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on heterogeneous networks

Abdelaziz Assadouq∗

Laboratory of Mathematics and Applications
Department of Mathematics
Faculty of Sciences and Techniques
B.P. 416-Tanger Principale, Tanger
Morocco
a.assadouq@yahoo.fr

Hamza El Mahjour
Laboratory of Mathematics and Applications
Department of Mathematics
Faculty of Sciences and Techniques
B.P. 416-Tanger Principale, Tanger
Morocco
hamza.elmahjour@gmail.com

Adel Settati
Laboratory of Mathematics and Applications

Department of Mathematics

Faculty of Sciences and Techniques

B.P. 416-Tanger Principale, Tanger

Morocco

settati−adel@yahoo.fr

Abstract. This paper studies the dynamics of a SIRS epidemic model with varying
population size and vaccination in a complex network. Using an analytical method, we
mainly investigate the stability of the model according to the threshold R0. That is, if
R0 is less than one, then the disease will die out. Alternatively, the system admits a
unique endemic equilibrium which is globally asymptotically stable ifR0 > 1. Moreover,
we investigate the case when R0 = 1. Finally, some numerical simulations are provided
to illustrate the effectiveness of the theoretical results.

Keywords: SIRS model, vaccination, stability, complex network.

1. Introduction

In order to prevent and understand the spreading of diseases, mathematical epi-
demic models have been developed. Based on the pioneering work by Kermark
and Mckendrick [9], Many researches have studied the spread of infectious dis-
eases in a population by compartmental models such as SIS, SIR, SIRS, SEIR
or SVIS, see for instance [5, 10, 19, 11, 12]. Arino et al [2], incorporated vacci-

∗. Corresponding author



QUALITATIVE BEHAVIOR OF A SIRS EPIDEMIC MODEL WITH VACCINATION ... 959

nation of both newborns and susceptible individuals into an SIRS model. They
shown that a backward bifurcation leading to bistability can occur depending
to the efficacy of the vaccine. In [4], Onofrio studied the use of a pulse vac-
cination strategy to eradicate infectious diseases. However, the early models
were presented on homogeneous networks which implies that all individuals are
equally likely to contact each other. Obviously, this assumption is unrealistic in
some sense because physical contacts between individuals vary with each indi-
vidual. To deal with the effect of contact heterogeneity, another approach came
to analyze the spreading of diseases using the complex network theory. In a
complex network, each node represents an individual in its corresponding epi-
demiological state, and each edge between two nodes stands for an interaction
that may allow disease transmission. Several forms of computer-generated net-
works have been studied in the context of disease transmission. Each of these
idealized networks can be defined in terms of how individuals are distributed
in space and how connections are formed. One of the most studied network is
scale-free network, see for instance [3, 7, 15, 20]. Scale-free network provides
a means of achieving extreme levels of heterogeneity. In such networks nodes
degree followed the power-law distribution. Namely, P (k) ∼ k−γ , the parame-
ter γ must be larger than zero to ensure a finite average connectivity < k >.
One special case of scale-free networks is the Barabasi Albert (BA) model [3]. In
this model P (k) ∼ k−3. It incorporates two important general concepts: growth
and preferential attachment. Growth means that the number of nodes in the
network increases over time. Preferential attachment means that the more con-
nected a node is, the more likely it is to receive new links. Scale-free networks
can be constructed dynamically by adding new individuals to a network one by
one with a connection mechanism that imitates the natural formation of social
contacts. In the preferential attachment model of Barabasi Albert [3], the ex-
istence of individuals of arbitrarily large degree means that there is no level of
random vaccination that is sufficient to prevent an epidemic [1, 17, 20]. On the
other hand, when there is some upper limit imposed on the degree of individuals
[21], or when a scale-free network is generated by nearest neighbor attachment
within a lattice [22], it becomes possible to control infection through random
vaccination [8]. In addition, Li et al [13] proposed a SIRS network-based model
in constant population size and studied the global dynamics through theoretical
analysis and numerical simulation.
In this paper, based on the previous works, we will study a SIRS epidemic
model on the scale-free networks with vaccination in a non-constant population
including births and deaths, where a fraction q of the newly born individuals
are vaccinated at birth . Due to the complexity of network structure, the nodes
in network are divided into n classes with respect to their degrees, where n de-
notes the maximum degree of the network. That is to say that the nodes i and
j belong to the k-th class if they both have degree k , where k ∈ {1, 2, ..., n}.
So, the dynamical behaviour of our model can be described as
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(1)


dSk
dt = (1− q)Λ− (µ1 + ν)Sk − βkΘSk + γRk,
dIk
dt = −(µ2 + λ)Ik + βkΘSk,
dRk
dt = qΛ− (µ3 + γ)Rk + νSk + λIk,

where the initial states satisfy

(2) Sk(0), Ik(0), Rk(0) > 0 and Sk(0) + Ik(0) +Rk(0) ≤
Λ

µ
, k = 1, 2, ..., n.

Denote the meaningful domain for system (1) by

∆ = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n
+ , Sk + Ik +Rk ≤ Λ

µ
, k = 1, 2, ..., n}.

The meaning of the variables and parameters in system (1) is as follows. Sk(t),
Ik(t) and Rk(t) represent the relative densities of the susceptible, infected and
recovered nodes with degree k, Λ is the birth rate (and q ∈ [0, 1] is a per-
centage of new born vaccinated children). µ1, µ2, and µ3 represents the death
rates of susceptible, infected and recovered individuals, respectively. β is the
infection coefficient, λ is the rate at which the infective individuals become re-
covered, ν is the proportional coefficient of vaccinated for susceptible, and γ
is the average loss of immunity rate. Also, it is assumed that the connectiv-
ity of nodes on the network is uncorrelated, thus, the probability that an edge
points to an infected node with degree k is proportional to kP (k)Ik(t) such

that Θ(t) =
∑n

k=1
kP (k)Ik(t)

<k> , where P (k) is the connectivity distribution and
< k >=

∑n
k=1 kP (k) is the average degree of the network.

The rest of this paper is organized as follows. In Section 2, we discuss the
positivity and boundedness of the solutions. Then, we establish the basic repro-
duction number and the existence of equilibrium points. Section 3 is devoted to
explore the convergence of solution of system (1) to the disease-free equilibrium
and the global stability of the endemic equilibrium. Finally, conclusions and
simulations are drawn in Section 4.

2. Positivity of solutions and the epidemic threshold

In this section, we will provide some basic properties of system (1). First we
establish that the domain ∆ is positively invariant with respect to system (1).

Lemma 2.1. Let (S1, I1, R1, ..., Sn, In, Rn) be the solution of system (1) with
initial conditions (2) and Θ(0) > 0. Then, the set ∆ is positively invariant for
model (1) and Θ(t) > 0 for all t > 0.

Proof. First, we will show Θ(t) > 0. In fact, from the second equation of
system (1) we have

(3)
dΘ(t)

dt
=

(
−(µ2 + λ) + β

n∑
k=1

k2P (k)Sk(t)

< k >

)
Θ(t).
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Then

Θ(t) = Θ(0) exp

(
− (µ2 + λ)t+

β

< k >

∫ t

0

n∑
k=1

k2P (k)Sk(s)ds

)
> 0.

On the other hand, we have Sk(0) > 0 for k = 1, ..., n. So, by continuity there
exists δ1 such that Sk(t) > 0 for t ∈ (0, δ1) and k = 1, ..., n.
Let δk = sup{τ > 0 : Sk(t) > 0, ∀t ∈ (0, τ)}. Now, we will show Sk(t) > 0 for all
t > 0 and k = 1, ..., n. To this end, we have to proof that δk = ∞ for k = 1, ..., n.
Suppose not, so there existsm ∈ {1, ..., n} such that δm < ∞. Then, Sm(δm) = 0
and Sm(t) > 0 for all t ∈ (0, δm). From the second equation of (1), we get
I ′m(t) + (λ + µ2)Im(t) > 0 for t ∈ (0, δm). Then, Im(t) > Im(0)e−(λ+µ2)t ≥ 0
for t ∈ (0, δm). Since Im(t) > 0 and Sm(t) > 0 for all t ∈ (0, δm). It follows
R′

m(t) + (µ3 + γ)Rm(t) > 0 for t ∈ (0, δm), using the similar arguments to those
given for Im(t), we get Rm(t) > 0 for t ∈ (0, δm). By continuity of Rm(t) we
have Rm(δm) ≥ 0. Thus, S′

m(δm) = (1− q)Λ + γRm(δm) > 0. So, there exists
some t ∈ (0, δm) such that Sm(t) < 0. This is apparently a contradiction.
Consequently δk = ∞ for k = 1, ..., n, which means Sk(t) > 0 for all t > 0 and
k = 1, ..., n. Finally, by the second and the third equation of (1), we conclude
that Ik(t) > 0 and Rk(t) > 0 for all t > 0 and k = 1, ..., n.

Now, let denote Nk(t) = Sk(t) + Ik(t) +Rk(t) for all t ≥ 0 and k = 1, ..., n.
By summing the three equations of (1), we get

(4)

dNk(t)

dt
= Λ− µ1Sk − µ2Ik − µ3Rk

≤ Λ− µ(Sk + Ik +Rk)
≤ Λ− µNk(t),

where µ = min(µ1, µ2, µ3). Using the comparison principle of ODEs we deduce

Nk(t) ≤
Λ

µ
+ (Nk(0)−

Λ

µ
) exp(−µt).

Hence, Sk(t), Ik(t), Rk(t) ≤ Λ
µ for all t > 0 and k = 1, ..., n, which implies that

∆ is positively invariant.

Obviously, system (1) admits the disease-free equilibrium E0 = (S0, 0, R0, ..., S0,
0, R0) ∈ R3n, where

S0 =
((1− q)µ3 + γ)Λ

µ1(µ3 + γ) + νµ3
and R0 =

(qµ1 + ν)Λ

µ1(µ3 + γ) + νµ3
.

Now, we will investigate the existence of a positive equilibrium state in terms
of the number

R0 =
< k2 >

< k >

βS0

µ2 + λ
.
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Lemma 2.2. The system (1) admits a unique endemic equilibrium E∗ = (S∗
1 , I

∗
1 ,

R∗
1, ..., S

∗
n, I

∗
n, R

∗
n) if and only if R0 > 1.

Proof. By letting the right side of system (1) equal to zero, we get the following
equations

S∗
k =

(µ2 + λ)I∗k
βkΘ∗(5)

R∗
k =

q

µ3 + γ
Λ +

(
ν(µ2 + λ)

(µ3 + γ)βkΘ∗ +
λ

µ3 + γ

)
I∗k(6)

I∗k =
((1− q)µ3 + γ)βkΘ∗Λ

(µ2(µ3 + γ) + µ3λ)βkΘ∗ + (µ2 + λ)(µ1(µ3 + γ) + µ3ν)
,(7)

which determine the endemic equilibrium E∗ of system (1). We know that

Θ∗ =
∑

kP (k)I∗k
<k> . So, from (7) we get f(Θ∗) = 1, where

(8) f(x) =
1

< k >

n∑
k

((1− q)µ3 + γ)βk2P (k)Λ

(µ2(µ3 + γ) + µ3λ)βkx+ (µ2 + λ)(µ1(µ3 + γ) + µ3ν)
.

Since, f(0) = R0 and f is a decreasing function, the equation f(x) = 1 has
unique root if and only if R0 > 1.

3. Disease-free equilibrium dynamics

In this section, we will first prove that the solution of system (1) converges in
the mean to the disease-free equilibrium E0 when R0 < 1, and next we show
that under the same condition, the solution (Sk(t), Ik(t), Rk(t)) of system (1)
converges to (S0, 0, R0) for all k ∈ {1, ..., n}. Finally, we explore the crucial case
when R0 = 1.

3.1 Convergence in the mean

Theorem 3.1. If R0 < 1, then for all k ∈ {1, ..., n} we have

(9) lim
t→∞

1

t

∫ t

0
Sk(s)ds = S0, lim

t→∞

1

t

∫ t

0
Ik(s)ds = 0, lim

t→∞

1

t

∫ t

0
Rk(s)ds = R0.

Proof. From the second equation of (1) we get

Θ̇ = −(µ2 + λ)Θ + βΘ

∑
k2PkSk

< k >
.

Hence

d logΘ = −(µ2 + λ) + β

∑
k2PkSk

< k >

= −(µ2 + λ) + β

∑
k2PkS

0

< k >
+ β

∑
k2Pk(Sk − S0)

< k >

= −(µ2 + λ)(1−R0) + β

∑
k2Pk(Sk − S0)

< k >
.
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Using the following identities

(1− q)Λ = (µ1 + ν)S0 + γR0,

Λ = (µ3 + γ)R0 + νS0,

we have

Ṡk = −(µ1 + ν)(Sk − S0)− βkΘSk + γ(Rk −R0),(10)

Ṙk = −(µ3 + γ)(Rk −R0) + ν(Sk − S0) + λIk.(11)

So

µ3 + γ

γ
Ṡk + Ṙk =

−(µ3 + γ)

γ
(µ1 + ν)(Sk − S0)− β

µ3 + γ

γ
kΘSk

+ν(Sk − S0) + λIk.

Then

µ3(µ1 + ν) + γµ1

γ
(Sk − S0) = −µ3 + γ

γ
Ṡk − Ṙk − β

µ3 + γ

γ
kΘSk + λIk.(12)

By integrating the above equality both sides from 0 to t we get∫ t

0
(Sk(s)− S0)ds =

γ

µ3(µ1 + ν) + γµ1

(
− µ3 + γ

γ
Sk(t) +

µ3 + γ

γ
Sk(0)

−Rk(t) +Rk(0)− β
µ3 + γ

γ
k

∫ t

0
Θ(s)Sk(s)ds

+λ

∫ t

0
Ik(s)ds)

)
,

which together with (2) implies∫ t

0
(Sk(s)− S0)ds ≤ γ

µ3(µ1 + ν) + γµ1

(
Λ

µ

(
1 +

µ3 + γ

γ

)
+ λ

∫ t

0
Ik(s)ds

)

, a0 + a1

∫ t

0
Ik(s)ds,(13)

where 
a0 =

γ

µ3(µ1 + ν) + γµ1

(
Λ

µ
(1 +

µ3 + γ

γ
)

)
a1 =

λγ

µ3(µ1 + ν) + γµ1
.

From (10) and (13) we have

logΘ(t)− logΘ(0) ≤ −(µ2 + λ)(1−R0)t+ βna0 + βa1n

∫ t

0
Θ(s)ds.
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Hence

Θ(t) exp

(
−βa1n

∫ t

0
Θ(s)ds

)
≤ Θ(0) exp(βna0) exp

(
− (µ2 + λ)(1−R0)t

)
.

Therefore

d −1
βa1n

exp
(
−βa1n

∫ t
0 Θ(s)ds

)
dt

≤ Θ(0) exp(βna0) exp
(
− (µ2 + λ)(1−R0)t

)
.

By integrating the above inequality both sides from 0 to t we obtain

exp

(
−βa1n

∫ t

0
Θ(s)ds

)
≥ 1

+
Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp

(
− (µ2 + λ)(1−R0)t

)
− 1

)
.

Which implies

− βa1n

∫ t

0
Θ(s)ds

≥ log

(
1 +

Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp(−(µ2 + λ)(1−R0)t)− 1

))
.

Then,

1

t

∫ t

0
Θ(s)ds

≤ −1

βa1nt
log

(
1 +

Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp(−(µ2 + λ)(1−R0)t

))
.

Consequently, we have

(14) lim
t→∞

1

t

∫ t

0
Θ(s)ds = 0 and then lim

t→∞

1

t

∫ t

0
Ik(s)ds = 0, k ∈ {1, ..., n}.

By (3.1) we get

1

t

∫ t

0
(Sk(s)− S0)ds =

γ

µ3(µ1 + ν) + γµ1

(
−(µ3 + γ)

γ

(Sk(t)− Sk(0))

t

−Rk(t)−Rk(0)

t
− β

(µ3 + γ)

γ
k
1

t

∫ t

0
Θ(s)Sk(s)ds

+λ
1

t

∫ t

0
Ik(s)ds

)
.
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Combining (Sk(t), Ik(t), Rk(t)) ∈ ∆ with (2) and (14) yields to lim
t→∞

Υ(t) = 0,

where

Υ(t) =
Sk(t)− Sk(0)

t
+

Rk(t)−Rk(0)

t
+

1

t

∫ t

0
Θ(s)Sk(s)ds.

Which, together with (14), implies

lim
t→∞

1

t

∫ t

0
(Sk(s)− S0)ds = 0, k ∈ {1, ..., n}.

Finally, from (11) one can easily deduce

lim
t→∞

1

t

∫ t

0
(Rk(s)−R0)ds = 0, k ∈ {1, ..., n}.

3.2 Pointwise convergence

Theorem 3.2. If R0 < 1, then for all k ∈ {1, ..., n} we have

lim
t→∞

Sk(t) = S0, lim
t→∞

Ik(t) = 0, and lim
t→∞

Rk(t) = R0.

Proof. Combining (9) and (10) leads to

lim
t→∞

sup
1

t
logΘ(t) ≤ −(µ2 + λ)(1−R0).

Hence, limt→∞Θ(t) = 0 which leads to limt→∞ Ik(t) = 0. Using (10), we obtain

(Sk(t)− S0)′ + (µ1 + ν)(Sk(t)− S0) = −βkΘ(t)Sk(t) + γ(Rk(t)−R0)(
(Sk(t)− S0)e(µ1+ν)t

)′
=
[
−βkΘ(t)Sk(t) + γ(Rk(t)−R0)

]
e(µ1+ν)t.

Integrating the above equality both sides from 0 to t yields to

Sk(t)− S0 = (Sk(0)− S0)e−(µ1+ν)t

+

(∫ t

0

(
− βkΘ(s)Sk(s) + γ(Rk(s)−R0)e(µ1+ν)s

)
ds

)
e−(µ1+ν)t.

So
lim
t→∞

sup(Sk(t)− S0) ≤
( γ

µ1 + ν

)
lim
t→∞

sup(Rk(t)−R0).

Similarly, we also get

lim
t→∞

sup(Rk(t)−R0) ≤
( ν

µ3 + γ

)
lim
t→∞

sup(Sk(t)− S0).

Consequently

lim
t→∞

Rk(t) = R0 and lim
t→∞

Sk(t) = S0, k ∈ {1, ..., n}
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Theorem 3.3. If ν = 0 and R0 = 1, then the solution (Sk(t), Ik(t), Rk(t)) of
system (1) converges to (S0, 0, R0) for all k ∈ {1, ..., n}.

Proof. Let ε > 0 such that ε < Θ(0). We define

τ1 = inf{t > 0, Θ(t) ≤ ε}, τ
′
= inf{t ≥ τ1, Θ(t) ≥ ε},

τ
′
m = inf{t ≥ τm, Θ(t) ≥ εm}, τm+1 = inf{τm ≤ t ≤ τ

′
m, Θ(t) ≤ εm+1}.

Let’s show that τm < ∞, ∀m ≥ 1. We will proceed by contradiction. Suppose
that τ1 = ∞, so

(15) Θ(t) ≥ ε,∀t > 0.

Which implies that

(16) Γn(I(t)) ,
∑ k2Pk

< k >
Ik(t) > Θ(t) ≥ ε, ∀t > 0.

From the differential system (1), we have
(17)
d logΘ(t)

dt
= −(µ2 + λ)(1−R0) + β

∑ k2Pk

< k >
(Sk(t)− S0) , β Γn(S(t)− S0).

The 3rd equation of (1) implies that

(18) Rk(t)−R0 = (Rk(0)−R0)e−(µ3+γ)t + λ

∫ t

0
Ik(s)e

−(µ3+γ)(t−s)ds.

So

Γn(R(t)−R0) = Γn(R(0)−R0)e−(µ3+γ)t + λ

∫ t

0
Γn(I(s))e

−(µ3+γ)(t−s)ds.

It follows from (16) that

(19) Γn(R(t)−R0) ≥ Γn(R(0)−R0)e−(µ3+γ)t +
λε

µ3 + γ

(
1− e−(µ3+γ)t

)
.

On the other hand

d(Nk −N0) = −µ1(Nk −N0)− (µ2 − µ1)Ik − (µ3 − µ1)(Rk −R0).

Which leads to

Nk(t)−N0 = (Nk(0)−N0)e−µ1t − (µ2 − µ1)

∫ t

0
Ik(s)e

−µ1(t−s)ds

−(µ3 − µ1)

∫ t

0
(Rk(s)−R0)e−µ1(t−s)ds.(20)
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Then we get

Γn(N(t)−N0) = Γn(N(0)−N0)e−µ1t − (µ2 − µ1)

∫ t

0
Γn(I(s))e

−µ1(t−s)ds

−(µ3 − µ1)

∫ t

0
Γn(R(s)−R0)e−µ1(t−s)ds.

According to (16) and (19), we have

Γn(N(t)−N0) ≤ Γn(N(0)−N0)e−µ1t − µ2 − µ1

µ1
ε
(
1− e−µ1t

)
−(µ3 − µ1)Γn(R(0)−R0)

e−µ1t
(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

−µ3 − µ1

µ3 + γ
λε

[
1

µ1

(
1− e−µ1t

)
−

e−µ1t
(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

]
.(21)

In views of (17), we get

(22) d logΘ = β
(
Γn(N(t)−N0)− Γn(I(t))− Γn(R(t)−R0)

)
.

Substituting (19) and (21) into (22), we obtain

(23) d logΘ(t) ≤ −Hε+ F (ε, t).

Where

Hε = β
(µ2 − µ1)

µ1
ε+ β

(µ3 − µ1)λε

(µ3 + γ)µ1
+ βε,

and

F (ε, t) = β Γ(N(0)−N0)e−µ1t +
β(µ2 − µ1)εe

−µ1t

µ1

−β(µ3 − µ1)Γn(R(0)−R0)e−µ1t

(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

+

[
β(µ3 − µ1)λε

µ3 + γ

(
1

µ1
+

1− e−(µ3+γµ1)t

µ3 + γ − µ1

)]
e−µ1t

−βe−(µ3+γ)t
(
Γn(R(0)−R0) +

λε

µ3 + γ

)
.(24)

Since, there exists t0 such that t > t0 and F (ε, t) ≤ Hε
2 . Then, for t ≥ t0 we get∫ t

t0

d logΘ(s)ds ≤ −Hε

2
(t− t0).
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Which implies that Θ(t) ≤ Θ(0) e−
Hε
2
(t−t0) and then lim

t→∞
Θ(t) = 0. This contra-

dicts the assumption that in (15). Let’s suppose that τm < ∞ and τm+1 = ∞.
We have τ

′
m = ∞, which gives Θ(t) ≥ εm+1 for all t > τm. Then, by using

similar arguments to those given in the case when τ1 = ∞, we get

Γn

(
N(t)−N0

)
≤ Γn

(
N(τm)−N0

)
e−µ1t − µ2−µ1

µ1
εm+1

(
1− e−µ1(t−τm)

)
(−(µ3−µ2)Γn(R(τm)−R0)e−µ1t)

(
1−e−(µ3+γ−µ1)(t−τm)

)
µ3+γ−µ1

−µ3−µ1

µ3+γ λεm+1

[
1
µ1

(
1− e−µ1(t−τm)

)
−e−µ1t

(
1−e−(µ3+γ−µ1)(t−τm)

)
µ3+γ−µ1

]
.

By (23), we have

d logΘ(t) ≤ −Hεm+1 + F (εm+1, t− τm),

there exists t
′
0 such that t > t

′
0∨ τm and F (εm+1, t− τm) ≤ Hεm+1

2 . Which yields
to

(25)

∫ t

t
′
0∨τm

d log(Θ(s))ds ≤ −Hεm+1

2
× (t− (t

′
0 ∨ τm)),

thus

(26) Θ(t) ≤ Θ(0) e−
Hεm+1

2
×(t−(t

′
0∨τm)).

Hence, Θ(t) −→ 0 as t −→ ∞, which contradicts the assumption that in (15).
Beside, τm < ∞ for all m in N. By construction, the sequence (τm)m∈N is
increasing. Hence, τm converges to τ∞ . Also, We have τ∞ = ∞ (otherwise
Θ(τm) = εm which leads to Θ(τ∞) = 0, contradiction with Θ(t) > 0 for all
t > 0).

Finally, let η > 0 and m0 =
[
log η
log ε

]
+ 1, where [.] denotes the integer

part. For all t ≥ τm0 , there exists m ≥ m0 such that τm ≤ t ≤ τm+1 and
Θ(t) ≤ εm ≤ εm0 ≤ εlog η/ log ε = η. So, Θ(t) converges to 0 and automatically
Ik(t) converges to 0 for all k ∈ {1, .., n}. It follows that

lim
t→∞

∫ t

0
Ik(s)e

−(µ3+γ)(t−s)ds = 0.

Which implies by (18) that Rk(t) converges to R0 for all k ∈ {1, .., n}. Similarly
we obtain

lim
t→∞

∫ t

0
(Rk(s)−R0)e−µ1(t−s)ds = 0.

Then, From (20), one can deduce that Nk(t) converges to N0 and it immediately
yields Sk(t) converges to S0. Finally, we have shown that (Sk(t), Ik(t), Rk(t))
converge towards to (S0, 0, R0) for all k ∈ {1, .., n}.
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4. Stability of the endemic equilibrium

In this section, We show the global asymptotical stability of the equilibrium E∗

of the system (1), by means of a suitable Lyapunov function.

Theorem 4.1. If R0 > 1 and the following assumptions hold

λ > ν
µ2 + µ3

µ1 + µ3
and γ <

4(µ1 + ν)
(
µ1 + µ3 − ν

λ(µ2 + µ3)
)
µ2

(µ1 + µ2)2
.

Then E∗ is globally asymptotically stable.

Proof. We consider the following Lyapunov function W =
∑4

i=1Wi, where

W1 =
a1
2

∑
k

kPk

< k > S∗
k

(Sk − S∗
k)

2, W2 = a1

(
Θ−Θ∗ −Θ∗ log

Θ

Θ∗

)
,

W3 =
a3
2

∑
k

kPk

< k > S∗
k

(Rk −R∗)2,W4 =
a4
2

∑
k

kPk

< k > S∗
k

(Sk − S∗
k + Ik − I∗k

+Rk −R∗
k)

2,

and a1, a3, a4 are positive constants to be determined suitably. We now give the
derivative of each of the previous functions.

W ′
1 +W ′

2 = a1
∑

k
kPk

<k>S∗
k
(Sk − S∗

k)
[
− µ1(Sk − S∗

k)− βkΘ(Sk − S∗
k)

−βkS∗
k(Θ−Θ∗) + γ(Rk −R∗

k)
]

+a1(Θ−Θ∗)β
∑

k
k2Pk
<k> (Sk − S∗

k)

= −a1(µ1 + ν)
∑

k
kPk

<k>S∗
k
(Sk − S∗

k)
2 − a1βΘ

∑
k

kPk
<k>S∗

k
(Sk − S∗

k)
2

+a1γ
∑

k
kPk

<k>S∗
k
(Sk − S∗)(Rk −R∗

k).

W ′
3 = a3

∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
[
− (µ3 + γ)(Rk −R∗

k) + ν(Sk − S∗
k)

+λ(Ik − I∗k)
]

= −a3(µ3 + γ)
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)
2

+a3ν
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)(Sk − S∗
k)

+a3λ
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)(Ik − I∗k).

W ′
4 = a4

∑
k

kPk
<k>S∗

k

(
Sk − S∗

k + Ik − I∗k +Rk −R∗
k

)
×(

− µ1(Sk − S∗
k)− µ2(Ik − I∗k)− µ3(Rk −R∗

k)
)
.
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So

W ′ =
∑

k
kPk

<k>S∗
k

[
− a1(µ1 + ν)(Sk − S∗

k)
2 − a4µ2(Ik − I∗k)

2

−a4(µ1 + µ2)(Sk − S∗
k)(Ik − I∗k)

]
− a1βΘ

∑
k

kPk
<k>S∗

k
(Sk − S∗

k)
2

−
(
(µ3 + γ) + a4µ3

)∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
2

+
[
a1γ + a3ν − a4(µ1 + µ3)

]∑
k

kPk
<k>S∗

k
(Sk − S∗

k)(Rk −R∗
k)

+
[
a3λ− a4(µ2 + µ3)

]∑
k

kPk
<k>S∗

k
(Rk −R∗

k)(Ik − I∗k).

Then

(27)

W ′ ≤ −a1(µ1 + ν)
∑ kPk

<k>S∗
k

(
Sk − S∗

k +
a4(µ1+µ2)
2a1(µ1+ν) (Ik − I∗k)

)2
−
[
4a1a4(µ1+ν)µ2−

(
a4(µ1+µ2)

)2
4a1(µ1+ν)

]∑
k

kPk
<k>S∗

k
(Ik − I∗k)

2

−
(
(µ3 + γ) + a4µ3

)∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
2

+
[
a1γ + a3ν − a4(µ1 + µ3)

]∑
k

kPk
<k>S∗

k
(Sk − S∗

k)(Rk −R∗
k)

+
[
a3λ− a4(µ2 + µ3)

]∑
k

kPk
<k>S∗

k
(Rk −R∗

k)(Ik − I∗k).

Consequently, in order to get W ′ ≤ 0, the parameters a1, a3, and a4 should
satisfy

a1γ + a3ν − a4(µ1 + µ3) = 0,(28)

a3λ− a4(µ2 + µ3) = 0,(29)

4a1a4(µ1 + ν)µ2 −
(
a4(µ1 + µ2)

)2
4a1(µ1 + ν)

< 0.(30)

Therefore, from (28) and (29) we can choose a3 = a4
µ2+µ3

λ and a1 = a4
γ

(
µ1 +

µ3 − ν
λ(µ2 + µ3)

)
. Thus (30) holds when

(31) γ <
4(µ1 + ν)

(
µ1 + µ3 − ν

λ(µ2 + µ3)
)
µ2

(µ1 + µ2)2
.

So, it follows from (27) thatW ′ ≤ 0. Also, we haveW ′ = 0 if and only if Sk = S∗
k ,

Ik = I∗k and Rk = R∗
k for k = 1, 2, ..., n. According to the LaSalle invariant

principle [6], the unique endemic equilibrium state E∗ is globally asymptotically
stable. This completes the proof.

5. Simulation and discussion

In this section, several numerical examples are designed to illustrate the dynam-
ics of system (1). Using a preferential attachment algorithm, a BA network can
be generated following the methods in [3]. The schema of the scale-free network
with different sizes is illustrated in Figure 1.
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Figure 1: A Barabasi-Albert scale-free network of respectively 20, 150 and 350
nodes, it starts with m0 = 5 fully connected nodes, and then each
time a new node is added to the network with m = 2 links until the
network size is reached.

Example 1. Consider a scale-free network with 20 nodes, and the parameters
values Λ = 0.03, λ = 0.2, β = 0.01, µ1 = 0.08, µ2 = 0.08, µ3 = 0.05,, γ = 0.6
and ν = 0.015. In this situation R0 = 0.72 < 1. Hence, according to Theorem
(3.2) the solution of system (1) converges to E0, (see Figure 2).
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Figure 2: The time evolution of the densities of each state

Example 2. Figure (3) shows the evolution of infectives with several different
values of ν, respectively 0.1, 0.2, 0.25, 0.3, 0.35 and 0.4. We observe that the
values of I(t) eventually converge to corresponding equilibrium points at higher
speeds as the parameter ν grows, which reveal the important role of vaccination
in the stability of system (1).

Example 3. Figure (4) manifest the influence of network size in the time evo-
lution of I(t) of system (1). It is observed that the values of I(t) eventually
converge to corresponding equilibrium points at faster rates as the network size
increases.
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Figure 3: Time evolution of infectives with different values of ν.
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Figure 4: Time evolution of infectives with different network sizes (20, 30, and
50 nodes).

6. Conclusion

In this paper, we have studied an SIRS epidemic model with vaccination in
complex heterogeneous networks and where contacts between human are treated



QUALITATIVE BEHAVIOR OF A SIRS EPIDEMIC MODEL WITH VACCINATION ... 973

as a scale-free social network. We obtain a specific expression of the threshold
R0 through the existence of the endemic equilibrium. It is concluded that the
solution of the system (1) converges to the disease free equilibrium E0 if R0 <
1, which means from the biological point of view, the disease always dies out
eventually. Otherwise the system admits a unique endemic equilibrium, which
is globally asymptotically stable if R0 > 1. We have also treated the crucial
case when R0 = 1 and we have shown that (S1, I1, R1, ..., Sn, In, Rn) converges
consecutively to the disease free equilibrium E0 = (S0, 0, R0, ..., S0, 0, R0). To
confirm the accuracy of the theoretical analysis, several numerical simulations
are performed. Namely, We have found that the percentages of infectives will
increase in the early time and then decrease until achieve a steady state as
the parameter of vaccination ν increases. Also, we have shown the impact of
network size in the convergence of infectives to the steady states.
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