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Abstract. In this paper, we study the convergence of the solutions of the following
system of max-type difference equations

1 A 1
}, Yn = max{

x, = max{ —} n=0,1,...,

b
Tnem To_,

(e
n—m Yn—r

where m,r € {1,2,...}, A € (0,400) and & € (0, 1) and the initial values x_g4,2_g41,. ..,
X1y YedyYedily - -, Y—1 € (0,400) with d = max{m,r}. We show that: (1) If 0 < A <
1 and {(zn, Yn) }n>—d is a solution of the above system, then lim,,_, ooz, = lim,, oo Yn, =
1; (2) If A > 1 and {(zn,Yn)}n>—d is a solution of the above system, then for any
0<k<2m—1, zomntr and Yamntr are eventually monotone.

Keywords:  System of max-type difference equations, positive solution, eventual
monotonicity.

1. Introduction

Recently there has been a great interest in studying the properties of solutions of
many max-type difference equations and systems, such as eventual periodicity,
the boundedness character and eventual monotonicity (see [1-12]).

In 2009, Geligsken and Cinar [13] investigated the asymptotic behavior and
the periodicity of the positive solutions of the following max-type difference
equation

A 1

(oY

1.1 T, = max
(1.1) n {xn_1 o

}, neNy={0,1,2,...},

where A € R = (0,+00) and a € (0,1), and showed that every positive
solution of (1.1) converges to 1 or is eventually periodic with period 2.
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In 2012, we [14] studied the convergence of the positive solutions of the
following max-type difference equation

A 1
(1.2) Ty = max{ , }, n € Ny,

a
n—-m Lp_k

where A € RT, m,k € N={1,2,...} and a € (0,1).
In 2008, Sun [15] studied the asymptotic behavior of the following max-type
difference equation

A B
(1.3) Ty, = max{——-», 3 }, n e Ny,
Tn-1 Tp—2

where A, B € R™ and «, 3 € (0,1), and showed that every positive solution of
(1.3) converges to max{l/Aa%l, 1/Bﬁ}.

In 2009, Stevié¢ [16] showed that every positive solution of the following max-
type difference equation

A,
(1.4) T =max{——:1<i<k}, neNy
x

n—i

1
converges to nrlax{l/A;”+1 : 1 < i <k}, where 4; € RT and a; € (0,1) for
every 1 <1i < k.
In 2011, we [17] showed that every positive solution of the following max-type
difference equation

Ai
(1.5) Ty, = max{ :1<i<k}, neNyp
x

(677
n—m;

1
converges to max{1/A*"" : 1 <i <k}, where m; € N, 4, € RT and o; € (0,1)
for every 1 <1 < k.
In this paper, we investigate the convergence of the following system of max-
type difference equations

A 1 A 1
1.6 T, = max , , Yp = Mmax , , n € Np,
(1.6) n { T y;‘;,r} n { p— x%,r}
where m,r € N, A € RT and « € (0, 1) and the initial values z_g4,x_g41,...,7_1,

YodsY—dils--->Y—1 € RT with d = max{m,r}. We show that:

(1) If0 < A < 1and {(xn, Yn) }n>—a is a solution of (1.6), then lim,_,oc ,, =
limy, 00 Yy = 1;

(2) If A> 1 and {(zpn,Yn)}n>—a is a solution of (1.6), then for any 0 < k <
2m — 1, xomp+k and Yomn+k are_eventually monotone.
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2. The case 0 < A< 1

In this section, we study the convergence of the solutions of (1.6) when 0<A<1.

Let {(@n, yn) }n>—a be a solution of (1.6) with the initial values x_g4, x_441,
T, Y—dyY—dils---,Y—1 € RT. Then we obtain from (1.6) that for any
n € Ny,

(2.1) xnys—r > 1, yna:gfr > 1.
For all n > d, write

(22) Xn = max{xny Tn—1s---yTn—2d, 1}7 YTL = maX{yn, Yn—1y-++ 5 Yn—2d, 1}

Lemma 2.1.
(1) zpt1 < Xy and ypy1 < Y, for all m > d and X,,,Y,, are decreasing

(n>d).
(2) x> A/Yy and y, > A/ X4 for anyn > d+m+ 1.

Proof. By (1.6) and (2.1), we obtain that for any n > d,

o2

«
Axnan»lf’r' $n77'+177- }

— 11‘a_ _ e o]
Yn—m+12T,, m+12r Yn—rt1Tn—rti—r

Tpy1 = max{

(23) S max{xg—m—‘rl—r’ x%—r—i—l—r}
< max{xn7m+1fra In—r+1-r, 1}
< X,.
Thus
(2.4) Xp+1 = max{Tpi1,..., Tnr1-2d, 1} < max{z,+1, Xp} = Xp.

In same fashion, we also obtain that for any n > d,
(25) Yn+1 < Y?’La YnJrl < Yn

Hence it follows that for all n > d+m + 1,

A A A A A A

(2.6) Tp 2 > 25y Yn 2 > > .

Yn—m n—m—1 Yy Tn—m n—m—1 Xq
The proof is complete. O

By Lemma 2.1 we write
(2.7) liminfy, =y >0, liminfz,=2>0
n—oo n—oo

and
(2.8) lim X,, =X, limY,=Y.

n—oo n—oo
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Then
(2.9) X>1 Y>1.

Remark 2.2. Note that from (2.1) we see that there exists a sequence 0 <
k1 < ko < ... such that x, > 1 for any n € N or y;, > 1 for any n € N.

Lemma 2.3.

(1) If there exists a sequence 0 < ky < ko < ... such that x, > 1 for any
n € N, then limsup,,_,.. z, = X.

(2) If there exists a sequence 0 < k1 < ka2 < ... such that y, > 1 for any
n € N, then limsup,, .o yn =Y.

Proof. Assume that there exists a sequence 0 < k1 < k2 < ...such that xy, > 1
for any n € N. Then by Remark 2.2 we see that there exists a subsequence

Tpys Trgy vy Tpyy ... With @, = Xp > 2, > 1 for any n € N, which implies
(2.10) limsupz, > X > 1.
n—oo

On the other hand, by z,1+1 < X, for all n > d we obtain

(2.11) limsup z,, <limsup X,, = X.
n—o0 n—0o0

Thus limsup,,_,., xn = X. The other case is treated similarly, so we omit the
detail. The proof is complete. O

Lemma 2.4. (1) If there ezists a sequence 0 < k1 < kg < ... such that xy, > 1
for anyn € N, then X =y =1.

(2) If there exists a sequence 0 < k1 < ko < ... such that yi, > 1 for any
n €N, thenY =z =1.

Proof. Assume that there exists a sequence 0 < k1 < kg < ... such that
xg, > 1 for any n € N. Then by Lemma 2.1 we may assume that there exist
O<m<ma<...<mp<...and 0< s <s9<...<8, <...such that

Ys, — liminf, ooyn =y >0,
Ts,—m — Ai,
(2.12) Tonmr Az,
Tm, — limsup,_,xn=X >1,
Ymp—m 7 By,
Ymp—r Bs.

By taking the limit in the following relationship
A 1

[aPe’
ymn —-m ymn—r

(2.13) Ty, = max{ }
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as n — oo, it follows

1 1
(2.14) X = max{B Ba} maX{B "By —1} < 5
Thus
(2.15) Xy < 1.

We claim X = 1. In fact, if X > 1, then by (2.15) and taking the limit in the
following relationship

A 1
(2.16) Ys, = max{ }
-—m xsn T
as n — 0o, we obtain
1 1 1

1 A
2.17 1>—=2>y= > —
(2.17) x 2= maxt Aa}—Aa A, =X
which is a contradiction. This implies X = 1. Again by (2.15) and taking the
limit in (2.16) as n — oo, we obtain

A 1 1 1

(2.18) 1>y_maX{A Aa}_AazAf2>f>1
Thus y = 1. The other case is treated similarly, so we omit the detail. The
proof is complete. O

Theorem 2.5. limy, o ,, = limy 00 yn = 1.

Proof. If there exists a sequence 0 < k1 < kg < ... such that z;, > 1 for any
n € N and there exists a sequence 0 < s1 < s3 < ... such that y;, > 1 for
any n € N, then by Lemma 2.4 we have X =Y =z = y = 1, which implies
limy, 00 T, = limy 00 Y = 1.

If there exists a sequence 0 < k; < ko < ... such that z;, > 1 for any n € N
and there exists a N € N such that y, < 1 for any n > N, then by Lemma
24 we have X =y = 1. Thus 1 = y < limsup,,_,o Yn < 1, which implies
limy, oo yn = 1. By taking the limit in the following relationship

(2.19) 2y = max{—— L3

as n — 00, it follows

(2.20) lim z, = max{ } =1.

n—oo

In same fashion, we also show that if there exists a sequence 0 < k1 < kg <
. such that yi, > 1 for any n € N and there exists a N € N such that z,, <1
for any n > N, then lim, o z,, = lim,, o ¥ = 1. The proof is complete. O
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2. The case A > 1

In this section, we study the convergence of the solutions of (1.6) when A > 1.
Let 2, = VAz,,yn = VAy, and A’ = 1/A"5". Then (1.6) reduces to the
system of the following difference equations

1 A 1 A’
/ /
T, = max —} = max{——,——}, n € Ny.
" {y{n—m y;{l—r} o {x;L—m x;?—r} °

In the following, we study the system of the following difference equations

(3.1) xy, = max{ 1 , A }, yn = max{ 1 , A
x

a o
Yn—m Yp—r n—-m Lp_p

}, nGNQ,

where A € (0,1). Let {(zn, yn) }n>—a be a solution of (3.1) with the initial values
T gy T daty o T1,Y—dsY—dals---,Y—1 € RT. Then we have from (3.1) that
for any n € Ny,

(32 TnYn—m = 1, YnTn—m = 1.

)

By (3.1) and (3.2) we obtain the following statements:
(S1) For any n >d,
)
(

«

(33 Tn S max{xn—?m? Axn—r—m}? Yn S max{yn—2m7 Ayg—r—m}'

So) If zp, = 1/yn—m (resp. yn = 1/xp_p) for some n > m, then

T
(34) Ty = —nem < Zn—2m (Tesp- Yn < ynf2m)-
Yn—mTn—2m
(S3) If ey, = AJyS . > 1/yn—m (vesp. yn = A/xS_,. > 1/xy_p,) for some
n > d, then

Tpn—2m < ZTp—2mTnYn—m N
{89
(3.5) < max{z,, Tn_omA?}
= xn
(resp. Yn—om < Yn).

Lemma 3.1. If there exists M € N such that {ysmrtomn}n>0 (respectively

{ZrM42mn tn>0) is monotone, then {xrr42mn+r fn>0 (respectively {ynr+2mn+r fn>0)
1s eventually monotone.

Proof. If there exists K € N such that zyri2mn+r = 1/Yn+2mn—m+r for all
n > K, then by (3.4) we know that zr2mntr < Taryomm—1)+r for all n > K.
Thus {Zrr+92mn+r tn>K is decreasing.

If there exists K € N such that Zy/omntr > 1/Yr+2mn—m+r for all n > K|
then by (3.5) we know that Tariomntr > Taryomn—1)4r for all n > K. Thus
{ZM+2mn+tr fn>K s increasing.
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In the following, we assume that there exists a sequence 1 < s1 < t1 < 83 <
to < ...< sy <ty <...such that

A 1
(3.6) TM2mhir = 5 > , forevery s, <k<t,
Y\ +2mk YM+2mk+r—m
and
1
(3.7) TMaomhtr = ————,  forevery t, <k < sp41.

YM+2mk+r—m
By (3.5) we see that for any n € N,

A A

(3'8) TM+2mspi1+r = > TMA42m(sng1—1)+r >

yj.\[/[+2msn+1 y?/[+2m(sn+1fl)
Then YM+2msn 1 < YM+2m(spr1—1) and {yM-i-?mn}nZO is decreasing.

For every s, < k < t,, by (3.5) we have =y omk—1)4+r < TM4+2mkir- FOr
every t, < k < sp41, it follows from A% < 1 < Y omk T +omb—m and (3.4)
that

2 > A = TM42m(tn—1)+r
YnM+omk YM2m(tn—1) ) "
> |
(39) - xM-‘,—ka‘—}—T‘ yM+2mk+&fm

TM+2mk—m }
A

min{$M+2m(k71)+m
LM 42m(k—1)+r = LM+2mk+r

which implies @74 om(k—1)4r = TMt+2mbktr- Thus {Zar12mntrfn>0 is eventually
increasing. The other case is treated similarly, so we omit the detail. The proof
is complete.

For all n > d, write

(310) Xn - max{:l?n, Tn—1y-++3Tn—2d, ]-}7 Yn — maX{yna Yn—1,-- -3 Yn—2d, 1}

Lemma 3.2. z,11 < X, and yp11 < Yy, foralln > d and X,,,Y,, are decreasing
(n>d).

Proof. By (3.3) we obtain that for any n > d,

(3 11) Tnt1 < maX{CUn—Zm—&—la Tp—r+1-—m; 1} < X,
. Ynr1 < max{yn72m+17 Yn—r+1—m> 1} <Y,

Thus

(3.12) Xpt1 = max{Tpi1,..-, Tnr1—24, 1} < max{x,i1, Xpn} = Xp,
' Yoy = max{yni1,- -, Ynt1-24, 1} < max{ypi1, Yo} =Yy,

The proof is complete.
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By Lemma 3.2 we write

(3.13) lim X, =X, limY,=Y.
n—oo n—oo

Then

(3.14) X>1 Y>1.

Remark 3.3. Note that from (3.2) we see that there exists a sequence 0 <
k1 < ko < ... such that x;, > 1 for any n € N or y;, > 1 for any n € N.

Lemma 3.4. (1) If there exists a sequence 0 < k1 < kg < ... such that xy, > 1
for any n € N, then:

(i) limsup,,_ oo Tn = X.

(ii) There exists a M € N such that xpr4onm is decreasing with limy, 0o a1 4+2nm
=X and TM++2nm = 1/yM+2nmfm-

(2) If there exists a sequence 0 < k1 < ko < ... such that y, > 1 for anyn € N,
then

(i) limsup,,_ oo Yn =Y.

(ii) There exists a M € N such that ypronm is decreasing with 1imy, s oo Ynr+2nm
=Y and YM+2nm = 1/£M+2nm—m-

Proof. If there exists a sequence 0 < k1 < ka < ... such that zj, > 1 for any
n € N, then there exists a subsequence z,,,2p,,..., 2y, ,... with z,, = X} >
xk, > 1 for any n € N. Thus we see that z,, = X}, > X and

(3.15) limsupx, > X > 1.

n—oo

On the other hand, by x,+1 < X, for all n > d we obtain

(3.16) limsup z,, <limsup X,, = X.
n—oo n—oo
Thus limsup,,_, o, Tn = X.

By limsup,,_,., z, = X we see that there exists a N € N such that z,, <
X/A < (X/A)é for any n > N. Then Az{y < X for any n > N. We can
assume that there exist a sequence N +2d < 7| <19 < ... <71, <...and some
0 < ¢ < 2m such that o, m+c > X and

(3.17) lim Zog, mic = X.

n—oo
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From (3.3) we have

X

Tomrpte < T2mry—2mte < - -

VANVAN

z <z _ <...
(3.18) 2mrp—1+c = L2mry—1—2m+c >

IN

T2mri+c-

Let M = 2mry + c. Then xpsyonm is decreasing and limy, o0 Tar2nm = X.
By (3.2) we obtain

A
(319) o < Ax%i+2mn7mfr <X < T MA+2nm -
yM+2mnfr
Then xpr+9nm = 1/Ynm+2nm—m- The other case is treated similarly, so we omit
the detail. The proof is complete.
If m and 7 are odd and (1) of Lemma 3.4 holds, then for all n > d, write

(3.20) X, = max{Tyyom—1,TM120-3,-- > TM42n—2d—1, 1},
' Y, = max{ymion, YM+2n-2;s- > YM+2n—2d, 1}-
If m and r are odd and (2) of Lemma 3.4 holds, then for all n > d, write
(3 21) X7/1 - max{mM+2n, TM+2n—2y « + s TM+2n—2d» 1}7
' Y, = max{ymi2n—1,YM+2n-3,- - YM+2n—2d—1, 1}

where M is as in Lemma 3.4.
Lemma 3.5. If (1) of Lemma 3.4 holds, then xp1on+1 < X, and Yprsoni2 <Y,
for allm > d and XY, are decreasing (n > d). If (2) of Lemma 3.4 holds,

then xpryonto < X and yarione1 <Y, for alln > d and XY, are decreasing
(n>d).

Proof. If (1) of Lemma 3.4 holds, then by (3.3) we obtain that for any n > d,

(3.22) TM4omt+1 < MaX{Trmi2n—2m+1, TM+2n—r+1—m, 1} < X,
YM42n+2 < max{Ymion—2m+2, YM42n—r42—m, 1} < Y.
Thus
' = max{Tyyon+1 TM4ont1-2d, 1} < X
(323) 7;4»1 +2n+15- -+ +2n+1-2d> = Ay

!
nr1 = max{yYmi2n+2, .- YMr2nt2-24, 1} < Y.

The other case is treated similarly, so we omit the detail. The proof is complete.
Let

. Iyt . 1~
(3.24) Jim X7, = X7, Tim Y, =Y
Remark 3.6. Note that from (3.2) we see that there exists a sequence 0 < ky <
ko < ... such that zps40r,—1 > 1 for any n € N or ypr49k, > 1 for any n € N
or X pry2k, > 1 for any n € N or ypr40k,—1 > 1 for any n € N.
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Using arguments similar to ones developed in the proof of Lemma 2.4, we
can show the following Lemma 3.7.

Lemma 3.7. (1) Assume that (1) of Lemma 3.4 holds. If there exists a sequence
0 < ki <kg<...suchthat xpryok,—1 > 1 for any n € N, then

. . /
(i) limsup,,_,oo Trr+2n-1 = X'

(ii) There exists a N € N such that xpr1oN+2nm—1 @S decreasing with
: lA
limy, 00 Tvr4oN+2nm—1 = X' and xaryon+2nm—1 = 1/YM4oN+2nm—1—m-

If there exists a sequence 0 < ki < ko < ... such that yyr4ok, > 1 for any
n € N, then

(ili) limsup,, . Ynr+2n =Y.

(iv) There exists a N € N such that yprroN+2nm 1S decreasing with
limy, o0 Yrr+2N+2nm = Y and yarson+2nm = 1/ 42N +2nm—m.-

(2) Assume that (2) of Lemma 3.4 holds. If there exists a sequence 0 < k1 <
ko < ... such that xpr4ok, > 1 for any n € N, then

(i) limsup,, o Tar4on = X'.

(1i) There exists a N € N such that xp;1oN+onm @S decreasing with
. /
im0 Trr4oN+2nm = X' and Tar4oN+2nm = 1/YM+2N+2nm—m-

If there exists a sequence 0 < ky < ko < ... such that ypr42k,—1 > 1 for any
n € N, then

(iii) limsup,, o Yarion_1 =YY"

(iv) There exists a N € N such that ypr1oN+2nm—1 15 decreasing with
: !/
limy, o0 Ymr+2N+2nm—1 = Y and Yar4on+2nm—1 = 1/TvoN+2nm—1—m-

Theorem 3.8. For any 0 < k < 2m — 1, {Zonm+k fn>0 and {Yonm+k}n>0 are
eventually monotone.

Proof. First we suppose that ged(m,r) = 1.
If m is even and r is odd, or m is odd and r is even, then by Lemma 3.4
there are two cases to consider.

Case 1. There exists a M € N such that zpsy9nm is decreasing and xpsyonm =
1/ysmr+2nm—m. Using Lemma 3.1 repeatedly, it follows that for every 0 < k <
m — 1, {xpm2nma2kr fn>05 {Z0r420m+2k41)r—m In>05 {YM+2nm+(2k+1)r Jn>0 and
{ynr+2nm-+2kr—m In>0 are eventually monotone.

Case 2. There exists a M € N such that yp;+onm is decreasing and yasyonm =
1/xrr42nm—m- Using Lemma 3.1 repeatedly, it follows that for every 0 < k <
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m — 1, {Ynm2nm2kr n>05 {Yd+2mmt(2k41)r—m tn>05 12 0420m+(2k+1)r Jn>0 and
{Zrr42nm+2kr—m fn>0 are eventually monotone.

Since ged(m,r) = 1, it follows that
(3.25) {2kr :0<k<m-—1}={0,2,...,2m — 2} (mod 2m),
which implies
(3.26) {2kr+r—m:0<k<m-—1}={1,3,...,2m — 1} (mod 2m)
and

{2kr +7r:0<k<m—-1}U{2kr—-m:0<k<m-—1}
(3.27) ={0,1,2,...,2m — 1} (mod 2m).

Thus {Zrr+2nm+k fn>0 and {Yar+2nm-+k fn>0 are eventually monotone for every
k€ {0,1,2,...,2m — 1}. In the following, we assume that m and r are odd.
Then by Lemma 3.7 there are four cases to consider.

Case 1. There exist M, N € N such that zp19nm and zpr4on12nm—1 are
decreasing. Using Lemma 3.1 repeatedly, it follows that for every 0 < k <
m — 1, {Zar2nma2kr Jn>0, {TM 2N+ 2nmt2kr—1 3020, {YM+2nm+(@k+1)r fn>0 and
{Yrm+2N+2nm+(2k+1)r—1n>0 are eventually monotone.

Case 2. There exist M, N € N such that xy;41onm and ypr4on+onm are de-
creasing. Using Lemma 3.1 repeatedly, it follows that for every 0 < k <
m— 1, {@ a1 2nma2kr fn>05 {10 M42N12mmt (2k+1)r Jn>05 {YM42nmt-(2k-+1)r n>0 and
{Ym+2N+2nm+2kr fn>0 are eventually monotone.

Case 3. There exist M, N € N such that yaryonm and yy1onN+2nm—1 are
decreasing. Using Lemma 3.1 repeatedly, it follows that for every 0 < k£ <
m — 1, {yMJanerri}nZOa {yM+2N+2nm+2krfl}n207 {$M+2nm+(2k+1)r}nzo and
{%Mt2N+2nm+(2k+1)r—1 }n>0 are eventually monotone.

Case 4. There exist M, N € N such that yyr+onm and xpr4oN+onm are de-
creasing. Using Lemma 3.1 repeatedly, it follows that for every 0 < k <
m — 1, {Ynr+2nm+2kr n>05 {YM2N-£2nmt @2kt 1)r n>05 {TM42nm+(2k+1)r fn>0 and
{Trr42N+2nm+2kr Jn>0 are eventually monotone.

Since ged(m,r) = 1, it follows that

{2kr :0<k<m—-1}U{2N+2kr—1:0<k<m-—1}

= {(2k + 1)r : 0<k<m — 1JU{2N + (2k + 1)r — 1 : 0<k<m — 1}
(3.28) ={2kr:0<k<m-1}JU{Q2N+ 2k+1r:0<k<m-—1}

={2k+1)r:0<k<m-1}U{2N+2kr:0<k<m-—1}

={0,1,2,...,2m — 1} mod 2m.

Thus {Zp+2nm+k tn>0 and {Yar4onm+k fn>0 are eventually monotone for every
ke{0,1,2,...,2m— 1}.
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If gcd(m,r) = d > 1, then we write m = dm; and r = dry with ged(mq,71) =
1. Consider the system of difference equations
1 A 1 A
by yn = max{ = }, n € Np.

et
Yn—dm, yn_drl Tpn—dmy xn—drl

(3.29) =z, = max{

Write x,,; = Tpa+i and ypn i = Yna+i for every 0 <i < d—1 and n € Ng. Then
(3.29) reduces to the equations

1 A 1 A
Tp; = max{ = b Yn,i = max{ o H
Yn—mai Yp—p ;i n—mii Tp_ry i
(3.29,1) 0<i<d-1, neNy.

By an analogous way as in the above, we obtain that if {z,,yni}n>0 is a
positive solution of (3.29,4) for every 0 < i < d — 1, then {@9,,n+k,i}tn>0 and
{Y2min+k,i}n>0 are eventually monotone for every 0 < k < 2m; — 1. Thus for
every 0 < k < 2m —1, {Zomn+k }n>0 and {Y2mn+k fn>0 are eventually monotone.
The proof is complete.

Remark 3.9. It follows from Theorem 3.8 that if A > 1 and {(zn,Yn)}n>—d
is a positive solution of (1.6), then for any 0 < k < 2m — 1, {Zanm+k }n>0 and
{Y2nm+k }n>0 are eventually monotone.

Remark 3.10. In [18], we showed that if a, A € (0,1) and k € N, then the
following equation

1 A

)
Tn—-1 Tpn—2k—1

(3.30) Ty, = max{

}

has a positive solution {zy,},>_2k_1 satisfying the following conditions:

(1) zonq1 = Az, o, for any n € N.

(2) zont2 = 1/29541 for any n € N.

(3) zont2 < 2oy, for any n € N.

Let ,, = yn = 2, for any n > —2k — 1. Then {(xy, yn) }n>—2k—1 is a solution
of the following equation
1 A 1 A

}, yn = max{ ——1}, n€Np.

3.31) x, = max ,
(3-31) ! t Tn—1 Tp_op_q

)
Yn—1 Yp_op—1
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