New independent paracompact spaces

Hardi N. Aziz*
University of Sulaimani
College of Education
Department of Mathematics
harde.aziz@univsul.edu.iq

Halgwrd M. Darwesh
University of Sulaimani
College of Science
Department of Mathematics
halgwrd.darwesh@univsul.edu.iq

Adil K. Jabar
University of Sulaimani
College of Science
Department of Mathematics
adil.jabar@univsul.edu.iq

Abstract. The purpose of the present paper is to introduce a new type of paracompactness which is called ω_3- paracompact and to obtain some results of paracompact spaces, one of which is the image of ω_3- paracompact is paracompact under ω_3- continuous surjection which maps ω_3- open sets onto open set. We give an example shows that this type of paracompact is independent with standard paracompact space.

Keywords: ω_3-open set, ω_3-paracompact Space, ω_3-paracompact subset.

1. Introduction

As defined by J. Dieudonne [1], a space X is said to be paracompact if each open covering has locally finite open refinement. C. H. Dowker [2] generalize this concept and introduced the class of countably paracompact spaces. A space X is said to be countably paracompact if each countable open cover of X has a locally finite open refinement. Generalizing the concept of paracompact spaces, K. Y. Al Zoubi [7] and M. K. Singal and Shashi Prabha Arya [8]. A space X is said to be S- Paracompact if each open cover has a locally finite semi open refinement and a space X is said to be R- Paracompact if each open covering of X of cardinality R has a locally finite open refinement. Since, then a lot of work has been done of S- Paracompact spaces and many interesting results have been obtained [10, 11]. This type of paracompact space is on the set that is different of open set and other types of sets like as ω_p- open sets [4]. The

* Corresponding author
object of the present paper is to present some results of new independent type of paracompact spaces.

2. Preliminaries

Throughout this paper a space will always mean a topological space in which no separation axioms is assumed unless explicitly stated. A subset G of a space X is called δ-open [8], if for each $x \in G$, there exists an open set U containing x such that $\text{Int}ClU \subseteq G$. For a subset A of a space X, the $\text{Int}_{\delta}(A)$, $\text{Cl}_{\delta}(A)$ will be denoted the δ-interior and δ-closure of A respectively. A space X is said to be locally-countable [5] if each point of X has a countable open neighborhood. Let (X, τ) be a space, a subset A of X is said to be ω_{δ}-open set [3] if for each $x \in U$, there exists an open set G containing x such that $G \cap \text{Int}(A)$ is countable. The complement of ω_{δ}-open set is called ω_{δ}-closed set. If A is a subset of a space X, then the ω_{δ}-Interior ($\omega_{\delta}\text{Int}(A)$) of A is a union of all ω_{δ}-open sets of X which contained in A and the ω_{δ}-Closure ($\omega_{\delta}\text{Cl}(A)$) of A is the intersection of all ω_{δ}-closed sets which containing A.

3. ω_{δ}-paracompact spaces

The main purpose of this section is to define ω_{δ}-Paracompact spaces, and obtain some characterizations, properties, and relationships.

A family $\{A_\lambda : \lambda \in \Lambda\}$ of subsets of a space (X, τ) is called ω_{δ}-locally finite [4], if for each $x \in X$, there exist an ω_{δ}-open set G containing x such that $\{\lambda \in \Lambda : G \cap A_\lambda \neq \emptyset\}$ is finite.

Definition 3.1. A space X is called an ω_{δ}-Paracompact space, if each ω_{δ}-open covering of X has an ω_{δ}-locally finite ω_{δ}-open reffinement.

Proposition 3.2. A topological space (X, τ) is ω_{δ}- Paracompact if and only if the topological space $(X, \tau_{\omega_{\delta}})$ is paracompact.

From [Proposition 3.8, 3], we get the following result:

Proposition 3.3. If a topological space (X, τ) is locally countable, then $(X, \tau_{\omega_{\delta}})$ is paracompact.

Lemma 3.4. If a covering $\{U_\lambda\}_{\lambda \in \Lambda}$ of a space X has ω_{δ}-locally finite ω_{δ}-open refinement, then there exist an ω_{δ}-locally finite ω_{δ}-open covering $\{G_\lambda\}_{\lambda \in \Lambda}$ of X such that $G_\lambda \subseteq U_\lambda$, for all $\lambda \in \Lambda$.

Proof. Let $\{V_\gamma\}_{\gamma \in \Gamma}$ be the ω_{δ}-locally finite ω_{δ}-open reffinement of $\{U_\lambda\}_{\lambda \in \Lambda}$. Therefore, there exists a function $\beta : \Gamma \to \Lambda$ such that $V_\gamma \subseteq U_{\beta(\gamma)}$, for each $\gamma \in \Gamma$. Let $G_\lambda = \bigcup_{\gamma \in \Gamma, \beta(\gamma) = \lambda} V_\gamma$, then the family $\{G_\lambda\}_{\lambda \in \Lambda}$ is an ω_{δ}-open covering of X with the property that $G_\lambda \subseteq U_\lambda$, for each $\lambda \in \Lambda$. Also, $\{U_\lambda\}_{\lambda \in \Lambda}$ is ω_{δ}-locally finite. If $x \in X$, then there is an ω_{δ}-open set W containing x such that the set $\Gamma_0 = \{\gamma \in \Gamma : W \cap V_\gamma \neq \emptyset\}$ is finite, since $W \cap G_\lambda \neq \emptyset$ if and only if $\lambda = \beta(\gamma)$,
for some $\gamma \in \Gamma_0$, so the set $\{\lambda \in \Lambda : W \cap G_{\lambda} \neq \emptyset\}$ is finite. Hence, the proof is complete.

\[\Box\]

Corollary 3.5. A space X is ω_δ-paracompact if and only if for every ω_δ-open covering $\{U_{\lambda}\}_{\lambda \in \Lambda}$ of X, there exists an ω_δ-locally finite ω_δ-open covering $\{V_{\lambda}\}_{\lambda \in \Lambda}$ of X such that $V_{\lambda} \subseteq U_{\lambda}$, for each $\lambda \in \Lambda$.

The ω_δ-boundary of a subset A of a space $X(\omega_\delta b(A))$ is the difference between $\omega_\delta Cl(A)$ and $\omega_\delta Int(A)$.

Corollary 3.6. If $\{A_{\lambda} : \lambda \in \Lambda\}$ is an ω_δ-locally finite family of subsets of X, then:

1) $\{\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda\}$ is also ω_δ-locally finite and $\omega_\delta Cl(\cup \{A_{\lambda} : \lambda \in \Lambda\}) = \cup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda)$.

2) $\omega_\delta b(\bigcup_{\lambda \in \Lambda} A_{\lambda}) \subseteq \bigcup_{\lambda \in \Lambda} \omega_\delta b(A_{\lambda})$.

Proof.

1) Let $x \in X$. Since, $\{A_{\lambda} : \lambda \in \Lambda\}$ is ω_δ-locally finite, there exists an ω_δ-open set G containing x such that the set $\{\lambda : \lambda \in \Lambda : G \cap A_{\lambda} \neq \emptyset\}$ is finite. Since, $G \cap A_{\lambda} = \emptyset$ if and only if $G \cap \omega_\delta Cl(A_{\lambda}) = \emptyset$, so $\{\lambda : \lambda \in \Lambda : G \cap \omega_\delta Cl(A_{\lambda}) \neq \emptyset\}$ is finite. Hence, $\{\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda\}$ is ω_δ-locally finite. Since, $\bigcup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda) \subseteq \omega_\delta Cl(\bigcup \{A_{\lambda} : \lambda \in \Lambda\})$. To prove $\omega_\delta Cl(\bigcup \{A_{\lambda} : \lambda \in \Lambda\}) \subseteq \bigcup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda)$, let $x \notin \bigcup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda)$. Since by what we have proved above $\{\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda\}$ is ω_δ-locally finite, there exist an ω_δ-open set U containing x such that $A_0 = \{\lambda \in \Lambda : U \cup \omega_\delta Cl(A_{\lambda}) \neq \emptyset\}$ is finite. Set $V = U \cup (\{X - \omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda\})$ is ω_δ-open subsets of X containing x such that $V \cap (\bigcup \{A_{\lambda} : \lambda \in \Lambda\}) = \emptyset$. Thus $x \notin \omega_\delta Cl(\bigcup \{A_{\lambda} : \lambda \in \Lambda\})$, hence $\omega_\delta Cl(\bigcup \{A_{\lambda} : \lambda \in \Lambda\}) \subseteq \bigcup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda)$. Therefore, $\omega_\delta Cl(\bigcup \{A_{\lambda} : \lambda \in \Lambda\}) = \bigcup (\omega_\delta Cl(A_{\lambda}) : \lambda \in \Lambda)$.

2) Since $\omega_\delta b(\bigcup_{\lambda \in \Lambda} A_{\lambda}) = \omega_\delta Cl(\bigcup_{\lambda \in \Lambda} A_{\lambda}) \cap \omega_\delta Cl(X - \bigcup_{\lambda \in \Lambda} A_{\lambda}) = \bigcup_{\lambda \in \Lambda} (\omega_\delta Cl(A_{\lambda}) \cap \omega_\delta Cl(X - \bigcup_{\lambda \in \Lambda} A_{\lambda}) \subseteq \bigcup_{\lambda \in \Lambda} (\omega_\delta Cl(A_{\lambda}) \cap \omega_\delta Cl(X - A_{\lambda})) = \bigcup_{\lambda \in \Lambda} \omega_\delta b(A_{\lambda})$.

\[\Box\]

Corollary 3.7. Let X be an ω_δ-paracompact space, and let H and F be two subsets in which F is an ω_δ-closed subset of X which is disjoint from H. If for every $x \in F$, there exist disjoint ω_δ-open sets U_x and V_x containing x and H, respectively. Then, there are disjoint ω_δ-open sets U and V containing F and H, respectively.

Proof. Consider the ω_δ-open covering $\{U_x\}_{x \in F} \cup \{X - F\}$ of an ω_δ-paracompact space X. Then by Corollary 3.5, there exists an ω_δ-locally finite ω_δ-open covering $\{G_x\}_{x \in F} \cup \{G\}$ of X such that $G \subseteq X - F$ and $G_x \subseteq U_x$, for each $x \in F$. Since $U_x \cap V_x = \emptyset$, then $G_x \cap V_x = \emptyset$, so $\omega_\delta Cl(G_x) \cap V_x = \emptyset$, for each $x \in F$. 350 HARDI N. AZIZ, HALGWRD M. DARWESH and ADIL K. JABAR
Then by Proposition 3.6, the sets $U = \bigcup_{x \in F} G_x$ and $V = X - \bigcup_{x \in F} \omega_{5}\text{Cl}(G_x)$ are the required ω_5-open sets of X. Thus, completes the proof.

Definition 3.8 ([4]). A space X is said to be:

1) ω_5-T_2 space, if for each distinct points x and y of X, there exists disjoint ω_5-open sets U and V containing x and y, respectively.

2) ω_5-T_1 space, if for each pair of distinct points of X, there exist ω_5-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V, y \notin V$.

3) ω_5-regular space, if each ω_5-closed subset H of X and a point x in X such that $x \notin H$, there exist disjoint ω_5-open sets U and V containing x and H, respectively.

4) ω_5-normal space, if for each pair of disjoint ω_5-closed sets A and B in X, there exist disjoint ω_5-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proposition 3.9. Each ω_5-paracompact ω_5-T_2 (ω_5-regular) space is an ω_5-normal space.

Proof. Let X be an ω_5-paracompact ω_5-T_2 space and let x_0 be any point in X, which is not in arbitrary ω_5-closed subset F of X. Therefore, for each $x \in F$, there are disjoint ω_5-open sets U_x and V_x containing x and $\{x_0\}$, so by Proposition 3.7, there exist disjoint ω_5-open sets U and V containing F and x_0. This shows that X is ω_5-regular. Thus, X is ω_5-paracompact ω_5-regular space. Let F and H be any two disjoint ω_5-closed subsets of X. Since, H is ω_5-closed, so by ω_5-regularity of X, for each $x \in F$, there exist disjoint ω_5-open sets U_x and V_x containing x and H. Therefore, by Proposition 3.7, there exist disjoint ω_5-open sets U and V containing F and H. Thus, X is an ω_5-normal space.

Example 3.10. Since the usual space on \mathbb{R} is an ω_5-T_2 but not ω_5-normal space, so by **Proposition 3.9**, it is not ω_5-paracompact.

Proposition 3.11. Let $\{A_{\lambda} : \lambda \in \Lambda\}$ be a family of subsets of a space X and $\{B_{\gamma} : \gamma \in \Gamma\}$ be an ω_5-locally finite ω_5-closed cover of X such that for each $\gamma \in \Gamma$, the set $\{\lambda \in \Lambda : B_{\gamma} \cap A_{\lambda} \neq \emptyset\}$ is finite. Then there exists an ω_5-locally finite family $\{G_{\lambda} : \lambda \in \Lambda\}$ of ω_5-open sets of X such that $A_{\lambda} \subseteq G_{\lambda}$, for each $\lambda \in \Lambda$.

Proof. For each λ, let $G_{\lambda} = X - (\bigcup \{B_{\gamma} : B_{\gamma} \cap A_{\lambda} = \emptyset\})$. Then $A_{\lambda} \subseteq G_{\lambda}$, and since $\{B_{\gamma} : \gamma \in \Gamma\}$ is ω_5-locally finite, so by Proposition 3.6, $\omega_5\text{Cl}(\bigcup_{\gamma \in \Gamma} B_{\gamma}) = \bigcup_{\gamma \in \Gamma} \omega_5\text{Cl}(B_{\gamma})$, this implies that G_{λ} is an ω_5-open set, for each $\lambda \in \Lambda$. Let $x \in X$. Since, $\{B_{\gamma} : \gamma \in \Gamma\}$ is ω_5-locally finite, so there is an ω_5-open set U containing x such that the set $\gamma_0 = \{\gamma \in \Gamma : U \cap B_{\gamma} \neq \emptyset\}$ is finite.
Thus, $U \cap B_\gamma = \emptyset$, for each $\gamma \notin \Gamma_0$. Therefore, $U \subseteq \bigcup \{B_\gamma : \gamma \in \Gamma_0\}$. Also, since for each $\gamma \in \Gamma_0$, $G_\lambda \cap B_\gamma = \emptyset$ if and only if $A_\lambda \cap B_\gamma = \emptyset$. The finiteness of $\{\lambda \in \Lambda : B_\gamma \cap A_\lambda \neq \emptyset\}$ implies the finiteness of $\{\lambda \in \Lambda : U \cap G_\lambda \neq \emptyset\}$. Thus, \{\{G_\lambda : \lambda \in \Lambda\}\text{ is }\omega_5\text{-}locally finite of }\omega_5\text{-}open subsets of }X.

\begin{proposition}
\textbf{Theorem 3.12.} A space X is $\omega_5\text{-}paracompact }\omega_5\text{-}normal if and only if every $\omega_5\text{-}open covering of }X\text{ has an }\omega_5\text{-}locally finite }\omega_5\text{-}closed refinement.
\end{proposition}

\textbf{Proof.} Necessity. Let \{\{U_\lambda\}_{\lambda \in \Lambda}\} be an $\omega_5\text{-}open covering of an }\omega_5\text{-}paracompact }\omega_5\text{-}normal space }X. \text{ So by Corollary 3.5, there exists an }\omega_5\text{-}locally finite }\omega_5\text{-}open covering \{\{V_\lambda\}_{\lambda \in \Lambda}\} of }X\text{ such that }V_\lambda \subseteq U_\lambda\text{, for all }\lambda \in \Lambda. \text{ Since, }X\text{ is an }\omega_5\text{-}normal space, then by [Theorem 5.27, 4], there exists an }\omega_5\text{-}locally finite }\omega_5\text{-}closed refinement of }\{\{V_\lambda\}_{\lambda \in \Lambda}\}\text{ which also covers }X.

\textbf{Sufficiency.} Let }X\text{ be a space with the property that every }\omega_5\text{-}open covering of }X\text{ it has an }\omega_5\text{-}locally finite }\omega_5\text{-}closed refinement. \text{ Thus, by [Theorem 5.27, 4], }X\text{ is }\omega_5\text{-normal space. It remains only to show that }X\text{ is }\omega_5\text{-paracompact.}

\textbf{Let }\{\{W_\lambda\}_{\lambda \in \Lambda}\} be an }\omega_5\text{-open covering of }X\text{ and }\{\{F_\gamma\}_{\gamma \in \Gamma}\} be an }\omega_5\text{-locally finite }\omega_5\text{-closed refinement of }\{\{W_\lambda\}_{\lambda \in \Lambda}\}. \text{ Therefore, for each }x \in \Lambda, \text{ there exists an }\omega_5\text{-open set }U_x\text{ containing }x\text{ such that the set }\{\gamma \in \Gamma : U_x \cap F_\gamma \neq \emptyset\}\text{ is finite.}

\textbf{Consider }\{\{E_\nu\}_{\nu \in \varnothing}\}\text{ is an }\omega_5\text{-locally finite }\omega_5\text{-closed refinement of the }\omega_5\text{-open covering }\{\{U_x\}_{x \in X}\} \text{ of }X\text{, then for each }\nu \in \varnothing, \text{ the set }\{\gamma \in \Gamma : F_\gamma \cap E_\nu \neq \emptyset\}\text{ is finite. So by Proposition 3.11, there exists an }\omega_5\text{-locally finite family }\{\{G_\gamma\}_{\gamma \in \Gamma}\} \text{ of }\omega_5\text{-open sets of }X\text{ such that }F_\gamma \subseteq G_\gamma\text{, for each }\gamma \in \Gamma, \text{ which is also covers }X.

\textbf{Since, }\{\{F_\gamma\}_{\gamma \in \Gamma}\}\text{ is refinement of }\{\{W_\lambda\}_{\lambda \in \Lambda}\}, \text{ so for each }\gamma \in \Gamma, \text{ there is }\lambda(\gamma) \in \Gamma \text{ such that }F_\gamma \subseteq W_{\lambda(\gamma)}\text{. Therefore, }\{\{G_\gamma \cap W_{\lambda(\gamma)}\}_{\gamma \in \Gamma}\}\text{ is an }\omega_5\text{-locally finite }\omega_5\text{-open refinement of }\{\{W_\lambda\}_{\lambda \in \Lambda}\}. \text{ Hence, }X\text{ is }\omega_5\text{-paracompact space.}

\textbf{4. }\omega_5\text{-paracompact subset}

\textbf{In this section, we study some results of paracompactness on a subspace.}

\textbf{Proposition 4.1.} Every }\omega_5\text{-paracompact, }\delta\text{-open subset of a space }X\text{ is an }\omega_5\text{-paracompact subspace.}

\textbf{Proof.} Let }A\text{ be an }\omega_5\text{-paracompact, }\delta\text{-open subset of a space }X\text{ and let }\{\{U_\lambda\}_{\lambda \in \Lambda}\}\text{ is a covering of }A\text{ by }\omega_5\text{-open subsets of }A. \text{ Then by [Theorem 3.4.4], }\{\{U_\lambda\}_{\lambda \in \Lambda}\}\text{ is a covering of }A\text{ by }\omega_5\text{-open subsets of }X. \text{ By hypothesis, there exists an }\omega_5\text{-locally finite }\omega_5\text{-open refinement }\{\{W_\gamma\}_{\gamma \in \Gamma}\}\text{ of the family }\{\{V_\lambda\}_{\lambda \in \Lambda}\}\text{ which covers }A\text{ also. Therefore, by [Proposition 3.6, 4], }\{\{W_\gamma \cap A\}_{\gamma \in \Gamma}\}\text{ is an }\omega_5\text{-locally finite }\omega_5\text{-open refinement of }\{\{U_\lambda\}_{\lambda \in \Lambda}\} \text{ in }A. \text{ Thus, }A\text{ is an }\omega_5\text{-paracompact subspace of }X.

\textbf{Proposition 4.2.} An }\omega_5\text{-closed subset of an }\omega_5\text{-paracompact space is an }\omega_5\text{-paracompact subset.}
Let F be an ω_β-closed subset of an ω_β-paracompact space X and let $(U_\lambda)_{\lambda \in \Lambda}$ be a covering of F by ω_β-open sets of X. Then $(U_\lambda)_{\lambda \in \Lambda} \cup \{X - F\}$ is an ω_β-open covering of X. By hypothesis and by Corollary 3.5, there exists an ω_β-locally finite ω_β-open covering $(W_\lambda)_{\lambda \in \Lambda} \cup \{W\}$ of X such that $W \subseteq X - F$ and $W_\lambda \subseteq U_\lambda$, for each $\lambda \in \Lambda$. Therefore, $(W_\lambda)_{\lambda \in \Lambda}$ is an ω_β-locally finite ω_β-open refinement of $(U_\lambda)_{\lambda \in \Lambda}$ which covers F. This shows that F is an ω_β-paracompact relative to X. \hfill \Box

Proposition 4.3. If a space X is $\omega_\beta - T_2$ space and has a subset F which is ω_β-paracompact relative to X, then for each $x \in X - F$, there exist two disjoint ω_β-open sets of X containing x and F.

Proof. Let F be an ω_β-paracompact subset of an $\omega_\beta - T_2$ space X and let x be any point of $X - F$. Then for each $y \in F$, there exist ω_β-open sets U_y and V_y such that $y \in U_y$, $x \in V_y$ and $U_y \cap V_y = \emptyset$. This implies that $\omega_\beta Cl(U_y) \cap V_y = \emptyset$. Hence, $x \notin \omega_\beta Cl(U_y)$, for each $y \in F$. Now, $(U_y)_{y \in F}$ is a cover of F by ω_β-open subsets of X. Thus, by hypothesis and by Corollary 3.5, there exists an ω_β-locally finite covering $(W_y)_{y \in F}$ of F by ω_β-open subsets of X such that for each $y \in F$, $W_y \subseteq U_y$. Therefore, $x \notin \omega_\beta Cl(W_y)$, for each $y \in F$. Hence, by Proposition 3.6, $U = \bigcup_{y \in F} W_y$ and $V = X - \bigcup_{y \in F} \omega_\beta Cl(W_y)$, which are ω_β-open sets which containing F and x respectively. \hfill \Box

From Proposition 4.3, we get the following result:

Corollary 4.4. Every ω_β-paracompact subset of an $\omega_\beta - T_2$ space is an ω_β-closed.

Corollary 4.5. Every ω_β-regular, $\omega_\beta - T_1$ space is an $\omega_\beta - T_2$ space.

Proposition 4.6. If X is an ω_β-regular $\omega_\beta - T_1$ space and F is a subset of X which is ω_β-paracompact relative to X, then for each ω_β-open set U in X containing F in X, there exists an ω_β-closed set H in X containing F and it is contained in U.

Proof. Since X is ω_β-regular $\omega_\beta - T_1$ space, so by Corollary 4.5, and Corollary 4.4, F is ω_β-closed subset of X. Therefore, by Theorem 5.4, 4, for each $x \in F$, there is ω_β-open set U_x such that $x \in U_x \subseteq \omega_\beta Cl(U_x) \subseteq U$. Since F is ω_β-paracompact relative to X, so there exists an ω_β-locally finite family $(V_\gamma)_{\gamma \in \Gamma}$ of F by ω_β-open sets of X which refines $(U_x)_{x \in F}$ and covers F. Therefore, by Proposition 3.6, $H = \bigcup_{\gamma \in \Gamma} \omega_\beta Cl(V_\gamma)$ is required ω_β-closed set. \hfill \Box

Definition 4.7. A topological space (X, τ) is called ω_β-connected space, if X is not a union of two nonempty disjoint ω_β-open sets, otherwise it is ω_β-disconnected. Obviously from Definition 4.7, we get the following result:

Theorem 4.8. A space X is ω_β-disconnected if and only if there exists a nonempty proper subset of X which is both ω_β-open and ω_β-closed in X.

Corollary 4.9. A space X is ω_δ-connected if and only if the only nonempty subset of X which is both ω_δ-open and ω_δ-closed is X itself.

Theorem 4.10. Let X be ω_δ-disconnected space, then the following statements are equivalent:

1) X is an ω_δ-paracompact space.

2) Every proper ω_δ-closed subset of X is ω_δ-paracompact relative to X.

3) Every proper δ-open, ω_δ-closed subset of X is ω_δ-paracompact subspace.

4) Every proper δ-open, ω_δ-clopen subset of X is ω_δ-paracompact subspace.

5) There exists a proper δ-open, ω_δ-clopen subset F of X such that both F and $X - F$ are ω_δ-paracompact subspaces of X.

Proof. (1 \rightarrow 2) and (2 \rightarrow 3), Follows from Proposition 4.2 and Proposition 4.1, respectively.

(3 \rightarrow 4) and (4 \rightarrow 5) are obvious. We prove if (5), we get (1). Let X be a space that contains a proper δ-open, ω_δ-clopen subset F in which both F and $X - F$ are ω_δ-paracompact, and let $\{G_\lambda\}_{\lambda \in A}$ be any ω_δ-open cover of X. Then $\{F \cap G_\lambda\}_{\lambda \in A}$ and $\{(X - F) \cap G_\lambda\}_{\lambda \in A}$ are covers of X. For each λ, $F \cap G_\lambda$ and $(X - F) \cap G_\lambda$ are ω_δ-open subset of F and $X - F$, respectively. Therefore, there exist ω_δ-locally finite refinements $\{V_\gamma\}_{\gamma \in \Gamma}$ and $\{V_\nu\}_{\nu \in \vartheta}$ of $\{F \cap G_\lambda\}_{\lambda \in A}$ and $\{(X - F) \cap G_\lambda\}_{\lambda \in A}$ covering F and $X - F$, respectively such that each V_γ is ω_δ-open in F, for each $\gamma \in \Gamma$, V_ν is ω_δ-open in $X - F$, for each $\nu \in \vartheta$. By [Theorem 3.4, 4], both V_γ and V_ν are ω_δ-open sets in X. Therefore, $\{V_\gamma\}_{\gamma \in \Gamma}$ is an ω_δ-locally finite ω_δ-open refinement of $\{G_\lambda\}_{\lambda \in A}$ which covers X. Hence, X is ω_δ-paracompact space.

Remark 4.11. From Theorem 4.10, we notice that, if X is ω_δ-connected, then by Corollary 4.9, the only ω_δ-clopent subsets of X are empty set and X itself. So the condition that X is ω_δ-disconnected is essential.

A function $f : X \rightarrow Y$ is said to be an ω_δ-continuous [3], if the inverse image of each open subset of Y is an ω_δ-open subset in X.

Proposition 4.12. Let $f : X \rightarrow Y$ be an ω_δ-continuous surjection which maps ω_δ-open sets onto open sets. If K is ω_δ-paracompact relative to X, then $f(K)$ is paracompact relative to Y.

Proof. Let $\{G_\lambda\}_{\lambda \in A}$ be any covering of $f(K)$ by open sets of Y. Since, f is ω_δ-continuous surjection function, then $\{f^{-1}(G_\lambda)\}$ is a covering of $f(K)$ by ω_δ-open subsets of X. But, K is ω_δ-paracompact relative to X, thus, there exists an ω_δ-locally finite ω_δ-open family $\{V_\gamma\}_{\gamma \in \Gamma}$ of subsets of X which refines $\{f^{-1}(G_\lambda)\}_{\lambda \in A}$ and covers K, so by hypothesis, $\{f(V_\gamma)\}_{\gamma \in \Gamma}$ is a locally finite family of open subsets of Y which refines $\{G_\lambda\}_{\lambda \in A}$ and covers $f(K)$. Therefore, $f(K)$ is paracompact relative to Y.

□
The ω_5-paracompactness and paracompactness are independent, as shown in the following examples:

Example 4.13. Consider the co-countable topology (\mathbb{R}, τ_{COC}), $(\tau_{COC})_{\omega_5} = \{\emptyset, \mathbb{R}\}$, so \mathbb{R} is ω_5-paracompact, but it is not paracompact.

Example 4.14. Consider the closed unit interval I of the usual topology $(\mathbb{R}, \mathfrak{A})$. Since I is compact subset of \mathbb{R}, so (I, \mathfrak{A}_I) is compact space and hence it is paracompact. Since (I, \mathfrak{A}_I) is $\omega_5 - T_2$ but not ω_5-normal, so by Proposition 3.9, it is not ω_5-paracompact.

Theorem 4.15. The union of ω_5-locally finite family of ω_5-open ω_5-paracompact subsets of a space X is ω_5-paracompact subset.

Proof. Let $\{U_\alpha : \alpha \in I\}$ be any ω_5-locally finite family of ω_5-open, ω_5-paracompact sets and take $U = \bigcup\{U_\alpha : \alpha \in I\}$. Let $\{V_\beta : \beta \in J\}$ be any ω_5-open covering of U, by ω_5-open subsets of X. Then, for each α, $\{V_\beta \cap U_\alpha : \beta \in J\}$ is a covering of U_α by ω_5-open sets. Since U_α is ω_5-paracompact relative to X, then there exist ω_5-locally finite family of ω_5-open sets, $\{D_\lambda : \lambda \in K^\alpha\}$ of X which refines $\{V_\beta \cap U_\alpha : \beta \in J\}$ and covers U_α, where K is infinite cardinal. Consider the family $F = \{D_\lambda : \lambda \in K^\alpha, \alpha \in I\}$. Then F is ω_5-locally finite ω_5-open refinement of $\{V_\beta : \beta \in J\}$ and hence, U is ω_5-paracompact relative to X. □

References

Accepted: 30.08.2019