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Abstract. The main goal of this paper is to investigate modal operators on equal-
ity algebras. To begin with, we introduce the notion of modal operators on equality
algebras and investigate some important properties of this operator. As applications,
we give a characterization of prelinear equality algebras. In the following, we give the
concepts of modal filters and modal congruences of equality algebras and obtain some
related results. Moreover, we show that there is one to one correspondence relation be-
tween modal filters and modal congruences of a modal equality algebra. Finally, using
strong modal filters, we establish the uniform structures on modal equality algebras and
we prove that modal equality algebras with uniform topologies are topological modal
equality algebras.
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1. Introduction

Fuzzy type theory(FTT) [12, 13, 14] was developed as a fuzzy counterpart of
the classical higher-order logic. Since the truth values for algebra is no longer a
residuated lattice, a specific algebra which called an EQ-algebra was proposed
by Novák and De Baets in [11] which generalizes residuated lattice. In [3], it
was mentioned if the product in EQ-algebras is replaced by any other smaller
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binary operation, we still obtains an EQ-algebra. Based on the above reasons, a
new algebraic structure was introduced by Jenei in [4], called equality algebra,
which consisting of two binary operations meet and equivalence, and constant 1.

In 1981, modal operators on Heyting algebras were introduced and stud-
ied as algebraic counter-part of the intuitionistic propositional logic by Macnab
[10]. Since then, properties of modal operators were considered on other al-
gebraic structures such as MV-algebra [2], bounded commutative residuated
Rℓ−monoids (simply called Rℓ−monoids) [15], commutative reesiduated lat-
tices [9] and so on. The essence of modal operator is closure operator, and
closure operator is an important part of the theoretical study of partial order
sets.

In this paper, we define modal operators for equality algebras. This paper
is structured in five sections. In section 2, we recall the definition of equality
algebras and their basic properties that will be used in this paper. In section
3, we introduce the notion of modal operators in equality algebras and investi-
gate some important related properties. And we give some characterizations of
prelinear equality algebras. In section 4, we introduce modal filters and modal
congruences of modal equality algebras and obtain some important results. And
we show that there is a one to one correspondence relation between modal filters
and modal congruences of a modal equality algebra. In section 5, we establish
uniform structures by the special family of strong modal filters on equality al-
gebras, and then induce uniform topologies. Moreover, we show that modal
equality algebras with uniform topologies are topological equality algebras.

2. Preliminaries

In the section, we summarize some definitions and results about equality alge-
bras, which will be used in the following sections of the paper.

Definition 2.1 ([3, 4]). An algebra structure (E,∧,∼, 1) of the type (2, 2, 0) is
called an equality algebra, if it satisfies the following conditions: for all x, y, z ∈
E,

(E1) (E,∧, 1) is a commutative idempotent integral monoid (i.e. meet semi-
lattice with top element 1).

(E2) x ∼ y = y ∼ x.

(E3) x ∼ x = 1.

(E4) x ∼ 1 = x.

(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y.

(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z).

(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).

Where x ≤ y if and only if x ∧ y = x, for all x, y ∈ E.

The operation ∧ is called meet(infimum) and ∼ is an equality operation.
Also, other two operations are defined, called implication and equivalence oper-
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ation, respectively:

x → y = x ∼ (x ∧ y)x ↔ y = (x → y) ∧ (y → x).

In what follows, we let E = (E,∧,∼, 1) be an equality algebra.

Proposition 2.2 ([3, 4]). Let E be an equality algebra. Then the following
properties hold: for all x, y, z ∈ E:

(1) x ∼ y ≤ x ↔ y ≤ x → y,

(2) x → y = 1 if and only if x ≤ y,

(3) 1 → x = x, x → 1 = 1, x → x = 1,

(4) x ≤ y → x,

(5) x ≤ (x → y) → y,

(6) x → y ≤ (y → z) → (x → z),

(7) x ≤ y → z if and only if y ≤ x → z,

(8) x → (y → z) = y → (x → z),

(9) y ≤ x implies x ↔ y = x → y = x ∼ y,

(10) x ∼ y = 1 iff x = y.

Proposition 2.3 ([18]). Let E be an equality algebra. Then the following state-
ments hold: for all x, y, z ∈ E,

(i) x ≤ y implies y → z ≤ x → z, z → x ≤ z → y,

(ii) x → y = x → (x ∧ y),

(iii) x ∼ y ≤ (z → x) ∼ (z → y),

(iv) x ∼ y ≤ (z → x) → (z → y),

(v) x → y ≤ (z → x) → (z → y),

(vi) x → y ≤ (x ∧ z) → (y ∧ z),

(vii) x → y = ((x → y) → y) → y.

Definition 2.4 ([18]). Let E be an equality algebra. Then, E is called prelinear,
if 1 is the unique upper bound of the set {x → y, y → x}, for all x, y ∈ E.

Proposition 2.5 ([18]). If E is a prelinear equality algebra, then (E,≤) is a
lattice, where the join operation is given by x∨y = ((x → y) → y)∧ ((y → x) →
x), for all x, y ∈ E.

Proposition 2.6 ([19, 20]). An equality algebra E is prelinear iff (x → y) →
z ≤ ((y → x) → z) → z, for all x, y, z ∈ E.

Definition 2.7 ([18]). A lattice equality algebra is an equality algebra which is
lattice.

The following proposition provides some properties of lattice equality alge-
bras.
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Proposition 2.8 ([18]). Let E be a lattice equality algebra. Then the following
properties hold, for all x, y ∈ E:

(i) for all indexed families {xi}i∈I in E, we have (∨x∈I) → y = ∧i∈I(xi → y),
provided that the infimum and suprimum of {xi}i∈I exist in E;

(ii) (x ∨ y) → z = (x → z) ∧ (y → z);

(iii) x → y = (x ∨ y) → y.

Theorem 2.9 ([18]). Any prelinear equality algebra is a distributive lattice.

The following proposition provides some properties of prelinear equality al-
gebras.

Proposition 2.10 ([18]). Let E be a prelinear equality algebra. Then the fol-
lowing statements holds: for all x, y, z ∈ E,

(i) x ↔ y = x ∼ y;

(ii) x → (y ∧ z) = (x → y) ∧ (x → z).

An equality algebra (E,∧,∼, 1) is bounded if there exists an element 0 ∈ E
such that 0 ≤ x, for all x ∈ E. In a bounded equality algebra E, we define the
negation “′” on E by, x′ = x → 0 = x ∼ 0, for all x ∈ E.

Proposition 2.11 ([18]). Let (E,∧,∼, 0, 1) be a bounded lattice equality algebra.
Then the following properties hold: for all x, y ∈ E,

(i) (x ∨ y)′ = x′ ∧ y′;

(ii) x ≤ (x′)′;

(iii) x → y ≤ y′ → x′, and if it is involutive, then x → y = y′ → x′.

Definition 2.12 ([4]). Let E be an equality algebra, F ⊆ E. F is called a filter
of E if for all a, b ∈ E,

(i) 1 ∈ F ;

(ii) a ∈ F, a ≤ b ⇒ b ∈ F ;

(iii) a, a ∼ b ∈ F ⇒ b ∈ F .

We will denote the set of all filters of E by F (E). Clearly, {1}, E ⊆ F (E),
and F (E) is closed under arbitrary intersections. And hence we have (F (E),⊆)
is a complete lattice. A filter F of an equality algebra E is proper if F ̸= E. A
proper filter F is called maximal if F ⊆ G ⊆ E implies F = G for all G proper
filter of E. An equality algebra (E,∧,∼, 1) is called simple, if F (E) = {{1}, E}.
(See [1, 5])

Definition 2.13 ([4]). A subset θ of E×E is called congruence of E, if it is an
equivalence relation on E and for all a, a′, b, b′ ∈ E such that (a, b), (a′, b′) ∈ θ
the following hold:

(i) (a ∧ a′, b ∧ b′) ∈ θ;

(ii) (a ∼ a′, b ∼ b′) ∈ θ.
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We will denote the set of all congruences of E by C(E).

Let F be a filter of E. Define the congruence relation ≡F on E by x ≡F y
iff x ∼ y ∈ F . The set of all congruence class is denote by E/F , i.e. E/F =
{[x] | x ∈ E}, where [x] = {x ∈ E | x ≡F y}. Define •,⇀ on E/F as follows:
[x] • [y] = [x ∧ y], [x] ⇀ [y] = [x ∼ y]. Therefore, (E/F, •,⇀, [1]) is an equality
algebra which is called a quotient equality algebra of E with respect to F . (See
[1])

Proposition 2.14 ([4]). Let E be an equality algebra. F ∈ F (E) iff for all
a, b ∈ E,

(i) 1 ∈ F ;

(ii) a, a → b ∈ F ⇒ b ∈ F holds, where → denotes the implication of E.

The next theorem makes connection between F (E) and C(E).

Theorem 2.15 ([4]). Let E be an equality algebra, θ, φ ∈ C(E), F ∈ F (E).
Then:

(a) [1]θ ∈ F (E), where [1]θ = {a | (a, 1) ∈ θ};
(b) [1]θF = F ;

(c) θ[1]θ = θ;

(d) if [1]θ = [1]φ, then θ = φ.

Theorem 2.16 ([4]). For θ ∈ C(E), we have (a, b) ∈ θ iff (a ∼ b, 1) ∈ θ.

Next, we review some notions about uniformity which will be necessary in
the following section.

Let X be a nonempty set and A,B be any subset of X ×X. We have the
following notation:

(1) A ◦B = {(x, y) ∈ X ×X : (x, z) ∈ A, (z, y) ∈ B, for some z ∈ X};
(2) A−1 = {(x, y) ∈ X ×X : (y, x) ∈ A};
(3) △ = {(x, x) ∈ X ×X : x ∈ X}.

Definition 2.17 ([16, 7, 8]). A nonempty collection K of subsets of X ×X is
called an uniformity on X, which satisfies the following conditions:

(A1) △ ⊆ A for any A ∈ K;

(A2) if A ∈ K, then A−1 ∈ K;

(A3) if A ∈ K, then there exists B ∈ K such that B ◦B ⊆ A;

(A4) if A,B ∈ K, then A ∩B ∈ K;

(A5) if A ∈ K and A ⊆ B ⊆ X ×X, then B ∈ K. Then the pair (X,K) is
called an uniform structure (uniform space).

3. Modal operators on equality algebras

In this section, we introduce the notion of modal operators on equality algebras
and we investigate some important related properties of modal operators. And
in the end, we give some characterizations of prelinear equality algebras.
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Definition 3.1. Let E be an equality algebra. The mapping f : E → E is called
a modal operator if it satisfies the following conditions: for all x, y ∈ E,

(f1) x ≤ f(x);

(f2) f(f(x)) = f(x);

(f3) f(x ∧ y) = f(x) ∧ f(y);

(f4) f(x ∼ y) ≤ f(x) ∼ f(y).

And the pair (E, f) is called an equality algebra with a modal operator
(simplify, modal equality algebra).

Let (E, f) be a modal equality algebra. The kernel of f is the set Ker(f) =
{x ∈ E | f(x) = 1}. A modal operator f is said to be faithful if Ker(f) = {1}.

Example 3.2. Let (E,∧,∼, 1) be an equality algebra. We define mappings
f1, f2 : E → E such that f1(x) = x, f2(x) = 1, ∀x ∈ E. We can see that both
f1 and f2 are modal operators on E. Also, f1 is faithful since Ker(f) = {1}.
Moreover, modal operators f1 and f2 are called trivial.

Example 3.3. Let E = {0, a, b, c, 1} with 0 < c < a, b < 1. Define the opera-
tion ∼ on E as follows:

∼ 0 c a b 1

0 1 0 0 0 0
c 0 1 b a c
a 0 b 1 c a
b 0 a c 1 b
1 0 c a b 1

Then we can see that (E,∧,∼, 1) is an equality algebra. Now, we define a
mapping f on E as follows:

f(x) =


0, x = 0

a, x = a, c

1, x = b, 1

.

It is easy to check that f is a modal operator on E.

Example 3.4. Let E = {0, a, b, 1} with 0 < a < b < 1. Define the operation ∼
on E as follows:

∼ 0 a b 1

0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1
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Then we can see that (E,∧,∼, 1) is an equality algebra. Now, we define a
mapping f on E as follows:

f(x) =


0, x = 0

b, x = a, b

1, x = 1

.

It is also easily to check that f is a modal operator on E.

In what follows, we obtain some important properties of modal operators on
equality algebras.

Proposition 3.5. Let (E,∧,∼, 0, 1) be a bounded equality algebra and f : E →
E be a modal operator. Then for x, y ∈ E we have:

(1) f(1) = 1;
(2) If x ≤ y, then f(x) ≤ f(y);
(3) f(x → y) ≤ f(x) → f(y) = f(f(x) → f(y)) = x → f(y) = f(x → f(y));
(4) f(x) ≤ (x → f(0)) → f(0);
(5) f(x) ∧ f(y) = f(f(x) ∧ f(y));
(6) f(x)′ ≤ f(x′);
(7) If y ≤ x, then f(x) → f(y) = f(x) ∼ f(y);
(8) f(x ∼ y) ≤ f(x) → f(y).

Proof. (1) By (f1) of Definition 3.1, we have 1 ≤ f(1). Thus f(1) = 1.
(2) For all x, y ∈ E, we have that x ≤ y if and only if x ∧ y = x. By (f3) of

Definition 3.1, if x ≤ y, then f(x) = f(x ∧ y) = f(x) ∧ f(y). Thus f(x) ≤ f(y).
(3) For all x, y ∈ E, by (f4) of Definition 3.1, we have f(x → y) = f(x ∼

(x ∧ y)) ≤ f(x) ∼ f(x ∧ y) = f(x) ∼ (f(x) ∧ f(y)) = f(x) → f(y). Further by
the condition (f1), (f2) of Definition 3.1, we have:

f(f(x) → f(y)) ≤ f(f(x)) → f(f(y)) = f(x) → f(y) ≤ x → f(y) ≤
f(x → f(y)) ≤ f(x) → f(f(y)) = f(x) → f(y) ≤ f(f(x) → f(y)). Hence
f(x → f(y)) = f(f(x) → f(y)) = f(x) → f(y) = x → f(y).

(4) By x ≤ (x → y) → y and (3), we have that f(x) ≤ (f(x) → f(0)) →
f(0) = (x → f(0)) → f(0).

(5) f(x)∧f(y) ≤ f(f(x)∧f(y)) is valid. Now we show that f(f(x)∧f(y)) ≤
f(x) ∧ f(y): as f(x) ∧ f(y) ≤ f(x) and f(x) ∧ f(y) ≤ f(y), by (2), we have
f(f(x)∧ f(y)) ≤ f(f(x)) and f(f(x)∧ f(y)) ≤ f(f(y)), hence f(f(x)∧ f(y)) ≤
(f(f(x)) ∧ f(f(y))). By (f2) of Definition 3.1, we have f(f(x) ∧ f(y)) ≤ f(x) ∧
f(y). Therefore f(x) ∧ f(y) = f(f(x) ∧ f(y)).

(6) By (f1) and (1) of Proposition 2.3, we have f(x)′ ≤ x′ ≤ f(x′).
(7) Since y ≤ x, we have f(y) ≤ f(x) and f(x) → f(y) = f(x) ∼ (f(x) ∧

f(y)) = f(x) ∼ f(y).
(8) It follows from (1) of Proposition 2.2 and items (2), (3).

We know that let E be a non-empty set, an isotone mapping f : E → E is
called a closure operator on E if it is such that f = f2 ≥ idE . Then we have,
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Remark 3.6. By the definition of a modal operator and Theorem 3.5 (2), every
modal operator on an equality algebra E is a closure operator. In general, the
converse is not true.

The following example will show that a closure operator on E is not a modal
operator.

Example 3.7. Consider the equality algebra E of Example 3.3. Now we define
a mapping f on E as follows:

f(x) =

{
c, x = 0, c

1, x = a, b, 1

It is easily to check that f is a closure operator on E. However, f is not
a modal operator on E since f(a ∧ b) = f(c) = c and f(a) ∧ f(b) = 1. Hence
f(a ∧ b) ̸= f(a) ∧ f(b).

In what follows, we will define residuated equality algebras. And we will
give a characterization of modal operator on a residuated equality algebra.

Definition 3.8. Let E be an equality algebra. Then E is called residuated, if
(R) (x ∧ y) ∧ z = (x ∧ y) iff x ∧ (y ∼ (y ∧ z)) = x, for all x, y, z ∈ E.

Clearly, (R) can be written in a classical way as x ∧ y ≤ z iff x ≤ y → z.

Example 3.9. Let E = {0, a, b, 1} be a chain such that x ∧ y = min{x, y}, for
all x, y ∈ E. Define the operation ∼ on E as follows:

∼ 0 a b 1

0 1 0 0 0
a 0 1 a a
b 0 a 1 b
1 0 a b 1

Routine calculation shows that (E,∧,∼, 1) is a residuated equality algebra.

Theorem 3.10. Let E be a residuated equality algebra and f : E → E be a
mapping. Then f is a modal operator on E if and only if, for each x, y ∈ E, it
holds:

(1) x → f(y) = f(x) → f(y);

(2) f(x ∼ y) ≤ f(x) ∼ f(y).

Proof. Firstly, assume a mapping f fulfil conditions (1) and (2) of above The-
orem, now we will show that f is a modal operator on E, that is, f satisfies the
conditions (f1)− (f4) of Definition 3.1: Indeed,

For any x ∈ E, by (1) we have x → f(x) = f(x) → f(x) = 1. Therefore
x ≤ f(x). Thus (f1) holds.
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For any x ∈ E, it holds 1 = f(x) → f(x) = f(f(x)) → f(x). This implies
f(f(x)) ≤ f(x). Then by (f1), we have f(f(x)) = f(x). Thus (f2) holds.

To show that f establish (f3), we first verity the following result:

if x ≤ y, then f(x) ≤ f(y).

Indeed, if x ≤ y, by (1) of Proposition 2.3 and (1) of above Theorem, we have
f(x) → f(y) = x → f(y) ≥ y → f(y) = 1, hence f(x) → f(y) = 1. Therefore
f(x) ≤ f(y). Now, as x ∧ y ≤ x and x ∧ y ≤ y, applying above result we can
obtain that f(x∧y) ≤ f(x) and f(x∧y) ≤ f(y), and then f(x∧y) ≤ f(x)∧f(y).
Now we show that f(x) ∧ f(y) ≤ f(x ∧ y): By (f1), we have x ∧ y ≤ f(x ∧ y).
As E be a residuated equality algebra, x ∧ y ≤ z iff x ≤ y → z holds. Then we
get y ≤ x → f(x ∧ y) = f(x) → f(x ∧ y), so y ∧ f(x) ≤ f(x ∧ y). Similarly, we
have f(x) ≤ y → f(x ∧ y) = f(y) → f(x ∧ y), so that f(x) ∧ f(y) ≤ f(x ∧ y).
Therefore f(x ∧ y) = f(x) ∧ f(y). Thus (f3) holds.

By (2), (f4) is straightforward. Therefore, f is a modal operator on E.
Now if f be a modal operator on E, (1) and (2) is obvious.

Theorem 3.11. Let (E, f) be a modal equality algebra. Then the following
properties hold:

(1) f(E) = Fix(f), where Fix(f) = {x ∈ E | x = f(x)}.
(2) The image f(E) is a subalgebra of E.

Proof. (1) Assume that y ∈ f(E), then there exists x ∈ E such that f(x) = y.
By (f2) of Definition 3.1, we can obtain that f(y) = f(f(x)) = f(x) = y, this
is, y ∈ Fix(f). Conversely, assume that y ∈ Fix(f). By Fix(f) = {x ∈ E | x =
f(x)}, we have y ∈ f(E). Therefore f(E) = Fix(f) holds.

(2) For all x, y ∈ f(E), by (f3) and (1), we have f(x∧y) = f(x)∧f(y) = x∧y.
So x ∧ y ∈ f(E). By (f4) and (1), we have f(x ∼ y) ≤ f(x) ∼ f(y) = x ∼ y.
Then by (f1), x ∼ y ≤ f(x ∼ y). Hence, f(x ∼ y) = x ∼ y. Therefore we have
x ∼ y ∈ f(E). Hence f(E) is closed under the operation ∧ and ∼. And we have
f(1) = 1, so 1 ∈ f(E). Therefore, f(E) is a subalgebra of E.

Corollary 3.12. Let (E, f) be a modal equality algebra. If f(E) = E, then f
is the identity map on E.

Proof. If f(E) = E, for any x ∈ E, then there exists x0 ∈ E such that
f(x0) = x. Form (f2), we have f(x) = f(f(x0)) = f(x0) = x. Therefore, f is
the identity map on E.

Theorem 3.13. If (E, f) be a modal equality algebra, then Ker(f) = {x ∈ E |
f(x) = 1} is a filter.

Proof. By (f1) of Definition 3.1, we have 1 ≤ f(1). Then f(1) = 1, hence
1 ∈ Ker(f).

Let x and x → y ∈ Ker(f), then we get f(x) = 1 and f(x → y) = 1. By
(3) of Proposition 3.5, we can obtain that 1 = f(x → y) ≤ f(x) → f(y) = 1 →
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f(y) = f(y), thus f(y) = 1. So we get y ∈ Ker(f). Therefore, by Proposition
2.14, we obtain Ker(f) = {x ∈ E | f(x) = 1} is a filter.

In what follows, the conditions for an equality algebra to be a prelinear
equality algebra is given by a modal operator on an equality algebra.

Theorem 3.14. Let (E, f) be a modal equality algebra. Then the following
conditions are equivalent:

(1) E is prelinear;
(2) f(x ∨ y) = f(x) ∨ f(y);
(3) f(x → y) ∨ f(y → x) = 1;
(4) f((x → y) → z) ≤ f((y → x) → z) → z.

Proof. (1)⇒(2) Assume that E is a prelinear equality algebra. f(x) ∨ f(y) ≤
f(x ∨ y) can be proved easily by Proposition 2.3 (1). Now we will prove that
f(x ∨ y) ≤ f(x) ∨ f(y). Indeed, by Proposition 2.5 and (f3) of Definition 3.1,
we have for all x, y ∈ E, f(x ∨ y) = f(((x → y) → y) ∧ ((y → x) → x)) =
f((x → y) → y) ∧ f((y → x) → x). By Proposition 3.5 (3), Proposition 2.3
(1), we have f(x ∨ y) ≤ (f(x → y) → f(y)) ∧ (f(y → x) → f(x)) ≤ (f(x →
y) → (f(x)∨ f(y)))∧ (f(y → x) → (f(x)∨ f(y))). Then by Proposition 2.9 and
Proposition 2.8 (1), we have f(x∨ y) ≤ (f(x → y)∨ f(y → x)) → (f(x)∨ f(y)).
Now, we will prove that f(x → y)∨ f(y → x) = 1. Indeed, by (f1) of Definition
3.1 and Proposition 2.5, we have (x → y) ∨ (y → x) ≤ f(x → y) ∨ f(y → x).
Hence by Definition 2.4, we obtain (x → y) ∨ (y → x) = 1, and hence f(x →
y) ∨ f(y → x) = 1. Thus, by Proposition 2.2 (3), we have f(x ∨ y) ≤ 1 →
(f(x) ∨ f(y)) = f(x) ∨ f(y).

(2)⇒(3) Obviously.
(3)⇒(4) This follows similar to the proof of the equivalence between prelin-

earity and Proposition 2.6.
(4)⇒(1) Taking modal operator f = idE and by Proposition 2.6, we can

easily prove it.

4. Modal filters on modal equality algebras

In this section, we will introduce the modal filters and modal congruences of
modal equality algebras and obtain some important results. Moreover, we show
that there is one to one correspondence relation between modal filters and modal
congruences of a modal equality algebra.

Definition 4.1. Let (E, f) be a modal equality algebra. A non-empty subset
F ⊆ E is called a modal filter of (E, f), if F is a filter of E such that x ∈ F
implies f(x) ∈ F , for all x ∈ E.

We denote the set of all modal filters of (E, f) by MF (E, f).

Example 4.2. Let (E, f) be a modal equality algebra. Then Ker(f) is a modal
filter of (E, f).
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Example 4.3. Consider the Example 3.3, we can easily check that the modal
filter of (E, f) are {1}, {a, 1}, {b, 1}, {a, b, c, 1} and E.

Example 4.4. Consider the Example 3.4, we can also easily check that the
modal filter of (E, f) are {1}, {b, 1}, {a, b, 1} and E.

Proposition 4.5. Let (E, f) be a modal equality algebra.
(1) If F is a filter of f(E), then f−1(F ) is a modal filter of (E, f);
(2) If F is a modal filter of (E, f), then f(F ) is a filter of f(E).

Proof. (1) Suppose that F is a filter of f(E). Obviously, 1 ∈ f−1(F ). Let
x, y ∈ E such that x ∈ f−1(F ) and x ≤ y. Then f(x) ≤ f(y). Since f(x) ∈ F
and f(y) ∈ f(E), we can obtain that f(y) ∈ F , that is, y ∈ f−1(F ). If x, x ∼
y ∈ f−1(F ). Then f(x), f(x ∼ y) ∈ F . Since f(x ∼ y) ≤ f(x) ∼ f(y), then
f(x) ∼ f(y) ∈ F , thus f(y) ∈ F , that is y ∈ f−1(F ). Therefore, f−1(F ) is a
filter of E.

If x ∈ f−1(F ), then f(x) ∈ F , so f(f(x)) = f(x) ∈ F , that is, f(x) ∈
f−1(F ). Therefore, f−1(F ) is a modal filter of (E, f).

(2) First, we have f(F ) = F ∩ f(E). Indeed, if x ∈ F ∩ f(E), then we
have that x ∈ F and x ∈ f(E). Hence f(x) ∈ f(F ) and f(x) = x. Thus, we
have x ∈ f(F ). It follows that F ∩ f(E) ⊆ f(F ). Conversely, if y ∈ f(F ),
then there exists x ∈ F such that y = f(x). Since F is a modal filter of (E, f),
we have y = f(x) ∈ F . Hence y ∈ F ∩ f(E), f(F ) ⊆ F ∩ f(E). Therefore,
f(F ) = F ∩ f(E).

Obviously, 1 ∈ f(F ) = F ∩ f(E). If x ∈ f(F ) = F ∩ f(E), y ∈ f(E) such
that x ≤ y, then y ∈ f(F ) = F ∩ f(E). If x, x ∼ y ∈ f(F ) = F ∩ f(E), then
y ∈ F . Since F is a modal filter of (E, f), we have f(y) ∈ F ∩ f(E) and then
y ∈ f(F ) = F ∩ f(E). Therefore, f(F ) is a filter of f(E).

For any modal filter F of modal equality algebra (E, f). Defined by fF :
E/F −→ E/F as a mapping fF ([x]) = [f(x)].

Proposition 4.6. Let (E, f) be a modal equality algebra and F be a modal filter
of modal equality algebra (E, f). Then fF is a modal operator on E/F .

Proof. First, we will show that fF is well defined. Indeed, assume that [x] = [y]
for x, y ∈ E. Then (x, y) ∈ θF , i.e., x ∼ y ∈ F . Since F is a modal filter, then
we have f(x ∼ y) ∈ F . Now, by (f4) of Definition 3.1, f(x ∼ y) ≤ f(x) ∼ f(y),
we have f(x) ∼ f(y) ∈ F . Thus, (f(x), f(y)) ∈ θF . And then [f(x)] = [f(y)].
Therefore, fF is well defined. Next, we will prove fF fulfill Definition 3.1:

(f1) [x] ≤ [f(x)] = fF ([x]);
(f2) fF ([x]) = [f(x)] = [f(f(x))] = fF fF ([x]);
(f3) fF ([x] ∧ [y]) = [f(x ∧ y)] = [f(x) ∧ f(y)] = fF ([x]) ∧ fF ([y]);
(f4) fF ([x] ∼ [y]) = [f(x ∼ y)] ≤ [f(x) ∼ f(y)] = fF ([x]) ∼ fF ([y]).
Therefore, fF is a modal operator on E/F .

Above them, we can obtain that (E/F, fF ) is a modal equality algebra.
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Proposition 4.7. In the modal equality algebra (E/Ker(f), fKer(f)), we obtain:
(1) [x] ≤ [y] iff f(x ∼ (x ∧ y)) = 1 iff f(x → y) = 1;
(2) [x] = [y] iff f(x ∼ y) = 1.

Proof. (1) We have [x] ≤ [y] iff [x]•[y] = [x] iff [x] = [x∧y] iff [x] ⇀ [x∧y] = [1]
iff [x ∼ x∧ y] = [1] iff x ∼ x∧ y ∈ Ker(f) iff f(x ∼ x∧ y) = 1 iff f(x → y) = 1.

(2) [x] = [y] iff [x] ⇀ [y] = [1] iff [x ∼ y] = [1] iff x ∼ y ∈ Ker(f) iff
f(x ∼ y) = 1.

Definition 4.8. Let (E, f) be a modal equality algebra and θ be a congruence
on E. Then θ is called a modal congruence on (E, f), if (x, y) ∈ θ implies
(f(x), f(y)) ∈ θ for each x, y ∈ E.

We denote the set of all modal congruences of (E, f) by MC(E, f).
Next, we will show that there is one to one correspondence relation between

modal filters and modal congruences of a modal equality algebra. For obtaining
this important result, we need the following proposition.

Proposition 4.9. Let (E, f) be a modal equality algebra and θ be a modal
congruence on (E, f). Then the following statements hold:

(1) [1]θ = {x ∈ E | (x, 1) ∈ θ} is a modal filter of (E, f);
(2) (x, y) ∈ θ iff (x ∼ y, 1) ∈ θ.

Proof. (1) Clearly, [1]θ = {x ∈ E | (x, 1) ∈ θ} is a filter of E. Now for each
x ∈ [1]θ, we have (x, 1) ∈ θ. Hence (f(x), f(1)) ∈ θ and then (f(x), 1) ∈ θ.
Therefore, f(x) ∈ [1]θ. This proves that [1]θ is a modal filter on (E, f).

(2) If (x, y) ∈ θ, then (x ∼ x, x ∼ y) ∈ θ, that is, (x ∼ y, 1) ∈ θ. Conversely,
let (x ∼ y, 1) ∈ θ, then [x ∼ y]θ = [1]θ and then [x]θ ∼ [y]θ = [1]θ, [x]θ = [y]θ.
Hence, (x, y) ∈ θ.

Theorem 4.10. Let (E, f) be a modal equality algebra. Then there exists one
to one correspondence between MF (E, f) and MC(E, f).

Proof. Define two mappings as follows, f : MF (E, f) 7→ MC(E, f) by F → θF
and g : MC(E, f) 7→ MF (E, f) by θ → [1]θ. Let θ ∈ MC(E, f). Clearly,
[1]θ = {x ∈ E | (x, 1) ∈ θ} is a filter of E. Now for each x ∈ [1]θ, we have
(x, 1) ∈ θ. Hence (f(x), f(1)) ∈ θ and then (f(x), 1) ∈ θ. Therefore, f(x) ∈
[1]θ. This proves that [1]θ is a modal filter on (E, f). Conversely, assume that
F ∈ MF (E, f). Obviously, θF is a congruence on E, where (x, y) ∈ θF iff
x ∼ y ∈ F . Then for each (x, y) ∈ θF , we have x ∼ y ∈ F . Since F is a modal
filter, then f(x ∼ y) ∈ F . By (f4) of Definition 3.1, we obtain f(x) ∼ f(y) ∈ F ,
thus (f(x), f(y)) ∈ θF . Therefore, θF is a modal congruence of (E, f). By the
above arguments, we have that f and g are well defined.

For any congruence θ on (E, f), we have (f ◦ g)(θ) = f([1]θ) = θ[1]θ . By
Proposition 4.9, we have (x, y) ∈ θ[1]θ iff x ∼ y ∈ [1]θ iff (x ∼ y, 1) ∈ θ iff
(x, y) ∈ θ. Hence, θ[1]θ = θ. That is, f ◦ g = idMC(E,f). Similarly, we have
g ◦ f = idMF (E,f). Therefore, there exists one to one correspondence between
MF (E, f) and MC(E, f).
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5. Uniformity structures on modal equality algebras

In this section, we will consider the uniformity structures on the modal equality
algebra as an application of the strong modal filters of modal equality algebras.
For this, we will introduce the concept of strong modal filters of modal equality
algebras firstly.

Definition 5.1. Let (E, f) be a modal equality algebra. A non-empty subset
F ⊆ E is called a strong modal filter of (E, f), if F is a filter of E such that
x ∈ F iff f(x) ∈ F , for all x ∈ E.

We denote the set of all strong modal filters of (E, f) by SMF (E, f).
Note that for each modal equality algebra (E, f), we can easily check that

each strong modal filter of (E, f) is a modal filter, not vice versa. Next, we will
give an example to proof this result.

Example 5.2. Let E be an equality algebra such that |E| > 1 and a mapping
f be defined by f(x) = 1, ∀x ∈ E. Then we can check that (E, f) is a modal
equality algebra. Now, we can see that F = {1} is a modal filter but is not a
strong modal filter. Since for x ̸= 1, x ∈ E, we have f(x) = 1 ∈ F , but x /∈ F .

In the next, we will consider the uniformity structure on the modal equality
algebra as an application of the strong modal filters of modal equality algebras.

Theorem 5.3. Let (E, f) be a modal equality algebra and F be a strong modal
filter of modal equality algebra (E, f). Define UF = {(x, y) ∈ E × E | f(x ∼
y) ∈ F} and K⋆ = {UF | F ∈ SMF (E, f)}. Then K⋆ satisfies the conditions
(A1)− (A4) of Definition 2.17.

Proof. Now, we will prove that K⋆ satisfies the conditions (A1)− (A4):
(A1) Let UF ∈ K⋆, (x, x) ∈ △. As x ∼ x = 1, then f(x ∼ x) = f(1) = 1 ∈ F .

Thus we have (x, x) ∈ UF . Thus, △ ⊆ UF . Therefore, (A1) holds.
(A2) If UF ∈ K⋆, We know that (x, y) ∈ UF iff f(x ∼ y) ∈ F iff f(y ∼ x) ∈ F

iff (y, x) ∈ UF iff (x, y) ∈ U−1
F . Thus, U−1

F = UF . Thus, U−1
F ∈ K⋆. Therefore,

(A2) holds.
(A3) Let Λ(F ) = {Fa | Fa ⊆ F} be the collection of strong modal filters

contained in F . Clearly, Λ(F ) is not empty. Let G be strong modal filter
generated by ∪Fa. Then UG ∈ K⋆. Next, we will show that UG ◦ UG ⊆ UF :

If (x, y) ∈ UG ◦ UG, then there exists z ∈ E such that (x, z) ∈ UG and
(z, y) ∈ UG. And we know f(x ∼ z) ∈ G and f(z ∼ y) ∈ G. Then by G is a
strong modal filter, we have x ∼ z ∈ G and z ∼ y ∈ G. By (E7) of Definitin
2.1, we have (x, y) ∈ G. That is, f(x ∼ y) ∈ G. Since G be strong modal filter
generated by ∪Fa and ∪Fa ⊆ F , then G ⊆ F . Thus f(x ∼ y) ∈ F and then
(x, y) ∈ UF . Therefore, UG ◦ UG ⊆ UF . Therefore, (A3) holds.

(A4) We should proof that for all UF , UG ∈ K⋆, UF ∩UG = UF∩G. Indeed, if
(x, y) ∈ UF ∩ UG, then we have that (x, y) ∈ UF and (x, y) ∈ UG. Hence f(x ∼
y) ∈ F and f(x ∼ y) ∈ G. Thus, f(x ∼ y) ∈ F ∩ G and then (x, y) ∈ UF∩G.
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Therefore, UF ∩ UG ⊆ UF∩G. Similarly, we obtain UF ∩ UG ⊇ UF∩G. That is,
UF ∩ UG = UF∩G holds. Therefore, (A4) holds.

Theorem 5.4. Let (E, f) be a modal equality algebra. Define K = {U ∈ E×E |
UF ⊆ U, for some UF ∈ K⋆}. Then ((E, f),K) is an uniform structure.

Proof. By above Theorem 5.3, we can know that K fulfill the conditions (A1)−
(A4) of Definition 2.17. Now, we prove that K fulfill (A5). If U ∈ K, U ⊆ V ⊆
E × E. Then there exists UF ∈ K⋆ such that UF ⊆ U ⊆ V . Thus, V ∈ K.
Therefore, K is an uniformity on (E, f) and hence ((E, f),K) is an uniform
structure.

Now, we define U [x] = {y ∈ E | (x, y) ∈ U}, for all x ∈ E,U ∈ K. Clearly,
if V ⊆ U , then V [x] ⊆ U [x]. And then the next theorem shows that we can
obtain a topology on the modal equality algebra (E, f).

Theorem 5.5. Let (E, f) be a modal equality algebra. Define T = {Y ⊆ E |
∀ x ∈ Y, ∃ U ∈ K, U [x] ⊆ Y }. Then T is a topology on the modal equality
algebra (E, f).

Proof. Obviously, ∅, E ∈ T . And it clear that T is closed under arbitrary union.
Next, we will show that T is closed under finite intersection. Let Y,W ∈ T such
that x ∈ Y ∩W . Then there exist U, V ∈ K such that U [x] ⊆ Y and V [x] ⊆ W .
Now, let N = U ∩V , then N ∈ K. And then N [x] ⊆ U [x]∩V [x] ⊆ Y ∩W . Thus
N [x] ⊆ Y ∩W , and then Y ∩W ∈ T . Therefore, T is a topology on (E, f).

Note that for any x ∈ E, U [x] is a neighborhood of x.

Let Σ be an arbitrary family of strong modal filters of an equality algebra
E which is closed under intersection. Then the topology TΣ obtained from
Theorem 5.5 is called an uniform topology on (E, f) induced by Σ. And if
Σ = {F}, we denote it by TF .

In what following, we show that modal equality algebras with uniform topolo-
gies are topological modal equality algebras. Firstly, we give the definition as
follows.

Definition 5.6. Let (E, f) be a modal equality algebra and T be a topology
on (E, f). Then ((E, f), T ) is called a topological modal equality algebra if the
operators ∧,∼ are continuous.

Note that the operator ⋄ ∈ {∧,∼} is continuous iff for any x, y ∈ E and
any neighborhood C of x ⋄ y there exist neighborhoods A and B of x and y,
respectively, such that A ⋄B ⊆ C.

Theorem 5.7. Let (E, f) be a modal equality algebra and Σ be an arbitrary
family of strong modal filters of E which is closed under intersection. Then the
structure ((E, f), TΣ) is a topological modal equality algebra.
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Proof. By the definition of a topological modal equality algebra, we will show
that ⋄ is continuous, where ⋄ = {∧,∼}. Assume x ⋄ y ∈ Y , where x, y ∈ E and
Y is an open subset of E. Then there exists U ∈ K, U [x ⋄ y] ⊆ Y and there
exists a strong modal filter F such that UF ∈ K⋆, UF ⊆ U . Next, we will prove
that the following relation holds:

UF [x] ⋄ UF [y] ⊆ UF [x ⋄ y] ⊆ U [x ⋄ y].

Let h ⋄ k ∈ UF [x] ⋄ UF [y] such that h ∈ UF [x] and k ∈ UF [y]. Hence, we have
(x, h) ∈ UF and (y, k) ∈ UF , and then f(x ∼ h) ∈ F, f(y ∼ k) ∈ F . Since
F is a strong modal filter, we can obtain that x ∼ h ∈ F and y ∼ k ∈ F .
Therefore, (x ⋄ y) ∼ (h ⋄ k) ∈ F . And then f((x ⋄ y) ∼ (h ⋄ k)) ∈ F . Therefore
(x⋄y, h⋄k) ∈ UF and then (x⋄y, h⋄k) ∈ U . Hence, h⋄k ∈ UF [x⋄y] ⊆ U [x⋄y].
That is, the above relation holds. Clearly, UF [x] and UF [y] are neighborhoods
of x and y, respectively. Therefore, the operator ⋄ is continuous. Thus the
structure ((E, f), TΣ) is a topological modal equality algebra.

6. Conclusion

The study of equality algebras is motivated by the goal to develop appropriate
algebraic semantics for fuzzy type theory as we mentioned in the introduction,
so a concept of fuzzy type theory should be introduced. In this paper, we applied
these ideas to propose the notion of modal operators on equality algebras. Also,
we obtained some properties of modal equality algebras. As applications, we
give a characterization of prelinear equality algebras. And we give the concepts
of modal filters and modal congruences of equality algebras and obtain some
related results. Moreover, we show that there is one to one correspondence
relation between modal filters and modal congruences of a modal equality alge-
bra. Finally, using strong modal filters, we establish the uniform structures on
modal equality algebras. In particular, we prove that modal equality algebras
with uniform topologies are topological modal equality algebras.

Future research will focus on characterizing modal filter generated by a sub-
set of a modal equality algebra in terms of fuzzy equality operation and re-
searching their related properties.
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[2] M. Harlenderová, J. Rachůnek, Modal operators on MV-algebras, Mathe-
matica Bohem, 131 (2006), 39-48.

[3] S. Jenei, Equality algebras, Studia Logica, 100 (2012), 1201-1209.

[4] S. Jenei, Equality algebras, Proceedings of the CINTI2010 conference (11th
IEEE International Symposium on Computational Intelligence and Infor-
matics), November 18-20, 2010, Budapest, 2010.

[5] S. Jenei, L. Korodi, Pseudo equality algebras, Archive for Mathematical
Logic, 52 (2013), 469-481.

[6] K.D. Joshi, Introduction to general topology, New Age International Pub-
lisher, India, 1983.

[7] Y.B. Jun, E.H. Ron, On uniformities of BCK-algebras, Communications of
the Korean Mathematical Society, 10 (1995), 11-14.

[8] Y.B. Jun, H.S. Kim, Uniformity structures in positive implicative algebras,
International Mathematical Journal, 2 (2002), 215-218.

[9] M. Kondo, Modal operators on commutative residuated lattices, Mathemat-
ica Slovaca, 61 (2011), 1-14.

[10] D.S. Macnab, Modal operators on Heyting algebras, Algebra Universalis, 12
(1981), 5-29.

[11] V. Novák, B. De Baets, EQ-algebras, Fuzzy Sets Systems, 160 (2009), 2956-
2978.

[12] V. Novák, On fuzzy type theory, Fuzzy Sets Systems, 149 (2005), 235-273.

[13] V. Novák, EQ-algebra based fuzzy type theory and its exetensions, Logic
Journal of the IGPL, 19 (2011), 512-542.

[14] V. Novák, Fuzzy type theory as higher-order fuzzy logic, Proceedings of the
6th International Conference on Intelligent Technologies, 2005.
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