈ M , the relation αx = (E(x) × E(x)) ∪ idM is a congruence of

EM . If α = M × M then E(x) = M . If αx = idM then E(x) = {oM} and
x ∈ Q = { y ∈ M |F (y) = {oM} }. Of course, Q is a subsemimodule of EM
and β = (Q × Q) ∪ idM is a congruence of EM . If β = idM then x = oM . If
β = M × M then Q = M , E(M) = {oM} and EM is not simple. Thus (iv)
implies (iii).

Lemma 4.2. Let f, g ∈ E1. Then f + g = ζ iff f(x) = oM whenever x ∈ M is
such that f(x) = g(x).

Proof. It is obvious.

In the remaining part of this section, let E be a non-trivial subsemiring of
E1 satisfying the equivalent conditions of 4.1 and let K be a left ideal of E.

Lemma 4.3. Let w ∈ M . The mapping τw : f 7→ f(w) is a homomorphism of
the semimodule EK into the semimodule EM . If K(w) ̸= {oM} then τ(K) = M .

Proof. It is easy.

Proposition 4.4. If the semimodule EK is simple then K is a minimal left
ideal of E and the semimodules EK and EM are isomorphic.

Proof. Since EK is simple, the left ideal K is non-trivial and, taking f ∈
K \ {oM}, we find w ∈ M with f(w) ̸= oM . Then K(w) = M and τw is an
isomorphism of the semimodules (use 4.3).

Lemma 4.5. For every w ∈ M , the set Lw = { f ∈ E | f(w) = oM } is a left
ideal of the semiring E.

Proof. It is obvious.

Lemma 4.6. Let w ∈ M be such that K ∩Lw = {ζ} (e.g., if K is minimal and
K * Lw). If f, g ∈ K are such that f(w) ̸= g(w) then f + g = ζ.
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Proof. We have f + g ∈ K ∩ Lw.

Lemma 4.7. If K is minimal then f + g = ζ for all f, g ∈ K, f ̸= g.

Proof. Since f ̸= g, there is w ∈ M with f(w) ̸= g(w). Clearly, K * Lw and
4.6 applies.

Theorem 4.8. If K is a minimal left ideal of the semiring E then the semi-
modules EK and EM are isomorphic.

Proof. Since K is non-trivial, there is w ∈ M with K(w) ̸= {oM}. Then
K ∩ Lw = {ζ} and, in view of 4.3, we have to show that ker τw = idK . If
f, g ∈ K are such that f(w) = g(w) then f(w) = (f + g)(w) = g(w) and either
f(w) = oM = g(w) and f = ζ = g, or (f + g)(w) ̸= oM , f + g ̸= ζ and f = g by
4.7.

Remark 4.9. Assume thatK is a minimal left ideal and let w ∈ M be such that
K(w) = M (equivalently, K * Lw). If f ∈ K then Kf = {ζ} iff K ⊆ Lf(w). On
the other hand, if Kf ̸= {ζ} then Kf = K, K(f(w)) = M and K∩Lf(w) = {ζ}.

Lemma 4.10. If f ∈ E1 is such that f2 = f then f(x) ∈ {x, oM} for every
x ∈ M .

Proof. It is obvious.

Lemma 4.11. Let K be a minimal left ideal, A = {w ∈ N |K ⊆ Lw } and let
f ∈ K be such that f2 = f ̸= ζ. Then:

(i) f(x) = x for every x ∈ M \A.
(ii) f is right multiplicatively neutral in K.

(iii) If A = ∅ then f = idM and K = E.

(iv) If A ̸= ∅ then K =
∩

Lw, w ∈ A.

Proof. (i) This follows from 4.10.

(ii) If g ∈ K then gf(x) = g(x) for every x ∈ M \A and gf(y) = oM = g(y)
for every y ∈ A. Thus gf = g.

(iii) By (i), f = idM .

(iv) If g ∈
∩

Lw then gf = g.

Corollary 4.12. Let K be a minimal left ideal of E. Then:

(i) K contains at most two multiplicatively idempotent elements.

(ii) K is not multiplicatively idempotent.
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5. 1-preserving endomorphisms (c)

Let K and L be semilattices containing at least three elements and such that
oK ∈ K and oL ∈ L. The set Q = ({oK} × L) ∪ (K × {oL}) is an ideal of the
cartesian product K × L and we put M = (K × L)/Q = {oM} ∪ (K ′ × L′),
K ′ = K \ {oK}, L′ = L \ {oL}. Clearly, |M | ≥ 5.

If f ∈ E1(K) and g ∈ E1(L) then (f × g)(Q) ⊆ Q and we put f ∗ g = (f ×
g)/Q ∈ E1(M). Thus (f1∗g1)+(f2∗g2) = (f1+f2)∗(g1+g2), (f1∗g1)(f2∗g2) =
f1f2 ∗ g1g2, and hence E1(K) ∗ E1(L) is a subsemiring of E1(M). In fact, if
E is a subsemiring of E1(K) and F is a subsemiring of E1(L) then E ∗ F is a
subsemiring of E1(M).

In the remaining part of this section, assume that L is an antichain and
take a non-trivial subgroup G of Aut(L) such that f(x) ̸= g(x) for all x ∈ L′,
f, g ∈ G, f ̸= g. Let S be a subsemiring of E1(K) ∗ (G ∪ {ζL}) such that
pu,v ∗ g ∈ S for all u ∈ K ′, v ∈ K and g ∈ G (see the preceding two sections).
One checks easily that oS = ζM = pu,oK ∗ g ∈ S is the bi-absorbing element of
S and AA ⊆ A, where A = { f ∈ E1(K) | f ∗ g ∈ S, g ∈ G },. Furthermore,
S ⊆ E1(K) ∗G and B = { f ∈ E1(K) | f ∗ idM ∈ S } is a subsemiring of E1(K)
such that pu,v ∈ B for all u ∈ K ′ and v ∈ K.

Lemma 5.1. Let u ∈ K ′, v1, v2 ∈ K and g1, g2 ∈ G. Then:

(i) If g1 = g2 then (pu,v1 ∗ g1) + (pu,v2 ∗ g2) = pu,v1+v2 ∗ g1.
(ii) If g1 ̸= g2 then (pu,v1 ∗ g1) + (pu,v2 ∗ g2) = ζM .

Proof. We have (pu,v1 ∗ g1) + (pu,v2 ∗ g2) = (pu,v1+v2 ∗ (g1 + g2)).

Lemma 5.2. Let u ∈ K ′, v ∈ K, g ∈ G and let f ∈ E1(K) and h ∈ G be such
that f ∗ h ∈ S. Then (f ∗ h)(pu,v ∗ g) = pu,f(v)) ∗ (hg).

Proof. It is obvious.

Proposition 5.3. For every u ∈ K ′, the set Wu = { pu,v ∗ g | v ∈ K, g ∈ G } is
a minimal left ideal of the semiring S.

Proof. According to 5.1 and 5.2, the setWu is a left ideal of S. If v ∈ K ′, w ∈ K
and g, h ∈ S then pv.w ∗ hg−1)(pu,v ∗ g) = pu,w ∗ h. Thus S(pu,v ∗ g) = Wu.

Lemma 5.4. Let f1, f2 ∈ E1(K) and g1, g2 ∈ G be such that f1 ∗ g1 = f2 ∗ g2.
Then f1 = f2 and if f1 ̸= ζK then g1 = g2.

Proof. Let x0 ∈ K be such that f1(x0) ̸= f2(x0). Then x0 ∈ K ′, (f1(x0), g1(y)) ∈
Q and (f2(x0), g2(y)) ∈ Q for every y ∈ L′. If f1(x0) ̸= oK then g1(y) = oL,
a contradiction. Thus f1(x0) = oK and, similarly, f2(x0) = oK . It follows that
f1 = f2. The rest is clear.

Lemma 5.5. Let u ∈ K ′, v1, v2 ∈ K and g1, g2 ∈ G. Then pu,v1 ∗ g1 = pu,v2 ∗ g2
iff v1 = v2 and either g1 = g2 or v1 = oK .
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Proof. This follows from 5.4.

Proposition 5.6. Let u ∈ K ′ and z ∈ L′. Define a mapping νu,z : Wu → M by
νu,z(pu,v ∗g) = (v, g(z)) for v ∈ K ′ and νu,z(oS) = oM (see 5.5). Then νu,z is an
injective homomorphism of the semimodule SWu into the semimodule SM . The
homomorphism νu,z is an isomorphism of the semimodules iff G(z) = L′ (i.e.,
the group G operates transitively on L′).

Proof. Use 5.1,. . . ,5.5.

Proposition 5.7. Let u ∈ K ′. The semimodule SWu is simple, minimal and
faithful.

Proof. The semimodule is minimal due to 5.3. By 5.2, (f ∗ h)(pu,v ∗ idL) =
pu,f(v) ∗ h and, using 5.5, we conclude easily the our semimodule is faithful as
well.

It remains to show that SWu is simple. For, let α ̸= id be a congruence of the
semimodule. Then (pu,v1 ∗ g1, pu,v2 ∗ g2) ∈ α, where pu,v1 ∗ g1 ̸= pu,v2 ∗ g2 and we
can assume that v1 ∈ K ′. If g1 ̸= g2 then (pu,v1 ∗ g1, ζ) ∈ α follows from 5.1(ii).
But S(pu,v1 ∗g1) = Wu by 5.3, and hence α = Wu×Wu. Assume, therefore, that
g1 = g2 = g and v2 � v1. Then (pU,v1 ∗ g, pu,v3 ∗ g) ∈ α, where v1 < v3 = v1+ v2.
From this, (pu,v4 ∗ g, ζ) = ((pv1,v4 ∗ g)(pu,v1 ∗ g), (pv1,vb4 ∗ g)(pu,v3 ∗ g)) ∈ α for
every v4 ∈ K. Thus α = Wu ×Wu.

Remark 5.8. S is a subsemiring of E1(M), and so the (left S-) semimodule

SM is faithful. In view of 5.6, the semimodule SM is minimal iff G operates
transitively on L′, and then the semimodules SM and SWu are isomorphic, so
that SM is simple by 5.7. If y ∈ L′ then R = (K ′ ×G(y)) ∪ {oM} is an ideal of
the semimodule SM and (R×R) ∪ idM is a congruence of SM . If τ = M ×M
(e.g., if SM is simple) then R = M and G operates transitively on L′.

Proposition 5.9. (i) Wu(pu,v ∗ g) = {ζ} for v � u.

(ii) Wu(pu,v ∗ g) = Wu for v ≤ u.

Proof. It is easy.

Proposition 5.10. (i) The set { pu,v ∗ g | v � u } is a bi-ideal of the semiring
Wu and it is the greatest proper left ideal of that semiring.

(ii) The set { pu,v ∗ idL | v ≤ u } ∪ {ζ} is just the set of multiplicative idem-
potents of Wu.

(iii) The semiring Wu is not multiplicatively idempotent.

(iv) The semiring Wu is not bi-ideal-simple.

Proof. Easy.
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5.11 Let R be a minimal left ideal of the semiring S such that R ̸= Wu for
every u ∈ N .

Lemma 5.11.1. R ∩Wu = {ζ}.

Proof. It is obvious.

Lemma 5.11.2. S(f ∗ g) = R for every f ∗ g ∈ R \ {ζ}.

Proof. We have f ∈ E1(K)\{ζK}, and hence f(v) ̸= oK for at least one v ∈ N
and (pf(v),v ∗ idM )(f ∗ g) = (pf(v),vf ∗ g) ̸= ζ. Now, we can proceed similarly as
in the proof of 2.9.2.

Lemma 5.11.3. There is a proper ideal A of the semilattice K such that A =
{x ∈ K | f(x) ̸= oK } for every f ∗ g ∈ R \ {ζ}.

Proof. Use 5.11.2.

Lemma 5.11.4. Let f ∗ g ∈ R \ {ζ}, v ∈ M and let oK ̸= w ∈ f(K). Then
pw,vf ∗ g = pA,v ∗ g ∈ K, where B = K \A, pA,v(B) = {v} and pA,v(A) = {oK}.

Proof. We have pw,vf ∗ g = (pw,v ∗ idL)(f ∗ g) ∈ R and, by 5.11.3, A = {x ∈
K | pw,vf(x) = oK } = {x ∈ K | f(x) � w }. Thus B = { y ∈ K | f(x) ̸= oK } =
{ y ∈ K | f(y) ≤ w } and pw,vf(B) = {v}.

Proposition 5.11.5. (i) A is a prime ideal of the semilattice K, oB /∈ B and
WA = { pA,v ∗ g | v ∈ K, g ∈ G } = R.

(ii) The mapping νA,z : R → M , where z ∈ L′ and νA,z(pA,v∗g) = (v, g(z))/Q
is an injective homomorphism of the semimodule SR into the semimodule SM .
This homomorphism is an isomorphism of the semimodules iff G operates tran-
sitively on L′.

(iii) R(pA,v ∗ g) = {ζ} for v ∈ A.

(iv) R(pA,v ∗ g) = R for v ∈ B.

(v) The set { pA,v ∗ g | v ∈ A, g ∈ G } is a bi-ideal of the semiring R and it is
the greatest proper left ideal of that semiring.

(vi) The set { pA,v ∗ idL | v ∈ B } ∪ {ζ} is just the set of multiplicative idem-
potents of R.

(vii) The semiring R is neither multiplicatively idempotent nor bi-ideal-
simple.

Proof. (i) First, take f ∗ g ∈ R \ {ζ}. By 5.11, we get pA,v ∗ g ∈ R for every
v ∈ K. If v ∈ K ′ and h ∈ G then pA,v ∗ h = (pA,v ∗ hg−1)(pA,v ∗ g) ∈ R. Thus
WA ⊆ R. On the other hand, WA is a non-trivial left ideal of S and, R being
minimal, we find that R = WA.

(ii) We can proceed similarly as in the proof of 5.6.

The remaining assertions are easy to check.
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Theorem 5.12. (i) The set Wu = { pu,v ∗ g | v ∈ K, g ∈ G } is a minimal left
ideal of the semiring S for every u ∈ K ′.

(ii) if R is a minimal left ideal of S such that R ̸= Wu for every u ∈ K ′ then
there is a non-principal prime ideal A of the semilattice K such that R = WA =
{ pA<v ∗ g | v ∈ K, g ∈ G }, where pA,v(A) = {oK} and pA,v(K \A) = {v}.

(iii) If A is a non-principal prime ideal of K such that pA,v ∗ g ∈ S for at
least one v ∈ K ′ and at least one g ∈ G then WA ⊆ S and WA is aminimal left
ideal of S such that WA ̸= Wu for every u ∈ K ′.

(iv) If P is a minimal left ideal of S then SP is a faithful, simple and
minimal (left S-) semimodule. Besides, if z ∈ L′ then SP is isomorphic to the
subsemimodule S(K ×G(z))/Q of SM .

(v) If P1 and P2 are minimal left ideals of S then the semimodules SP1 and

SP2 are isomorphic.

(vi) If P is a minimal left ideal of S then the semiring P is neither multi-
plicatively idempotent nor bi-ideal-simple.

Proof. Combine the foregoing results.

Corollary 5.13. Denote by C the set of prime ideals A of K such that WA ⊆ S.
Then:

(i) The set {WA |A ∈ C } is just the set of (pair-wise distinct) minimal left
ideals of the semiring S.

(ii) Au = {x ∈ K |x � u } ∈ C for every u ∈ K ′.

(iii) The set
∪

WA, A ∈ C, is just the smallest non-trivial ideal of the
semiring S.

Proposition 5.14. The following conditions are equivalent:

(i) There is a minimal left ideal R of S such that R(+) is an antichain.

(ii) For every minimal left ideal P of the semiring S, the semklattice P (+) is
an antichain.

(iii) The semilattice K is an antichain.

(iv) The semilattice M is an antichain.

Proof. It is easy.

Lemma 5.15. The following conditions are equivalent for a minimal left ideal
P of S:

(i) The set P \ {ζ} is a subsemigroup of the multiplicative semigroup of P .

(ii) K ′ +K ′ = K ′ and P = WA, where A = {oK}.

Proof. It is easy.
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6. 0,1-preserving endomorphisms

Let M be a non-trivial semilattice such that 0M , oM ∈ M . The set E0,1 =
{ f ∈ E | f(0M ) = 0M , f(oM ) = oM } is a unitary subsemiring of E. For every
u ∈ N \ {oM}, we have ru ∈ E0,1, where ru(x) = 0M for x ≤ u and ru(y) = oM
for y � u. Clearly, r0M is additively absorbing.

Now, let E be a subsemiring of E0,1 such that ru ∈ E for every u ∈ N . For
every pair (u, v) ∈ N ×N , u < v, the set X(u,v) = {ru, rv} is a minimal left ideal
of E.

6.1 Let K be a minimal left ideal of E such that K ̸= X(u,v) for all u, v ∈ N ,
u < v.

Lemma 6.1.1. Let u ∈ N , f ∈ K and A = Af,u = {x ∈ M | f(x) � u }. Then:

(i) A is a prime ideal of M .

(ii) ruf = rA ∈ K, where rA(A) = {oM} and rA(B) = {0M}, B = M \A.
(iii) If u = oB ∈ B then rA = rU .

Proof. It is easy.

Lemma 6.1.2. Let A1, A2 be prime ideals of M such that rA1 , rA2 ∈ K. Then
either A1 ⊆ A2 or A2 ⊆ A1.

Proof. Let, on the contrary, A1 * A2 * A1. The set A3 = A1 ∪ A2 is a
prime ideal and rA3 = rA1 + rA2 ∈ K. Now, the sets K1 = {rA1 , rA3} and
K2 = {rA2 , rA3} are two-element left ideals contained in K. Consequently,
K1 = K2 = K, rA1 = rA2 and A1 = A2, a contradiction.

Corollary 6.1.3. Let A1, A2 be two different prime ideals such that rA1 , rA2 ∈
K. Then K = {rA1 , rA2} and either A1 ⊂ A2 or A2 ⊂ A1.

Now, assume that rA ∈ K for exactly one prime ideal A and put B = M \A
(see 6.1.1).

Lemma 6.1.4. f(A) = {oM} for every f ∈ K.

Proof. We have A = {x ∈ M | f(x) � u } for every u ∈ N (use 6.1.1). Thus
f(A) = {oM}.

Lemma 6.1.5. f(B) = {0M} for every f ∈ K.

Proof. We have B = M \A = { y ∈ M | f(y) ≤ 0M }.

Corollary 6.1.6. K = {rA}.

Theorem 6.2. (i) For all u, v ∈ N , u < v, the set {ru, rv} is a minimal left
ideal of E.

(ii) If K is a minimal left ideal of E then there are prime ideals A1, A2 of
M such that A1 ⊂ A2 and K = {rA1 , rA2}.



402 Barbora Bat́ıková, Tomáš Kepka and Petr Němec

Proof. See 6.1.

Theorem 6.3. Denote by D the set of prime ideals of M such that rA ∈ E (see
6.1). Then:

(i) Minimal left ideals of the semiring E are just the two-element sets {rA1 , rA2},
A1, A2 ∈ D, A1 ⊂ A2.

(ii) Au = {x ∈ M |x � u } ∈ D for every u ∈ N .
(iii) P = M \ {0M} ∈ D and rP = r0M .
(iv) For every A ∈ D, A ̸= P , the two-element set {rA, r0M} is a minimal

left ideal of E.
(v) { rA |A ∈ D } is an ideal and it is the smallest right ideal of E.

Proof. It is easy (use 6.2).

7. Non-preserving endomorphisms

Let M be a non-trivial semilattice and let E be a subsemiring of E(M) con-
taining all constant endomorphisms µu, µu(M) = {u}, u ∈ M . Now, the set
Q = {µu |u ∈ M } is an ideal and, in fact, it is the smallest left ideal of the
semiring E. The two-element sets {µu, µv}, where u < v, are minimal right
ideals and there are no more. The semimodules EM and EQ are isomorphic via
u 7→ µu.
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