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Abstract. In this paper, we study the convergence of the solutions of the following
system of max-type difference equations

xn = max{ A

yn−m
,

1

yαn−r

}, yn = max{ A

xn−m
,

1

xα
n−r

}, n = 0, 1, . . . ,

wherem, r ∈ {1, 2, . . .}, A ∈ (0,+∞) and α ∈ (0, 1) and the initial values x−d, x−d+1, . . . ,
x−1, y−d, y−d+1, . . . , y−1 ∈ (0,+∞) with d = max{m, r}. We show that: (1) If 0 < A ≤
1 and {(xn, yn)}n≥−d is a solution of the above system, then limn→∞ xn = limn→∞ yn =
1; (2) If A > 1 and {(xn, yn)}n≥−d is a solution of the above system, then for any
0 ≤ k ≤ 2m− 1, x2mn+k and y2mn+k are eventually monotone.

Keywords: System of max-type difference equations, positive solution, eventual
monotonicity.

1. Introduction

Recently there has been a great interest in studying the properties of solutions of
many max-type difference equations and systems, such as eventual periodicity,
the boundedness character and eventual monotonicity (see [1-12]).

In 2009, Gelişken and Çinar [13] investigated the asymptotic behavior and
the periodicity of the positive solutions of the following max-type difference
equation

(1.1) xn = max{ A

xn−1
,

1

xαn−3

}, n ∈ N0 ≡ {0, 1, 2, . . .},

where A ∈ R+ ≡ (0,+∞) and α ∈ (0, 1), and showed that every positive
solution of (1.1) converges to 1 or is eventually periodic with period 2.
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In 2012, we [14] studied the convergence of the positive solutions of the
following max-type difference equation

(1.2) xn = max{ A

xn−m
,

1

xαn−k

}, n ∈ N0,

where A ∈ R+, m, k ∈ N ≡ {1, 2, . . .} and α ∈ (0, 1).

In 2008, Sun [15] studied the asymptotic behavior of the following max-type
difference equation

(1.3) xn = max{ A

xαn−1

,
B

xβn−2

}, n ∈ N0,

where A,B ∈ R+ and α, β ∈ (0, 1), and showed that every positive solution of

(1.3) converges to max{1/A
1

α+1 , 1/B
1

β+1 }.
In 2009, Stević [16] showed that every positive solution of the following max-

type difference equation

(1.4) xn = max{ Ai

xαi
n−i

: 1 ≤ i ≤ k}, n ∈ N0

converges to max{1/A
1

αi+1

i : 1 ≤ i ≤ k}, where Ai ∈ R+ and αi ∈ (0, 1) for
every 1 ≤ i ≤ k.

In 2011, we [17] showed that every positive solution of the following max-type
difference equation

(1.5) xn = max{ Ai

xαi
n−mi

: 1 ≤ i ≤ k}, n ∈ N0

converges to max{1/A
1

αi+1

i : 1 ≤ i ≤ k}, where mi ∈ N, Ai ∈ R+ and αi ∈ (0, 1)
for every 1 ≤ i ≤ k.

In this paper, we investigate the convergence of the following system of max-
type difference equations

(1.6) xn = max{ A

yn−m
,

1

yαn−r

}, yn = max{ A

xn−m
,

1

xαn−r

}, n ∈ N0,

wherem, r ∈ N, A ∈ R+ and α ∈ (0, 1) and the initial values x−d, x−d+1, . . . , x−1,
y−d, y−d+1, . . . , y−1 ∈ R+ with d = max{m, r}. We show that:

(1) If 0 < A ≤ 1 and {(xn, yn)}n≥−d is a solution of (1.6), then limn→∞ xn =
limn→∞ yn = 1;

(2) If A > 1 and {(xn, yn)}n≥−d is a solution of (1.6), then for any 0 ≤ k ≤
2m− 1, x2mn+k and y2mn+k are eventually monotone.
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2. The case 0 < A ≤ 1

In this section, we study the convergence of the solutions of (1.6) when 0<A≤1.

Let {(xn, yn)}n≥−d be a solution of (1.6) with the initial values x−d, x−d+1,
. . . , x−1, y−d, y−d+1, . . . , y−1 ∈ R+. Then we obtain from (1.6) that for any
n ∈ N0,

(2.1) xny
α
n−r ≥ 1, ynx

α
n−r ≥ 1.

For all n ≥ d, write

(2.2) Xn = max{xn, xn−1, . . . , xn−2d, 1}, Yn = max{yn, yn−1, . . . , yn−2d, 1}.

Lemma 2.1.

(1) xn+1 ≤ Xn and yn+1 ≤ Yn for all n ≥ d and Xn, Yn are decreasing
(n ≥ d).

(2) xn ≥ A/Yd and yn ≥ A/Xd for any n ≥ d+m+ 1.

Proof. By (1.6) and (2.1), we obtain that for any n ≥ d,

(2.3)

xn+1 = max{ Axα
n−m+1−r

yn−m+1xα
n−m+1−r

,
xα2

n−r+1−r

yαn−r+1x
α2
n−r+1−r

}

≤ max{xαn−m+1−r, x
α2

n−r+1−r}
≤ max{xn−m+1−r, xn−r+1−r, 1}
≤ Xn.

Thus

(2.4) Xn+1 = max{xn+1, . . . , xn+1−2d, 1} ≤ max{xn+1, Xn} = Xn.

In same fashion, we also obtain that for any n ≥ d,

(2.5) yn+1 ≤ Yn, Yn+1 ≤ Yn.

Hence it follows that for all n ≥ d+m+ 1,

(2.6) xn ≥ A

yn−m
≥ A

Yn−m−1
≥ A

Yd
, yn ≥ A

xn−m
≥ A

Xn−m−1
≥ A

Xd
.

The proof is complete. �
By Lemma 2.1 we write

(2.7) lim inf
n→∞

yn = y > 0, lim inf
n→∞

xn = x > 0

and

(2.8) lim
n→∞

Xn = X, lim
n→∞

Yn = Y.



90 GUANGWANG SU, TAIXIANG SUN and BIN QIN

Then

(2.9) X ≥ 1, Y ≥ 1.

Remark 2.2. Note that from (2.1) we see that there exists a sequence 0 <
k1 < k2 < . . . such that xkn ≥ 1 for any n ∈ N or ykn ≥ 1 for any n ∈ N.

Lemma 2.3.
(1) If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1 for any

n ∈ N, then lim supn→∞ xn = X.
(2) If there exists a sequence 0 < k1 < k2 < . . . such that ykn ≥ 1 for any

n ∈ N, then lim supn→∞ yn = Y .

Proof. Assume that there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1
for any n ∈ N. Then by Remark 2.2 we see that there exists a subsequence
xr1 , xr2 , . . . , xrn , . . . with xrn = Xkn ≥ xkn ≥ 1 for any n ∈ N, which implies

(2.10) lim sup
n→∞

xn ≥ X ≥ 1.

On the other hand, by xn+1 ≤ Xn for all n ≥ d we obtain

(2.11) lim sup
n→∞

xn ≤ lim sup
n→∞

Xn = X.

Thus lim supn→∞ xn = X. The other case is treated similarly, so we omit the
detail. The proof is complete. �

Lemma 2.4. (1) If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1
for any n ∈ N, then X = y = 1.

(2) If there exists a sequence 0 < k1 < k2 < . . . such that ykn ≥ 1 for any
n ∈ N, then Y = x = 1.

Proof. Assume that there exists a sequence 0 < k1 < k2 < . . . such that
xkn ≥ 1 for any n ∈ N. Then by Lemma 2.1 we may assume that there exist
0 < m1 < m2 < . . . < mn < . . . and 0 < s1 < s2 < . . . < sn < . . . such that

(2.12)

ysn → lim infn→∞ yn = y > 0,
xsn−m → A1,
xsn−r → A2,
xmn → lim supn→∞ xn = X ≥ 1,

ymn−m → B1,
ymn−r → B2.

By taking the limit in the following relationship

(2.13) xmn = max{ A

ymn−m
,

1

yαmn−r

}
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as n → ∞, it follows

(2.14) X = max{ A

B1
,
1

Bα
2

} ≤ max{ A

B1
,
1

B2
} ≤ 1

y
.

Thus

(2.15) Xy ≤ 1.

We claim X = 1. In fact, if X > 1, then by (2.15) and taking the limit in the
following relationship

(2.16) ysn = max{ A

xsn−m
,

1

xαsn−r

}

as n → ∞, we obtain

(2.17) 1 >
1

X
≥ y = max{ A

A1
,
1

Aα
2

} ≥ 1

Aα
2

>
1

A2
≥ 1

X
,

which is a contradiction. This implies X = 1. Again by (2.15) and taking the
limit in (2.16) as n → ∞, we obtain

(2.18) 1 ≥ y = max{ A

A1
,
1

Aα
2

} ≥ 1

Aα
2

≥ 1

A2
≥ 1

X
≥ 1.

Thus y = 1. The other case is treated similarly, so we omit the detail. The
proof is complete. �

Theorem 2.5. limn→∞ xn = limn→∞ yn = 1.

Proof. If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1 for any
n ∈ N and there exists a sequence 0 < s1 < s2 < . . . such that ysn ≥ 1 for
any n ∈ N, then by Lemma 2.4 we have X = Y = x = y = 1, which implies
limn→∞ xn = limn→∞ yn = 1.

If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1 for any n ∈ N
and there exists a N ∈ N such that yn < 1 for any n ≥ N , then by Lemma
2.4 we have X = y = 1. Thus 1 = y ≤ lim supn→∞ yn ≤ 1, which implies
limn→∞ yn = 1. By taking the limit in the following relationship

(2.19) xn = max{ A

yn−m
,

1

yαn−r

}

as n → ∞, it follows

(2.20) lim
n→∞

xn = max{A
1
,
1

1
} = 1.

In same fashion, we also show that if there exists a sequence 0 < k1 < k2 <
. . . such that ykn ≥ 1 for any n ∈ N and there exists a N ∈ N such that xn < 1
for any n ≥ N , then limn→∞ xn = limn→∞ yn = 1. The proof is complete. �
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2. The case A > 1

In this section, we study the convergence of the solutions of (1.6) when A > 1.

Let xn =
√
Ax′n, yn =

√
Ay′n and A′ = 1/A

1+α
2 . Then (1.6) reduces to the

system of the following difference equations

x′n = max{ 1

y′n−m

,
A′

y′αn−r

}, y′n = max{ 1

x′n−m

,
A′

x′αn−r

}, n ∈ N0.

In the following, we study the system of the following difference equations

(3.1) xn = max{ 1

yn−m
,

A

yαn−r

}, yn = max{ 1

xn−m
,

A

xαn−r

}, n ∈ N0,

where A ∈ (0, 1). Let {(xn, yn)}n≥−d be a solution of (3.1) with the initial values
x−d, x−d+1, . . . , x−1, y−d, y−d+1, . . . , y−1 ∈ R+. Then we have from (3.1) that
for any n ∈ N0,

(3.2) xnyn−m ≥ 1, ynxn−m ≥ 1.

By (3.1) and (3.2) we obtain the following statements:
(S1) For any n ≥ d,

(3.3) xn ≤ max{xn−2m, Axαn−r−m}, yn ≤ max{yn−2m, Ayαn−r−m}.

(S2) If xn = 1/yn−m (resp. yn = 1/xn−m) for some n ≥ m, then

(3.4) xn =
xn−2m

yn−mxn−2m
≤ xn−2m (resp. yn ≤ yn−2m).

(S3) If xn = A/yαn−r > 1/yn−m (resp. yn = A/xαn−r > 1/xn−m) for some
n ≥ d, then

(3.5)

xn−2m < xn−2mxnyn−m

= max{xn,
xnxn−2myαn−rA

xα
n−r−myαn−r

}
≤ max{xn, xn−2mA2}
= xn

(resp. yn−2m ≤ yn).

Lemma 3.1. If there exists M ∈ N such that {yM+2mn}n≥0 (respectively
{xM+2mn}n≥0) is monotone, then {xM+2mn+r}n≥0 (respectively {yM+2mn+r}n≥0)
is eventually monotone.

Proof. If there exists K ∈ N such that xM+2mn+r = 1/yM+2mn−m+r for all
n ≥ K, then by (3.4) we know that xM+2mn+r ≤ xM+2m(n−1)+r for all n ≥ K.
Thus {xM+2mn+r}n≥K is decreasing.

If there exists K ∈ N such that xM+2mn+r > 1/yM+2mn−m+r for all n ≥ K,
then by (3.5) we know that xM+2mn+r > xM+2m(n−1)+r for all n ≥ K. Thus
{xM+2mn+r}n≥K is increasing.
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In the following, we assume that there exists a sequence 1 < s1 < t1 < s2 <
t2 < . . . < sn < tn < . . . such that

(3.6) xM+2mk+r =
A

yαM+2mk

>
1

yM+2mk+r−m
, for every sn ≤ k < tn

and

(3.7) xM+2mk+r =
1

yM+2mk+r−m
, for every tn ≤ k < sn+1.

By (3.5) we see that for any n ∈ N,

(3.8) xM+2msn+1+r =
A

yαM+2msn+1

> xM+2m(sn+1−1)+r ≥
A

yαM+2m(sn+1−1)

.

Then yM+2msn+1 < yM+2m(sn+1−1) and {yM+2mn}n≥0 is decreasing.

For every sn ≤ k < tn, by (3.5) we have xM+2m(k−1)+r < xM+2mk+r. For
every tn ≤ k < sn+1, it follows from A2 < 1 ≤ yαM+2mkx

α
M+2mk−m and (3.4)

that

(3.9)

A
yαM+2mk

≥ A
yα
M+2m(tn−1)

= xM+2m(tn−1)+r

≥ xM+2mk+r =
1

yM+2mk+r−m

= min{xM+2m(k−1)+r,
xα
M+2mk−m

A }
= xM+2m(k−1)+r ≥ xM+2mk+r,

which implies xM+2m(k−1)+r = xM+2mk+r. Thus {xM+2mn+r}n≥0 is eventually
increasing. The other case is treated similarly, so we omit the detail. The proof
is complete.

For all n ≥ d, write

(3.10) Xn = max{xn, xn−1, . . . , xn−2d, 1}, Yn = max{yn, yn−1, . . . , yn−2d, 1}.

Lemma 3.2. xn+1 ≤ Xn and yn+1 ≤ Yn for all n ≥ d and Xn, Yn are decreasing
(n ≥ d).

Proof. By (3.3) we obtain that for any n ≥ d,

(3.11)
xn+1 ≤ max{xn−2m+1, xn−r+1−m, 1} ≤ Xn,
yn+1 ≤ max{yn−2m+1, yn−r+1−m, 1} ≤ Yn.

Thus

(3.12)
Xn+1 = max{xn+1, . . . , xn+1−2d, 1} ≤ max{xn+1, Xn} = Xn,
Yn+1 = max{yn+1, . . . , yn+1−2d, 1} ≤ max{yn+1, Yn} = Yn.

The proof is complete.
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By Lemma 3.2 we write

(3.13) lim
n→∞

Xn = X, lim
n→∞

Yn = Y.

Then

(3.14) X ≥ 1, Y ≥ 1.

Remark 3.3. Note that from (3.2) we see that there exists a sequence 0 <
k1 < k2 < . . . such that xkn ≥ 1 for any n ∈ N or ykn ≥ 1 for any n ∈ N.

Lemma 3.4. (1) If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1
for any n ∈ N, then:

(i) lim supn→∞ xn = X.

(ii) There exists a M ∈ N such that xM+2nm is decreasing with limn→∞ xM+2nm

= X and xM+2nm = 1/yM+2nm−m.

(2) If there exists a sequence 0 < k1 < k2 < . . . such that ykn ≥ 1 for any n ∈ N,
then

(i) lim supn→∞ yn = Y.

(ii) There exists a M ∈ N such that yM+2nm is decreasing with limn→∞ yM+2nm

= Y and yM+2nm = 1/xM+2nm−m.

Proof. If there exists a sequence 0 < k1 < k2 < . . . such that xkn ≥ 1 for any
n ∈ N, then there exists a subsequence xr1 , xr2 , . . . , xrn , . . . with xrn = Xkn ≥
xkn ≥ 1 for any n ∈ N. Thus we see that xrn = Xkn ≥ X and

(3.15) lim sup
n→∞

xn ≥ X ≥ 1.

On the other hand, by xn+1 ≤ Xn for all n ≥ d we obtain

(3.16) lim sup
n→∞

xn ≤ lim sup
n→∞

Xn = X.

Thus lim supn→∞ xn = X.

By lim supn→∞ xn = X we see that there exists a N ∈ N such that xn <

X/A < (X/A)
1
α for any n ≥ N . Then Axαn < X for any n ≥ N . We can

assume that there exist a sequence N +2d ≤ r1 < r2 < . . . < rn < . . . and some
0 ≤ c < 2m such that x2rnm+c ≥ X and

(3.17) lim
n→∞

x2knm+c = X.
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From (3.3) we have

(3.18)

X ≤ x2mrn+c ≤ x2mrn−2m+c ≤ . . .
≤ x2mrn−1+c ≤ x2mrn−1−2m+c ≤ . . .

. . .
≤ x2mr1+c.

Let M = 2mr1 + c. Then xM+2nm is decreasing and limn→∞ xM+2nm = X.
By (3.2) we obtain

(3.19)
A

yαM+2mn−r

≤ AxαM+2mn−m−r < X ≤ xM+2nm.

Then xM+2nm = 1/yM+2nm−m. The other case is treated similarly, so we omit
the detail. The proof is complete.

If m and r are odd and (1) of Lemma 3.4 holds, then for all n ≥ d, write

(3.20)
X ′

n = max{xM+2n−1, xM+2n−3, . . . , xM+2n−2d−1, 1},
Y ′
n = max{yM+2n, yM+2n−2, . . . , yM+2n−2d, 1}.

If m and r are odd and (2) of Lemma 3.4 holds, then for all n ≥ d, write

(3.21)
X ′

n = max{xM+2n, xM+2n−2, . . . , xM+2n−2d, 1},
Y ′
n = max{yM+2n−1, yM+2n−3, . . . , yM+2n−2d−1, 1}.

where M is as in Lemma 3.4.

Lemma 3.5. If (1) of Lemma 3.4 holds, then xM+2n+1 ≤ X ′
n and yM+2n+2 ≤ Y ′

n

for all n ≥ d and X ′
n, Y

′
n are decreasing (n ≥ d). If (2) of Lemma 3.4 holds,

then xM+2n+2 ≤ X ′
n and yM+2n+1 ≤ Y ′

n for all n ≥ d and X ′
n, Y

′
n are decreasing

(n ≥ d).

Proof. If (1) of Lemma 3.4 holds, then by (3.3) we obtain that for any n ≥ d,

(3.22)
xM+2n+1 ≤ max{xM+2n−2m+1, xM+2n−r+1−m, 1} ≤ X ′

n,
yM+2n+2 ≤ max{yM+2n−2m+2, yM+2n−r+2−m, 1} ≤ Y ′

n.

Thus

(3.23)
X ′

n+1 = max{xM+2n+1, . . . , xM+2n+1−2d, 1} ≤ X ′
n,

Y ′
n+1 = max{yM+2n+2, . . . , yM+2n+2−2d, 1} ≤ Y ′

n.

The other case is treated similarly, so we omit the detail. The proof is complete.
Let

(3.24) lim
n→∞

X ′
n = X ′, lim

n→∞
Y ′
n = Y ′.

Remark 3.6. Note that from (3.2) we see that there exists a sequence 0 < k1 <
k2 < . . . such that xM+2kn−1 ≥ 1 for any n ∈ N or yM+2kn ≥ 1 for any n ∈ N
or xM+2kn ≥ 1 for any n ∈ N or yM+2kn−1 ≥ 1 for any n ∈ N.
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Using arguments similar to ones developed in the proof of Lemma 2.4, we
can show the following Lemma 3.7.

Lemma 3.7. (1) Assume that (1) of Lemma 3.4 holds. If there exists a sequence
0 < k1 < k2 < . . . such that xM+2kn−1 ≥ 1 for any n ∈ N, then

(i) lim supn→∞ xM+2n−1 = X ′.

(ii) There exists a N ∈ N such that xM+2N+2nm−1 is decreasing with
limn→∞ xM+2N+2nm−1 = X ′ and xM+2N+2nm−1 = 1/yM+2N+2nm−1−m.

If there exists a sequence 0 < k1 < k2 < . . . such that yM+2kn ≥ 1 for any
n ∈ N, then

(iii) lim supn→∞ yM+2n = Y ′.

(iv) There exists a N ∈ N such that yM+2N+2nm is decreasing with
limn→∞ yM+2N+2nm = Y ′ and yM+2N+2nm = 1/xM+2N+2nm−m.

(2) Assume that (2) of Lemma 3.4 holds. If there exists a sequence 0 < k1 <
k2 < . . . such that xM+2kn ≥ 1 for any n ∈ N, then

(i) lim supn→∞ xM+2n = X ′.

(ii) There exists a N ∈ N such that xM+2N+2nm is decreasing with
limn→∞ xM+2N+2nm = X ′ and xM+2N+2nm = 1/yM+2N+2nm−m.

If there exists a sequence 0 < k1 < k2 < . . . such that yM+2kn−1 ≥ 1 for any
n ∈ N, then

(iii) lim supn→∞ yM+2n−1 = Y ′.

(iv) There exists a N ∈ N such that yM+2N+2nm−1 is decreasing with
limn→∞ yM+2N+2nm−1 = Y ′ and yM+2N+2nm−1 = 1/xM+2N+2nm−1−m.

Theorem 3.8. For any 0 ≤ k ≤ 2m − 1, {x2nm+k}n≥0 and {y2nm+k}n≥0 are
eventually monotone.

Proof. First we suppose that gcd(m, r) = 1.

If m is even and r is odd, or m is odd and r is even, then by Lemma 3.4
there are two cases to consider.

Case 1. There exists a M ∈ N such that xM+2nm is decreasing and xM+2nm =
1/yM+2nm−m. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
m − 1, {xM+2nm+2kr}n≥0, {xM+2nm+(2k+1)r−m}n≥0, {yM+2nm+(2k+1)r}n≥0 and
{yM+2nm+2kr−m}n≥0 are eventually monotone.

Case 2. There exists a M ∈ N such that yM+2nm is decreasing and yM+2nm =
1/xM+2nm−m. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
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m − 1, {yM+2nm+2kr}n≥0, {yM+2nm+(2k+1)r−m}n≥0, {xM+2nm+(2k+1)r}n≥0 and
{xM+2nm+2kr−m}n≥0 are eventually monotone.

Since gcd(m, r) = 1, it follows that

(3.25) {2kr : 0 ≤ k ≤ m− 1} = {0, 2, . . . , 2m− 2} (mod 2m),

which implies

(3.26) {2kr + r −m : 0 ≤ k ≤ m− 1} = {1, 3, . . . , 2m− 1} (mod 2m)

and

{2kr + r : 0 ≤ k ≤ m− 1} ∪ {2kr −m : 0 ≤ k ≤ m− 1}
= {0, 1, 2, . . . , 2m− 1} (mod 2m).(3.27)

Thus {xM+2nm+k}n≥0 and {yM+2nm+k}n≥0 are eventually monotone for every
k ∈ {0, 1, 2, . . . , 2m − 1}. In the following, we assume that m and r are odd.
Then by Lemma 3.7 there are four cases to consider.

Case 1. There exist M,N ∈ N such that xM+2nm and xM+2N+2nm−1 are
decreasing. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
m − 1, {xM+2nm+2kr}n≥0, {xM+2N+2nm+2kr−1}n≥0, {yM+2nm+(2k+1)r}n≥0 and
{yM+2N+2nm+(2k+1)r−1}n≥0 are eventually monotone.

Case 2. There exist M,N ∈ N such that xM+2nm and yM+2N+2nm are de-
creasing. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
m−1, {xM+2nm+2kr}n≥0, {xM+2N+2nm+(2k+1)r}n≥0, {yM+2nm+(2k+1)r}n≥0 and
{yM+2N+2nm+2kr}n≥0 are eventually monotone.

Case 3. There exist M,N ∈ N such that yM+2nm and yM+2N+2nm−1 are
decreasing. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
m − 1, {yM+2nm+2kr}n≥0, {yM+2N+2nm+2kr−1}n≥0, {xM+2nm+(2k+1)r}n≥0 and
{xM+2N+2nm+(2k+1)r−1}n≥0 are eventually monotone.

Case 4. There exist M,N ∈ N such that yM+2nm and xM+2N+2nm are de-
creasing. Using Lemma 3.1 repeatedly, it follows that for every 0 ≤ k ≤
m− 1, {yM+2nm+2kr}n≥0, {yM+2N+2nm+(2k+1)r}n≥0, {xM+2nm+(2k+1)r}n≥0 and
{xM+2N+2nm+2kr}n≥0 are eventually monotone.

Since gcd(m, r) = 1, it follows that

(3.28)

{2kr : 0 ≤ k ≤ m− 1} ∪ {2N + 2kr − 1 : 0 ≤ k ≤ m− 1}
= {(2k + 1)r : 0≤k≤m− 1}∪{2N + (2k + 1)r − 1 : 0≤k≤m− 1}
= {2kr : 0 ≤ k ≤ m− 1} ∪ {2N + (2k + 1)r : 0 ≤ k ≤ m− 1}
= {(2k + 1)r : 0 ≤ k ≤ m− 1} ∪ {2N + 2kr : 0 ≤ k ≤ m− 1}
= {0, 1, 2, . . . , 2m− 1} mod 2m.

Thus {xM+2nm+k}n≥0 and {yM+2nm+k}n≥0 are eventually monotone for every
k ∈ {0, 1, 2, . . . , 2m− 1}.



98 GUANGWANG SU, TAIXIANG SUN and BIN QIN

If gcd(m, r) = d > 1, then we writem = dm1 and r = dr1 with gcd(m1, r1) =
1. Consider the system of difference equations

(3.29) xn = max{ 1

yn−dm1

,
A

yαn−dr1

}, yn = max{ 1

xn−dm1

,
A

xαn−dr1

}, n ∈ N0.

Write xn,i = xnd+i and yn,i = ynd+i for every 0 ≤ i ≤ d− 1 and n ∈ N0. Then
(3.29) reduces to the equations

xn,i = max{ 1

yn−m1,i
,

A

yαn−r1,i

}, yn,i = max{ 1

xn−m1,i
,

A

xαn−r1,i

},

0 ≤ i ≤ d− 1, n ∈ N0.(3.29,i)

By an analogous way as in the above, we obtain that if {xn,i, yn,i}n≥0 is a
positive solution of (3.29, i) for every 0 ≤ i ≤ d − 1, then {x2m1n+k,i}n≥0 and
{y2m1n+k,i}n≥0 are eventually monotone for every 0 ≤ k ≤ 2m1 − 1. Thus for
every 0 ≤ k ≤ 2m−1, {x2mn+k}n≥0 and {y2mn+k}n≥0 are eventually monotone.
The proof is complete.

Remark 3.9. It follows from Theorem 3.8 that if A > 1 and {(xn, yn)}n≥−d

is a positive solution of (1.6), then for any 0 ≤ k ≤ 2m − 1, {x2nm+k}n≥0 and
{y2nm+k}n≥0 are eventually monotone.

Remark 3.10. In [18], we showed that if α,A ∈ (0, 1) and k ∈ N, then the
following equation

(3.30) xn = max{ 1

xn−1
,

A

xn−2k−1
}

has a positive solution {zn}n≥−2k−1 satisfying the following conditions:

(1) z2n+1 = Azα2n−2k−1 for any n ∈ N.

(2) z2n+2 = 1/z2n+1 for any n ∈ N.

(3) z2n+2 < z2n for any n ∈ N.

Let xn = yn = zn for any n ≥ −2k−1. Then {(xn, yn)}n≥−2k−1 is a solution
of the following equation

(3.31) xn = max{ 1

yn−1
,

A

yαn−2k−1

}, yn = max{ 1

xn−1
,

A

xαn−2k−1

}, n ∈ N0.
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