The convergence of the solutions of a system of max-type difference equations of higher order

Guangwang Su Taixiang Sun^{*} Bin Qin

College of Information and Statistics Guangxi Univresity of Finance and Economics Nanning, 530003 China stx1963@163.com

Abstract. In this paper, we study the convergence of the solutions of the following system of max-type difference equations

$$x_n = \max\{\frac{A}{y_{n-m}}, \frac{1}{y_{n-r}^{\alpha}}\}, \ y_n = \max\{\frac{A}{x_{n-m}}, \frac{1}{x_{n-r}^{\alpha}}\}, \ n = 0, 1, \dots,$$

where $m, r \in \{1, 2, \ldots\}, A \in (0, +\infty)$ and $\alpha \in (0, 1)$ and the initial values $x_{-d}, x_{-d+1}, \ldots, x_{-1}, y_{-d}, y_{-d+1}, \ldots, y_{-1} \in (0, +\infty)$ with $d = \max\{m, r\}$. We show that: (1) If $0 < A \leq 1$ and $\{(x_n, y_n)\}_{n \geq -d}$ is a solution of the above system, then $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1$; (2) If A > 1 and $\{(x_n, y_n)\}_{n \geq -d}$ is a solution of the above system, then for any $0 \leq k \leq 2m - 1, x_{2mn+k}$ and y_{2mn+k} are eventually monotone.

Keywords: System of max-type difference equations, positive solution, eventual monotonicity.

1. Introduction

Recently there has been a great interest in studying the properties of solutions of many max-type difference equations and systems, such as eventual periodicity, the boundedness character and eventual monotonicity (see [1-12]).

In 2009, Gelişken and Çinar [13] investigated the asymptotic behavior and the periodicity of the positive solutions of the following max-type difference equation

(1.1)
$$x_n = \max\{\frac{A}{x_{n-1}}, \frac{1}{x_{n-3}^{\alpha}}\}, n \in \mathbf{N}_0 \equiv \{0, 1, 2, \ldots\},\$$

where $A \in \mathbf{R}^+ \equiv (0, +\infty)$ and $\alpha \in (0, 1)$, and showed that every positive solution of (1.1) converges to 1 or is eventually periodic with period 2.

^{*.} Corresponding author

In 2012, we [14] studied the convergence of the positive solutions of the following max-type difference equation

(1.2)
$$x_n = \max\{\frac{A}{x_{n-m}}, \frac{1}{x_{n-k}^{\alpha}}\}, n \in \mathbf{N}_0,$$

where $A \in \mathbf{R}^+$, $m, k \in \mathbf{N} \equiv \{1, 2, \ldots\}$ and $\alpha \in (0, 1)$.

In 2008, Sun [15] studied the asymptotic behavior of the following max-type difference equation

(1.3)
$$x_n = \max\{\frac{A}{x_{n-1}^{\alpha}}, \frac{B}{x_{n-2}^{\beta}}\}, \ n \in \mathbf{N}_0,$$

where $A, B \in \mathbf{R}^+$ and $\alpha, \beta \in (0, 1)$, and showed that every positive solution of (1.3) converges to $\max\{1/A^{\frac{1}{\alpha+1}}, 1/B^{\frac{1}{\beta+1}}\}.$

In 2009, Stević [16] showed that every positive solution of the following maxtype difference equation

(1.4)
$$x_n = \max\{\frac{A_i}{x_{n-i}^{\alpha_i}} : 1 \le i \le k\}, \ n \in \mathbf{N}_0$$

converges to $\max\{1/A_i^{\frac{1}{\alpha_i+1}}: 1 \leq i \leq k\}$, where $A_i \in \mathbf{R}^+$ and $\alpha_i \in (0,1)$ for every $1 \leq i \leq k$.

In 2011, we [17] showed that every positive solution of the following max-type difference equation

(1.5)
$$x_n = \max\{\frac{A_i}{x_{n-m_i}^{\alpha_i}} : 1 \le i \le k\}, \ n \in \mathbf{N}_0$$

converges to $\max\{1/A_i^{\frac{1}{\alpha_i+1}}: 1 \le i \le k\}$, where $m_i \in \mathbf{N}$, $A_i \in \mathbf{R}^+$ and $\alpha_i \in (0,1)$ for every $1 \le i \le k$.

In this paper, we investigate the convergence of the following system of maxtype difference equations

(1.6)
$$x_n = \max\{\frac{A}{y_{n-m}}, \frac{1}{y_{n-r}^{\alpha}}\}, \quad y_n = \max\{\frac{A}{x_{n-m}}, \frac{1}{x_{n-r}^{\alpha}}\}, \quad n \in \mathbf{N}_0,$$

where $m, r \in \mathbf{N}, A \in \mathbf{R}^+$ and $\alpha \in (0, 1)$ and the initial values $x_{-d}, x_{-d+1}, \ldots, x_{-1}, y_{-d}, y_{-d+1}, \ldots, y_{-1} \in \mathbf{R}^+$ with $d = \max\{m, r\}$. We show that:

(1) If $0 < A \leq 1$ and $\{(x_n, y_n)\}_{n \geq -d}$ is a solution of (1.6), then $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 1$;

(2) If A > 1 and $\{(x_n, y_n)\}_{n \ge -d}$ is a solution of (1.6), then for any $0 \le k \le 2m - 1$, x_{2mn+k} and y_{2mn+k} are eventually monotone.

2. The case $0 < A \le 1$

In this section, we study the convergence of the solutions of (1.6) when $0 < A \leq 1$.

Let $\{(x_n, y_n)\}_{n \ge -d}$ be a solution of (1.6) with the initial values $x_{-d}, x_{-d+1}, \dots, x_{-1}, y_{-d}, y_{-d+1}, \dots, y_{-1} \in \mathbf{R}^+$. Then we obtain from (1.6) that for any $n \in \mathbf{N}_0$,

(2.1)
$$x_n y_{n-r}^{\alpha} \ge 1, \quad y_n x_{n-r}^{\alpha} \ge 1.$$

For all $n \ge d$, write

(2.2) $X_n = \max\{x_n, x_{n-1}, \dots, x_{n-2d}, 1\}, \quad Y_n = \max\{y_n, y_{n-1}, \dots, y_{n-2d}, 1\}.$

Lemma 2.1.

(1) $x_{n+1} \leq X_n$ and $y_{n+1} \leq Y_n$ for all $n \geq d$ and X_n, Y_n are decreasing $(n \geq d)$. (2) $x_n \geq A/Y_d$ and $y_n \geq A/X_d$ for any $n \geq d + m + 1$.

Proof. By (1.6) and (2.1), we obtain that for any $n \ge d$,

(2.3)
$$x_{n+1} = \max\{\frac{Ax_{n-m+1-r}^{\alpha}}{y_{n-m+1}x_{n-m+1-r}^{\alpha}}, \frac{x_{n-r+1-r}^{\alpha^2}}{y_{n-r+1}^{\alpha}x_{n-r+1-r}^{\alpha^2}}\} \\ \leq \max\{x_{n-m+1-r}^{\alpha}, x_{n-r+1-r}^{\alpha^2}\} \\ \leq \max\{x_{n-m+1-r}, x_{n-r+1-r}, 1\} \\ \leq X_n.$$

Thus

(2.4)
$$X_{n+1} = \max\{x_{n+1}, \dots, x_{n+1-2d}, 1\} \le \max\{x_{n+1}, X_n\} = X_n.$$

In same fashion, we also obtain that for any $n \ge d$,

(2.5)
$$y_{n+1} \le Y_n, \quad Y_{n+1} \le Y_n.$$

Hence it follows that for all $n \ge d + m + 1$,

(2.6)
$$x_n \ge \frac{A}{y_{n-m}} \ge \frac{A}{Y_{n-m-1}} \ge \frac{A}{Y_d}, \quad y_n \ge \frac{A}{x_{n-m}} \ge \frac{A}{X_{n-m-1}} \ge \frac{A}{X_d}.$$

The proof is complete.

By Lemma 2.1 we write

(2.7)
$$\liminf_{n \to \infty} y_n = y > 0, \quad \liminf_{n \to \infty} x_n = x > 0$$

and

(2.8)
$$\lim_{n \to \infty} X_n = X, \quad \lim_{n \to \infty} Y_n = Y.$$

Then

$$(2.9) X \ge 1, Y \ge 1.$$

Remark 2.2. Note that from (2.1) we see that there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$ or $y_{k_n} \ge 1$ for any $n \in \mathbb{N}$.

Lemma 2.3.

(1) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbf{N}$, then $\limsup_{n \to \infty} x_n = X$.

(2) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{k_n} \ge 1$ for any $n \in \mathbf{N}$, then $\limsup_{n \to \infty} y_n = Y$.

Proof. Assume that there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$. Then by Remark 2.2 we see that there exists a subsequence $x_{r_1}, x_{r_2}, \ldots, x_{r_n}, \ldots$ with $x_{r_n} = X_{k_n} \ge x_{k_n} \ge 1$ for any $n \in \mathbb{N}$, which implies

(2.10)
$$\limsup_{n \to \infty} x_n \ge X \ge 1$$

On the other hand, by $x_{n+1} \leq X_n$ for all $n \geq d$ we obtain

(2.11)
$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} X_n = X$$

Thus $\limsup_{n\to\infty} x_n = X$. The other case is treated similarly, so we omit the detail. The proof is complete.

Lemma 2.4. (1) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$, then X = y = 1.

(2) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{k_n} \ge 1$ for any $n \in \mathbf{N}$, then Y = x = 1.

Proof. Assume that there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$. Then by Lemma 2.1 we may assume that there exist $0 < m_1 < m_2 < \ldots < m_n < \ldots$ and $0 < s_1 < s_2 < \ldots < s_n < \ldots$ such that

(2.12)
$$y_{s_n} \rightarrow \liminf_{n \to \infty} y_n = y > 0,$$
$$x_{s_n - m} \rightarrow A_1,$$
$$x_{s_n - r} \rightarrow A_2,$$
$$x_{m_n} \rightarrow \limsup_{n \to \infty} x_n = X \ge 1,$$
$$y_{m_n - m} \rightarrow B_1,$$
$$y_{m_n - r} \rightarrow B_2.$$

By taking the limit in the following relationship

(2.13)
$$x_{m_n} = \max\{\frac{A}{y_{m_n-m}}, \frac{1}{y_{m_n-r}^{\alpha}}\}$$

as $n \to \infty$, it follows

(2.14)
$$X = \max\{\frac{A}{B_1}, \frac{1}{B_2^{\alpha}}\} \le \max\{\frac{A}{B_1}, \frac{1}{B_2}\} \le \frac{1}{y}.$$

Thus

$$(2.15) Xy \le 1$$

We claim X = 1. In fact, if X > 1, then by (2.15) and taking the limit in the following relationship

(2.16)
$$y_{s_n} = \max\{\frac{A}{x_{s_n-m}}, \frac{1}{x_{s_n-r}^{\alpha}}\}$$

as $n \to \infty$, we obtain

(2.17)
$$1 > \frac{1}{X} \ge y = \max\{\frac{A}{A_1}, \frac{1}{A_2^{\alpha}}\} \ge \frac{1}{A_2^{\alpha}} > \frac{1}{A_2} \ge \frac{1}{X},$$

which is a contradiction. This implies X = 1. Again by (2.15) and taking the limit in (2.16) as $n \to \infty$, we obtain

(2.18)
$$1 \ge y = \max\{\frac{A}{A_1}, \frac{1}{A_2^{\alpha}}\} \ge \frac{1}{A_2^{\alpha}} \ge \frac{1}{A_2} \ge \frac{1}{X} \ge 1.$$

Thus y = 1. The other case is treated similarly, so we omit the detail. The proof is complete.

Theorem 2.5. $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1.$

Proof. If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$ and there exists a sequence $0 < s_1 < s_2 < \ldots$ such that $y_{s_n} \ge 1$ for any $n \in \mathbb{N}$, then by Lemma 2.4 we have X = Y = x = y = 1, which implies $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1$.

If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$ and there exists a $N \in \mathbb{N}$ such that $y_n < 1$ for any $n \ge N$, then by Lemma 2.4 we have X = y = 1. Thus $1 = y \le \limsup_{n \to \infty} y_n \le 1$, which implies $\lim_{n \to \infty} y_n = 1$. By taking the limit in the following relationship

(2.19)
$$x_n = \max\{\frac{A}{y_{n-m}}, \frac{1}{y_{n-r}^{\alpha}}\}$$

as $n \to \infty$, it follows

(2.20)
$$\lim_{n \to \infty} x_n = \max\{\frac{A}{1}, \frac{1}{1}\} = 1.$$

In same fashion, we also show that if there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{k_n} \ge 1$ for any $n \in \mathbb{N}$ and there exists a $N \in \mathbb{N}$ such that $x_n < 1$ for any $n \ge N$, then $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1$. The proof is complete. \Box

2. The case A > 1

In this section, we study the convergence of the solutions of (1.6) when A > 1. Let $x_n = \sqrt{A}x'_n, y_n = \sqrt{A}y'_n$ and $A' = 1/A^{\frac{1+\alpha}{2}}$. Then (1.6) reduces to the system of the following difference equations

$$x'_n = \max\{\frac{1}{y'_{n-m}}, \frac{A'}{y'_{n-r}}\}, \quad y'_n = \max\{\frac{1}{x'_{n-m}}, \frac{A'}{x'_{n-r}}\}, \quad n \in \mathbf{N}_0.$$

In the following, we study the system of the following difference equations

(3.1)
$$x_n = \max\{\frac{1}{y_{n-m}}, \frac{A}{y_{n-r}^{\alpha}}\}, \quad y_n = \max\{\frac{1}{x_{n-m}}, \frac{A}{x_{n-r}^{\alpha}}\}, \quad n \in \mathbf{N}_0$$

where $A \in (0, 1)$. Let $\{(x_n, y_n)\}_{n \ge -d}$ be a solution of (3.1) with the initial values $x_{-d}, x_{-d+1}, \ldots, x_{-1}, y_{-d}, y_{-d+1}, \ldots, y_{-1} \in \mathbf{R}^+$. Then we have from (3.1) that for any $n \in \mathbf{N}_0$,

(3.2)
$$x_n y_{n-m} \ge 1, \quad y_n x_{n-m} \ge 1.$$

By (3.1) and (3.2) we obtain the following statements: (S_1) For any $n \ge d$,

(3.3)
$$x_n \le \max\{x_{n-2m}, Ax_{n-r-m}^{\alpha}\}, \quad y_n \le \max\{y_{n-2m}, Ay_{n-r-m}^{\alpha}\}.$$

(S₂) If
$$x_n = 1/y_{n-m}$$
 (resp. $y_n = 1/x_{n-m}$) for some $n \ge m$, then

(3.4)
$$x_n = \frac{x_{n-2m}}{y_{n-m}x_{n-2m}} \le x_{n-2m} \text{ (resp. } y_n \le y_{n-2m} \text{)}.$$

(S₃) If $x_n = A/y_{n-r}^{\alpha} > 1/y_{n-m}$ (resp. $y_n = A/x_{n-r}^{\alpha} > 1/x_{n-m}$) for some $n \ge d$, then

(3.5)

$$\begin{aligned}
x_{n-2m} &< x_{n-2m} x_n y_{n-m} \\
&= \max\{x_n, \frac{x_n x_{n-2m} y_{n-r}^{\alpha} A}{x_{n-r-m}^{\alpha} y_{n-r}^{\alpha}}\} \\
&\leq \max\{x_n, x_{n-2m} A^2\} \\
&= x_n \\
(\text{resp. } y_{n-2m} &\leq y_n).
\end{aligned}$$

Lemma 3.1. If there exists $M \in \mathbb{N}$ such that $\{y_{M+2mn}\}_{n\geq 0}$ (respectively $\{x_{M+2mn}\}_{n\geq 0}$) is monotone, then $\{x_{M+2mn+r}\}_{n\geq 0}$ (respectively $\{y_{M+2mn+r}\}_{n\geq 0}$) is eventually monotone.

Proof. If there exists $K \in \mathbf{N}$ such that $x_{M+2mn+r} = 1/y_{M+2mn-m+r}$ for all $n \geq K$, then by (3.4) we know that $x_{M+2mn+r} \leq x_{M+2m(n-1)+r}$ for all $n \geq K$. Thus $\{x_{M+2mn+r}\}_{n\geq K}$ is decreasing.

If there exists $K \in \mathbf{N}$ such that $x_{M+2mn+r} > 1/y_{M+2mn-m+r}$ for all $n \ge K$, then by (3.5) we know that $x_{M+2mn+r} > x_{M+2m(n-1)+r}$ for all $n \ge K$. Thus $\{x_{M+2mn+r}\}_{n\ge K}$ is increasing.

In the following, we assume that there exists a sequence $1 < s_1 < t_1 < s_2 < s_2 < s_1 < s_2 < s_2$ $t_2 < \ldots < s_n < t_n < \ldots$ such that

(3.6)
$$x_{M+2mk+r} = \frac{A}{y_{M+2mk}^{\alpha}} > \frac{1}{y_{M+2mk+r-m}}, \text{ for every } s_n \le k < t_n$$

and

(3.7)
$$x_{M+2mk+r} = \frac{1}{y_{M+2mk+r-m}}, \text{ for every } t_n \le k < s_{n+1}.$$

By (3.5) we see that for any $n \in \mathbf{N}$,

(3.8)
$$x_{M+2ms_{n+1}+r} = \frac{A}{y_{M+2ms_{n+1}}^{\alpha}} > x_{M+2m(s_{n+1}-1)+r} \ge \frac{A}{y_{M+2m(s_{n+1}-1)}^{\alpha}}$$

Then $y_{M+2ms_{n+1}} < y_{M+2m(s_{n+1}-1)}$ and $\{y_{M+2mn}\}_{n\geq 0}$ is decreasing. For every $s_n \leq k < t_n$, by (3.5) we have $x_{M+2m(k-1)+r} < x_{M+2mk+r}$. For every $t_n \leq k < s_{n+1}$, it follows from $A^2 < 1 \leq y_{M+2mk}^{\alpha} x_{M+2mk-m}^{\alpha}$ and (3.4) that

(3.9)
$$\frac{A}{y_{M+2mk}^{\alpha}} \geq \frac{A}{y_{M+2m(t_n-1)}^{\alpha}} = x_{M+2m(t_n-1)+r} \\
\geq x_{M+2mk+r} = \frac{1}{y_{M+2mk+r-m}} \\
= \min\{x_{M+2m(k-1)+r}, \frac{x_{M+2mk-m}^{\alpha}}{A}\} \\
= x_{M+2m(k-1)+r} \geq x_{M+2mk+r},$$

which implies $x_{M+2m(k-1)+r} = x_{M+2mk+r}$. Thus $\{x_{M+2mn+r}\}_{n\geq 0}$ is eventually increasing. The other case is treated similarly, so we omit the detail. The proof is complete.

For all $n \geq d$, write

$$(3.10) \ X_n = \max\{x_n, x_{n-1}, \dots, x_{n-2d}, 1\}, \quad Y_n = \max\{y_n, y_{n-1}, \dots, y_{n-2d}, 1\}.$$

Lemma 3.2. $x_{n+1} \leq X_n$ and $y_{n+1} \leq Y_n$ for all $n \geq d$ and X_n, Y_n are decreasing $(n \ge d).$

Proof. By (3.3) we obtain that for any $n \ge d$,

(3.11)
$$\begin{aligned} x_{n+1} &\leq \max\{x_{n-2m+1}, x_{n-r+1-m}, 1\} \leq X_n, \\ y_{n+1} &\leq \max\{y_{n-2m+1}, y_{n-r+1-m}, 1\} \leq Y_n. \end{aligned}$$

Thus

(3.12)
$$\begin{aligned} X_{n+1} &= \max\{x_{n+1}, \dots, x_{n+1-2d}, 1\} \leq \max\{x_{n+1}, X_n\} = X_n, \\ Y_{n+1} &= \max\{y_{n+1}, \dots, y_{n+1-2d}, 1\} \leq \max\{y_{n+1}, Y_n\} = Y_n. \end{aligned}$$

The proof is complete.

By Lemma 3.2 we write

(3.13)
$$\lim_{n \to \infty} X_n = X, \quad \lim_{n \to \infty} Y_n = Y.$$

Then

$$(3.14) X \ge 1, Y \ge 1.$$

Remark 3.3. Note that from (3.2) we see that there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$ or $y_{k_n} \ge 1$ for any $n \in \mathbb{N}$.

Lemma 3.4. (1) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbb{N}$, then:

- (i) $\limsup_{n \to \infty} x_n = X$.
- (ii) There exists a $M \in \mathbf{N}$ such that x_{M+2nm} is decreasing with $\lim_{n\to\infty} x_{M+2nm} = X$ and $x_{M+2nm} = 1/y_{M+2nm-m}$.

(2) If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{k_n} \ge 1$ for any $n \in \mathbb{N}$, then

- (i) $\limsup_{n \to \infty} y_n = Y$.
- (ii) There exists a $M \in \mathbf{N}$ such that y_{M+2nm} is decreasing with $\lim_{n\to\infty} y_{M+2nm} = Y$ and $y_{M+2nm} = 1/x_{M+2nm-m}$.

Proof. If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{k_n} \ge 1$ for any $n \in \mathbf{N}$, then there exists a subsequence $x_{r_1}, x_{r_2}, \ldots, x_{r_n}, \ldots$ with $x_{r_n} = X_{k_n} \ge x_{k_n} \ge 1$ for any $n \in \mathbf{N}$. Thus we see that $x_{r_n} = X_{k_n} \ge X$ and

$$\limsup_{n \to \infty} x_n \ge X \ge 1.$$

On the other hand, by $x_{n+1} \leq X_n$ for all $n \geq d$ we obtain

(3.16)
$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} X_n = X$$

Thus $\limsup_{n \to \infty} x_n = X$.

By $\limsup_{n\to\infty} x_n = X$ we see that there exists a $N \in \mathbf{N}$ such that $x_n < X/A < (X/A)^{\frac{1}{\alpha}}$ for any $n \ge N$. Then $Ax_n^{\alpha} < X$ for any $n \ge N$. We can assume that there exist a sequence $N + 2d \le r_1 < r_2 < \ldots < r_n < \ldots$ and some $0 \le c < 2m$ such that $x_{2r_nm+c} \ge X$ and

(3.17)
$$\lim_{n \to \infty} x_{2k_n m + c} = X.$$

From (3.3) we have

(3.18)
$$X \leq x_{2mr_n+c} \leq x_{2mr_n-2m+c} \leq \dots$$
$$\leq x_{2mr_{n-1}+c} \leq x_{2mr_{n-1}-2m+c} \leq \dots$$
$$\dots$$
$$\leq x_{2mr_1+c}.$$

Let $M = 2mr_1 + c$. Then x_{M+2nm} is decreasing and $\lim_{n\to\infty} x_{M+2nm} = X$. By (3.2) we obtain

(3.19)
$$\frac{A}{y_{M+2mn-r}^{\alpha}} \le A x_{M+2mn-m-r}^{\alpha} < X \le x_{M+2nm}.$$

Then $x_{M+2nm} = 1/y_{M+2nm-m}$. The other case is treated similarly, so we omit the detail. The proof is complete.

If m and r are odd and (1) of Lemma 3.4 holds, then for all $n \ge d$, write

(3.20)
$$\begin{aligned} X'_n &= \max\{x_{M+2n-1}, x_{M+2n-3}, \dots, x_{M+2n-2d-1}, 1\}, \\ Y'_n &= \max\{y_{M+2n}, y_{M+2n-2}, \dots, y_{M+2n-2d}, 1\}. \end{aligned}$$

If m and r are odd and (2) of Lemma 3.4 holds, then for all $n \ge d$, write

(3.21)
$$\begin{aligned} X'_n &= \max\{x_{M+2n}, x_{M+2n-2}, \dots, x_{M+2n-2d}, 1\}, \\ Y'_n &= \max\{y_{M+2n-1}, y_{M+2n-3}, \dots, y_{M+2n-2d-1}, 1\}. \end{aligned}$$

where M is as in Lemma 3.4.

Lemma 3.5. If (1) of Lemma 3.4 holds, then $x_{M+2n+1} \leq X'_n$ and $y_{M+2n+2} \leq Y'_n$ for all $n \geq d$ and X'_n, Y'_n are decreasing $(n \geq d)$. If (2) of Lemma 3.4 holds, then $x_{M+2n+2} \leq X'_n$ and $y_{M+2n+1} \leq Y'_n$ for all $n \geq d$ and X'_n, Y'_n are decreasing $(n \geq d)$.

Proof. If (1) of Lemma 3.4 holds, then by (3.3) we obtain that for any $n \ge d$,

(3.22)
$$\begin{array}{rcl} x_{M+2n+1} &\leq & \max\{x_{M+2n-2m+1}, x_{M+2n-r+1-m}, 1\} \leq X'_n, \\ y_{M+2n+2} &\leq & \max\{y_{M+2n-2m+2}, y_{M+2n-r+2-m}, 1\} \leq Y'_n. \end{array}$$

Thus

(3.23)
$$\begin{aligned} X'_{n+1} &= \max\{x_{M+2n+1}, \dots, x_{M+2n+1-2d}, 1\} \leq X'_n, \\ Y'_{n+1} &= \max\{y_{M+2n+2}, \dots, y_{M+2n+2-2d}, 1\} \leq Y'_n. \end{aligned}$$

The other case is treated similarly, so we omit the detail. The proof is complete. Let

(3.24)
$$\lim_{n \to \infty} X'_n = X', \quad \lim_{n \to \infty} Y'_n = Y'.$$

Remark 3.6. Note that from (3.2) we see that there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{M+2k_n-1} \ge 1$ for any $n \in \mathbb{N}$ or $y_{M+2k_n} \ge 1$ for any $n \in \mathbb{N}$ or $x_{M+2k_n} \ge 1$ for any $n \in \mathbb{N}$ or $y_{M+2k_n-1} \ge 1$ for any $n \in \mathbb{N}$.

Using arguments similar to ones developed in the proof of Lemma 2.4, we can show the following Lemma 3.7.

Lemma 3.7. (1) Assume that (1) of Lemma 3.4 holds. If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{M+2k_n-1} \ge 1$ for any $n \in \mathbb{N}$, then

- (i) $\limsup_{n \to \infty} x_{M+2n-1} = X'$.
- (ii) There exists a $N \in \mathbf{N}$ such that $x_{M+2N+2nm-1}$ is decreasing with $\lim_{n\to\infty} x_{M+2N+2nm-1} = X'$ and $x_{M+2N+2nm-1} = 1/y_{M+2N+2nm-1-m}$.

If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{M+2k_n} \ge 1$ for any $n \in \mathbf{N}$, then

- (iii) $\limsup_{n \to \infty} y_{M+2n} = Y'.$
- (iv) There exists a $N \in \mathbf{N}$ such that $y_{M+2N+2nm}$ is decreasing with $\lim_{n\to\infty} y_{M+2N+2nm} = Y'$ and $y_{M+2N+2nm} = 1/x_{M+2N+2nm-m}$.

(2) Assume that (2) of Lemma 3.4 holds. If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $x_{M+2k_n} \ge 1$ for any $n \in \mathbf{N}$, then

- (i) $\limsup_{n \to \infty} x_{M+2n} = X'$.
- (ii) There exists a $N \in \mathbf{N}$ such that $x_{M+2N+2nm}$ is decreasing with $\lim_{n\to\infty} x_{M+2N+2nm} = X'$ and $x_{M+2N+2nm} = 1/y_{M+2N+2nm-m}$.

If there exists a sequence $0 < k_1 < k_2 < \ldots$ such that $y_{M+2k_n-1} \ge 1$ for any $n \in \mathbf{N}$, then

- (iii) $\limsup_{n \to \infty} y_{M+2n-1} = Y'.$
- (iv) There exists a $N \in \mathbf{N}$ such that $y_{M+2N+2nm-1}$ is decreasing with $\lim_{n\to\infty} y_{M+2N+2nm-1} = Y'$ and $y_{M+2N+2nm-1} = 1/x_{M+2N+2nm-1-m}$.

Theorem 3.8. For any $0 \le k \le 2m - 1$, $\{x_{2nm+k}\}_{n\ge 0}$ and $\{y_{2nm+k}\}_{n\ge 0}$ are eventually monotone.

Proof. First we suppose that gcd(m, r) = 1.

If m is even and r is odd, or m is odd and r is even, then by Lemma 3.4 there are two cases to consider.

Case 1. There exists a $M \in \mathbf{N}$ such that x_{M+2nm} is decreasing and $x_{M+2nm} = 1/y_{M+2nm-m}$. Using Lemma 3.1 repeatedly, it follows that for every $0 \le k \le m-1$, $\{x_{M+2nm+2kr}\}_{n\ge 0}$, $\{x_{M+2nm+(2k+1)r-m}\}_{n\ge 0}$, $\{y_{M+2nm+(2k+1)r}\}_{n\ge 0}$ and $\{y_{M+2nm+2kr-m}\}_{n\ge 0}$ are eventually monotone.

Case 2. There exists a $M \in \mathbb{N}$ such that y_{M+2nm} is decreasing and $y_{M+2nm} = 1/x_{M+2nm-m}$. Using Lemma 3.1 repeatedly, it follows that for every $0 \le k \le 1$

 $m-1, \{y_{M+2nm+2kr}\}_{n\geq 0}, \{y_{M+2nm+(2k+1)r-m}\}_{n\geq 0}, \{x_{M+2nm+(2k+1)r}\}_{n\geq 0}$ and $\{x_{M+2nm+2kr-m}\}_{n\geq 0}$ are eventually monotone.

Since gcd(m, r) = 1, it follows that

$$(3.25) \qquad \{2kr: 0 \le k \le m-1\} = \{0, 2, \dots, 2m-2\} \pmod{2m},\$$

which implies

$$(3.26) \qquad \{2kr + r - m : 0 \le k \le m - 1\} = \{1, 3, \dots, 2m - 1\} \pmod{2m}$$

and

$$\{2kr + r : 0 \le k \le m - 1\} \cup \{2kr - m : 0 \le k \le m - 1\}$$

(3.27)
$$= \{0, 1, 2, \dots, 2m - 1\} \pmod{2m}.$$

Thus $\{x_{M+2nm+k}\}_{n\geq 0}$ and $\{y_{M+2nm+k}\}_{n\geq 0}$ are eventually monotone for every $k \in \{0, 1, 2, \ldots, 2m-1\}$. In the following, we assume that m and r are odd. Then by Lemma 3.7 there are four cases to consider.

Case 1. There exist $M, N \in \mathbf{N}$ such that x_{M+2nm} and $x_{M+2N+2nm-1}$ are decreasing. Using Lemma 3.1 repeatedly, it follows that for every $0 \leq k \leq m-1$, $\{x_{M+2nm+2kr}\}_{n\geq 0}$, $\{x_{M+2N+2nm+2kr-1}\}_{n\geq 0}$, $\{y_{M+2nm+(2k+1)r}\}_{n\geq 0}$ and $\{y_{M+2N+2nm+(2k+1)r-1}\}_{n\geq 0}$ are eventually monotone.

Case 2. There exist $M, N \in \mathbf{N}$ such that x_{M+2nm} and $y_{M+2N+2nm}$ are decreasing. Using Lemma 3.1 repeatedly, it follows that for every $0 \leq k \leq m-1$, $\{x_{M+2nm+2kr}\}_{n\geq 0}$, $\{x_{M+2N+2nm+(2k+1)r}\}_{n\geq 0}$, $\{y_{M+2nm+(2k+1)r}\}_{n\geq 0}$ and $\{y_{M+2N+2nm+2kr}\}_{n\geq 0}$ are eventually monotone.

Case 3. There exist $M, N \in \mathbf{N}$ such that y_{M+2nm} and $y_{M+2N+2nm-1}$ are decreasing. Using Lemma 3.1 repeatedly, it follows that for every $0 \leq k \leq m-1$, $\{y_{M+2nm+2kr}\}_{n\geq 0}$, $\{y_{M+2N+2nm+2kr-1}\}_{n\geq 0}$, $\{x_{M+2nm+(2k+1)r}\}_{n\geq 0}$ and $\{x_{M+2N+2nm+(2k+1)r-1}\}_{n\geq 0}$ are eventually monotone.

Case 4. There exist $M, N \in \mathbb{N}$ such that y_{M+2nm} and $x_{M+2N+2nm}$ are decreasing. Using Lemma 3.1 repeatedly, it follows that for every $0 \leq k \leq m-1$, $\{y_{M+2nm+2kr}\}_{n\geq 0}$, $\{y_{M+2N+2nm+(2k+1)r}\}_{n\geq 0}$, $\{x_{M+2nm+(2k+1)r}\}_{n\geq 0}$ and $\{x_{M+2N+2nm+2kr}\}_{n\geq 0}$ are eventually monotone.

Since gcd(m, r) = 1, it follows that

$$\{2kr: 0 \le k \le m-1\} \cup \{2N+2kr-1: 0 \le k \le m-1\} \\ = \{(2k+1)r: 0 \le k \le m-1\} \cup \{2N+(2k+1)r-1: 0 \le k \le m-1\} \\ = \{2kr: 0 \le k \le m-1\} \cup \{2N+(2k+1)r: 0 \le k \le m-1\} \\ = \{(2k+1)r: 0 \le k \le m-1\} \cup \{2N+2kr: 0 \le k \le m-1\} \\ = \{0, 1, 2, \dots, 2m-1\} \mod 2m.$$

Thus $\{x_{M+2nm+k}\}_{n\geq 0}$ and $\{y_{M+2nm+k}\}_{n\geq 0}$ are eventually monotone for every $k \in \{0, 1, 2, \dots, 2m-1\}.$

If gcd(m, r) = d > 1, then we write $m = dm_1$ and $r = dr_1$ with $gcd(m_1, r_1) = 1$. Consider the system of difference equations

(3.29)
$$x_n = \max\{\frac{1}{y_{n-dm_1}}, \frac{A}{y_{n-dr_1}^{\alpha}}\}, \quad y_n = \max\{\frac{1}{x_{n-dm_1}}, \frac{A}{x_{n-dr_1}^{\alpha}}\}, \quad n \in \mathbf{N}_0.$$

Write $x_{n,i} = x_{nd+i}$ and $y_{n,i} = y_{nd+i}$ for every $0 \le i \le d-1$ and $n \in \mathbb{N}_0$. Then (3.29) reduces to the equations

(3.29,i)
$$\begin{aligned} x_{n,i} &= \max\{\frac{1}{y_{n-m_{1},i}}, \frac{A}{y_{n-r_{1},i}^{\alpha}}\}, \quad y_{n,i} &= \max\{\frac{1}{x_{n-m_{1},i}}, \frac{A}{x_{n-r_{1},i}^{\alpha}}\}, \\ 0 &\leq i \leq d-1, \ n \in \mathbf{N}_{0}. \end{aligned}$$

By an analogous way as in the above, we obtain that if $\{x_{n,i}, y_{n,i}\}_{n\geq 0}$ is a positive solution of (3.29, i) for every $0 \leq i \leq d-1$, then $\{x_{2m_1n+k,i}\}_{n\geq 0}$ and $\{y_{2m_1n+k,i}\}_{n\geq 0}$ are eventually monotone for every $0 \leq k \leq 2m_1 - 1$. Thus for every $0 \leq k \leq 2m - 1$, $\{x_{2mn+k}\}_{n\geq 0}$ and $\{y_{2mn+k}\}_{n\geq 0}$ are eventually monotone. The proof is complete.

Remark 3.9. It follows from Theorem 3.8 that if A > 1 and $\{(x_n, y_n)\}_{n \ge -d}$ is a positive solution of (1.6), then for any $0 \le k \le 2m - 1$, $\{x_{2nm+k}\}_{n \ge 0}$ and $\{y_{2nm+k}\}_{n \ge 0}$ are eventually monotone.

Remark 3.10. In [18], we showed that if $\alpha, A \in (0, 1)$ and $k \in \mathbb{N}$, then the following equation

(3.30)
$$x_n = \max\{\frac{1}{x_{n-1}}, \frac{A}{x_{n-2k-1}}\}$$

has a positive solution $\{z_n\}_{n \ge -2k-1}$ satisfying the following conditions:

- (1) $z_{2n+1} = A z_{2n-2k-1}^{\alpha}$ for any $n \in \mathbf{N}$.
- (2) $z_{2n+2} = 1/z_{2n+1}$ for any $n \in \mathbf{N}$.
- (3) $z_{2n+2} < z_{2n}$ for any $n \in \mathbf{N}$.

Let $x_n = y_n = z_n$ for any $n \ge -2k-1$. Then $\{(x_n, y_n)\}_{n\ge -2k-1}$ is a solution of the following equation

(3.31)
$$x_n = \max\{\frac{1}{y_{n-1}}, \frac{A}{y_{n-2k-1}^{\alpha}}\}, \quad y_n = \max\{\frac{1}{x_{n-1}}, \frac{A}{x_{n-2k-1}^{\alpha}}\}, n \in \mathbb{N}_0.$$

Acknowledgements

Project supported by NNSF of China (11761011) and NSF of Guangxi (2018GXNS-FAA294010, 2016GXNSFAA380286) and SF of Guangxi University of Finance and Economics (2019QNB10).

References

- [1] E. M. Elsayed, B. D. Iričanin, and S. Stević, On the max-type equation $x_{n+1} = \max\{A_n/x_n, x_{n-1}\}$, Ars Combinatoria, 95 (2010), 187-192.
- [2] T. Sauer, Global convergence of max-type equations, Journal of Difference Equations and Applications, 17 (2011), 1-8.
- [3] M. Sharif and A. Jawad, Interacting generalized dark energy and reconstruction of scalar field models, Modern Physics Letters A, 28 (2013), 38, Article ID 1350180.
- [4] S. Stević, On a generalized max-type difference equation from automatic control theory, Nonlinear Analysis. Theory, Methods and Applications. An International Multidisciplinary Journal, 72 (2010), 3-4, 1841-1849.
- [5] S. Stević, Periodicity of max difference equations, Utilitas Mathematica, 83 (2010), 69-71.
- [6] S. Stević, Product-type system of difference equations of second-order solvable in closed form, Electronic Journal of Qualitative Theory of Differential Equations, 1-16, 2015.
- [7] S. Stević, M. A. Alghamdi, A. Alotaibi, and N. Shahzad, Boundedness character of a max-type system of difference equations of second order, Electronic Journal of Qualitative Theory of Differential Equations, 45 (2014), 1-12.
- [8] G. Su, T. Sun, and B. Qin, Eventually periodic solutions of a max-type system of difference equations of higher order, Discrete Dynamics in Nature and Society, Article ID 8467682, 2018.
- [9] T. Sun, J. Liu, Q. He, X. Liu, and C. Tao, Eventually periodic solutions of a max-type difference equation, The Scientific World Journal, Article ID 219437, 2014.
- [10] T. Sun, B. Qin, H. Xi, and C. Han, Global behavior of the max-type difference equation $x_{n+1} = \max\{1/x_n, A_n/x_{n-1}\}$, Abstract and Applied Analysis, Article ID 152964, 2009.
- [11] T. Sun, H. Xi, C. Han, and B. Qin, Dynamics of the max-type difference equation $x_{n+1} = \max\{1/x_{n-m}, A_n/x_{n-r}\}$, Journal of Applied Mathematics and Computing, 38 (2012), 173-180.
- [12] Q. Xiao and Q. Shi, Eventually periodic solutions of a max-type equation, Mathematical and Computer Modelling, 57 (2013), 3-4, 992-996.

- [13] A. Gelişken and C. Çinar, On the global attractivity of a max-type difference equation, Discrete Dynamics in Nature and Society, Article ID 812674, 2009.
- [14] T. Sun, H. Xi, and B. Qin, Global behavior of the max-type difference equation $x_{n+1} = \max\{A/x_{n-m}, 1/x_{n-k}^{\alpha}\}$, Journal of Concrete and Applicable Mathematics, 10 (2012), 1-2, 32-39.
- [15] F. Sun, On the asymptotic behavior of a difference equation with maximum, Discrete Dynamics in Nature and Society, Article ID 243291, 2008.
- [16] S. Stević, Global stability of a difference equation with maximum, Applied Mathematics and Computation, 210 (2009), 525-529.
- [17] B. Qin, T. Sun, and H. Xi, Global behavior of the max-type difference equation $x_n = \max\{A_1/x_{n-m_1}^{\alpha_1}, A_2/x_{n-m_2}^{\alpha_2}, \dots, A_k/x_{n-m_k}^{\alpha_k}\}$, International Journal of Mathematical Analysis, 5 (2011), 1859-1865.
- [18] T. Sun and G. Su, Dynamics of a difference equation with maximum, Journal of Computational Analysis and Applications, 23 (2017), 401-407.

Accepted: 29.11.2018