On \((m,n)\)-fully stable Banach algebra modules

Manal Ali Sagban
Muna Jasim Mohammed Ali
Samira Naji Kadhim

Holy Karbala Governorate Directorate General of Education
University of Baghdad
College of Science for Women
Department of Mathematics
Baghdad
Iraq
munajm_math@csw.uobaghdad.edu.iq
samirank_math@csw.uobaghdad.edu.iq

Abstract. In this paper the concept of fully-\((m,n)\) stable Banach Algebra-module \(F - (m,n) - S - B - A\)-module, we study some properties of \(F - (m,n) - S - B - A\)-module and another characterization have been given.

Keywords: fully stable Banach \(A\)-module, fully \((m,n)\)-stable Banach \(A\)-module, multiplication \((m,n)\) \(A\)-module.

1. Introduction

A non-empty set \(A\) is an algebra if, \((A,+,\cdot)\) is a vector space over a field \(F\), \((A,+,\circ)\) is a ring and \((\alpha a) \circ b = \alpha (a \circ b) = a \circ (\alpha b)\) for every \(\alpha \in F\), for every \(a, b \in A\)” [1]. In [2]” a ring \(R\) is an algebra \((R,+,\cdot, -,0)\) where + and \(\cdot\) are two binary operations, – is unary and 0 is nullary element satisfying, \((R,+,-,0)\) is an abelian group, \((R,\cdot)\) is a semigroup and \(x.(y + z) = (x.y) + (x.z)\) and \((x + y).z = (x.z) + (y + z)\). ”Let \(A\) be an algebra, recall that a Banach space \(E\) is a Banach left \(A\)-module \((B - A\)-module\) if \(E\) is a left \(A\)-module, and \(\|a.x\| \leq \|a\| \|x\| (a \in A, x \in E)\)” [1]. Following [3] ”a map from a left \(B - A\)-module \(X\) into a left Banach \(A\)-module \(Y\) \((A\) is not necessarily commutative \) is said a multiplier (homomorphism) if it satisfies \(T(a.x) = a.Tx\) for all \(a \in A\), \(x \in X\). ” In [4], ”a submodule \(N\) of an \(R\)-module \(M\) is said to be stable, if \(f(N) \subseteq N\) for each \(R\)-homomorphism \(f : N \rightarrow M\). \(M\) is called a fully stable module, each submodule of \(M\) is stable”. ”A Banach algebra module \(M\) is called \(F - S - B - A\)-module if for every submodule \(N\) of \(M\) and for each multiplier \(\theta : N \rightarrow M\) such that \(\theta(N) \subseteq N\) [5]. We use the notation \(R^{m \times n}\) for the set of all \(m \times n\) matrices over \(R\). For \(A \in R^{m \times n}\), \(A^{T}\) will denote the transpose of \(A\). In general, for an \(R\)-module \(N\), we write \(N^{m \times n}\) for the set of
all formal \(m \times n \) matrices whose entries are elements of \(N \). Let \(M \) be a right Banach Algebra-module and \(N \) be a left \(R \)-module. For \(x \in M^{l \times m} \), \(s \in R^{m \times n} \) and \(y \in M^{n \times k} \), under the usual multiplication of matrices, \(xs \) (resp. \(sy \)) is a well defined element in \(M^{l \times m} \) (resp. \(N^{n \times k} \)). If \(X \subseteq M^{l \times m} \), \(S \subseteq R^{m \times n} \) and \(Y \subseteq N^{n \times k} \) define

\[
\ell_{M^{l \times m}}(S) = \left\{ u \in M^{l \times m} \mid us = 0; \forall s \in S \right\},
\]

\[
r_{N^{n \times k}}(S) = \left\{ v \in N^{n \times k} \mid sv = 0; \forall s \in S \right\},
\]

\[
\ell_{R^{m \times n}}(Y) = \left\{ s \in R^{m \times n} \mid sy = 0; \forall y \in Y \right\},
\]

\[
r_{R^{m \times n}}(X) = \left\{ s \in R^{m \times n} \mid xs = 0; \forall x \in X \right\}.
\]

We will write \(N^n = N^{1 \times n} \), \(N_n = N^{n \times 1} \) [6]. In this paper for two fixed positive integers \(n, m \) the concept of fully \((m, n)\)-stable Banach algebra modules has been introduced.

2. Fully \((m, n)\)-stable Banach algebra modules

"A left \(B - A \)-module \(X \) is \(n \)-generated for \(n \in N \) if there exists \(x_1, \ldots, x_n \in X \) such that each \(x \in X \) can represented as \(x = \sum_{k=1}^{n} a_k x_k \) for some \(a_1, \ldots, a_n \in A \). A module which is \(1 \)-generated is called a cyclic module" [7].

Definition 2.1. Let \(K \) be \(B - A \)-module, \(K \) is called \((m, n)\)-fully stable \(B \)-A-module, if for every \(n \)-generated submodule \(L \) of \(K^m \) and for each multiplier \(\theta : L \to K^m \) satisfy \(\theta(L) \subseteq L \), for two fixed positive integers \(n, m \).

In [5] "for a nonempty subset \(M \) in a left \(B - A \) -module \(X \), the annihilator \(ann_A(M) \) of \(M \) is \(ann_A(M) = \{ a \in A \mid a \cdot x = 0 \forall x \in M \} \)."

Notation. Let \(X \) be a \(B - A \)-module

1. \(L_{x_1, x_2, \ldots, x_n} = \{ \oplus l_{x_i} \mid n \in N, x_i \in X, i = 1, 2, \ldots, n \} \),
 \(K_{y_1, y_2, \ldots, y_n} = \{ \oplus k_{y_i} \mid k \in K, y_i \in X, i = 1, 2, \ldots, n \} \),
2. \(\ell_{A^{m \times n}}L_{x_1, x_2, \ldots, x_n} = \{ a \in A^{m \times n}, a, (\oplus l_{x_i}) = 0, \forall \oplus l_{x_i} \in L_{x_1, x_2, \ldots, x_n} \} \),
 \(\ell_{A^{m \times n}}K_{y_1, y_2, \ldots, y_n} = \{ a \in A^{m \times n}, a, (\oplus k_{y_i}) = 0, \forall k_{y_i} \in K_{y_1, y_2, \ldots, y_n} \} \).

Proposition 2.2. A \(B - A \)-module \(M \) is fully-\((m, n)\) stable, if and only if any two \(m \)-element subsets \(\{ L_{x_1, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_m} \} \) and \(\{ K_{y_1, K_{y_1,y_2}, \ldots, K_{y_1,y_2,\ldots,y_m} \} \) of \(M_n \), if \(\beta_j \notin \sum_{i=1}^{n} A \alpha_i \), for each \(j = 1, \ldots, m \) implies \(\ell_{A^n}(\{ L_{x_1, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_m} \}) \subseteq \ell_{A^n}(\{ K_{y_1, K_{y_1,y_2}, \ldots, K_{y_1,y_2,\ldots,y_m} \}).

Proof. Assume that \(K \) is \(F - (m, n) - S - B - A \)-module and there exist two \(m \)-element subsets \(\{ L_{x_1, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_m} \} \) and \(\{ K_{y_1, K_{y_1,y_2}, \ldots, K_{y_1,y_2,\ldots,y_m} \} \) of \(M_n \) such that if \(K_{y_1} \notin \sum_{i=1}^{n} A \alpha_i \), for each \(j = 1, \ldots, m \) and

\[
\ell_{A^n}(\{ L_{x_1, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_m} \}) \subseteq \ell_{A^n}(\{ K_{y_1, K_{y_1,y_2}, \ldots, K_{y_1,y_2,\ldots,y_m} \}).
\]
Let A be a ring and $M = \sum_{i=1}^{n} a_i L_{x_i}$ be a module over A. Let $L_{x_i} = (k_{i1}, k_{i2}, \ldots, k_{in})$. If $\sum_{i=1}^{n} a_i k_{ij} = 0$, then $\sum_{i=1}^{n} a_i k_{ij} = 0$, $j = 1, 2, \ldots, m$, implies that $r L_{x_j} = 0$ where $r = (r_1, \ldots, r_n)$ and hence $r \in \ell_A \{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\}$. By assumption $rK_{y_1} = 0$, $j = 1, \ldots, m$ so $\sum_{i=1}^{n} r_i K_{y_i} = 0$. This shows that f is well defined. It is an easy matter to see that f is a multiplier. Fully (m, n) stability of M implies that there exists $t = (t_1, \ldots, t_n) \in A^n$ such that $f(\sum_{i=1}^{n} t_i L_{x_i}) = \sum_{i=1}^{n} t_i K_{y_i}$ for each $\sum_{i=1}^{n} t_i L_{x_i} \in \sum_{i=1}^{n} AL_{x_i}$. Let $r_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in A^n$ where 1 is in the i-th position and 0 otherwise. $K_{y_i} = f(L_{x_i}) = \sum_{k=1}^{n} t_k L_{x_i} \in \sum_{i=1}^{n} AL_{x_i}$, which is contradiction. Conversely assume that there exists n-generated $B - A$-submodule of M^m and multiplier $\mu : \sum_{i=1}^{n} AL_{x_i} \rightarrow M^m$ such that $\mu(\sum_{i=1}^{n} AL_{x_i}) \notin \sum_{i=1}^{n} AL_{x_i}$. Then there exists an element $\beta(= \sum_{i=1}^{n} r_i L_{x_i}) \in \sum_{i=1}^{n} AL_{x_i}$ such that $\mu(\beta) \notin \sum_{i=1}^{n} AL_{x_i}$. Take $K_{y_i} = K_{y_j}$, $j = 1, \ldots, m$, then we have m-element subset $\{\mu(K_{y_1}), \ldots, \mu(K_{y_m})\}$, such that $\mu(\mu(K_{y_j}) \notin \sum_{i=1}^{n} AL_{x_i}$, $j = 1, \ldots, m$. Let $\eta = (t_1, \ldots, t_n) \in \ell_A \{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\}$, then $\eta \alpha_j = 0$, i.e $\sum_{i=1}^{n} t_i \alpha_{ij} = 0$, for each $j = 1, \ldots, m$. $L_{x_i} = (a_{i1}, a_{i2}, \ldots, a_{in})$ and $\{\mu(K_{y_1}), \ldots, \mu(K_{y_m})\} \eta = \sum_{i=1}^{n} t_i \mu(K_{y_i}) = \sum_{i=1}^{n} t_i \mu(\sum_{k=1}^{n} t_k L_{x_i}) = \sum_{i=1}^{n} \mu(\sum_{k=1}^{n} t_k L_{x_i}) = 0$ hence $\ell_A \{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\} \subseteq \ell_A \{\mu(K_{y_1}), \ldots, \mu(K_{y_m})\}$, thus $\ell_A \{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\} \subseteq \ell_A \{\mu(K_{y_1}), \ldots, \mu(K_{y_1}, y_2, \ldots, y_m)\}$ which is a contradiction. Thus M is $F - (m, n) - S - B - A$-module.

Corollary 2.3. Let M be an $F - (m, n) - S - B - A$-module, then for any two m-element subsets $\{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\}$ and $\{K_{y_1}, K_{y_2}, \ldots, K_{y_1}, y_2, \ldots, y_m\}$ of M_n, $\ell_A \{L_{x_1}, L_{x_2}, \ldots, L_{x_1}, x_{2}, \ldots, x_m\} \subseteq \ell_A \{K_{y_1}, K_{y_2}, \ldots, K_{y_1}, y_2, \ldots, y_m\}$ implies that $AL_{x_1} + AL_{x_2} + \ldots + AL_{x_1}, x_{2}, \ldots, x_m = AK_{y_1} + AK_{y_2} + AK_{y_1}, y_2, \ldots, y_m$.

In [9], "$AB - A$-module X is said to satisfy Baer criterion if each submodule of X satisfies Baer criterion, that is for every submodule N of X and A-multiplier $\theta : N \rightarrow X$, there exists an element a in A such that $\theta(n) = an$ for all $n \in N$".

Definition 2.4. A $B - A$-module X is said to satisfy Baer (m, n)-criterion if each submodule of X satisfies Baer (m, n)-criterion, that is for every n-generated submodule L of X and A-multiplier $\theta : L \rightarrow X^m$, there exists an element a in A such that $\theta(l) = al$ for all $l \in L$.

Proposition 2.5. If X satisfies Baer $(m, 1)$-criterion and $\ell_A (L \cap M) = \ell_A (L) + \ell_A (M)$ for each n-generated submodules of X^m, then X satisfies Baer (m, n)-criterion.

Proof. Let $P = Ax_1 + Ax_2 + \ldots + Ax_n$ be an n-generated submodule of X^m and $f : P \rightarrow X^m$ a multiplier. We use induction on n. It is clear that M satisfies Baer (m, n)-criterion, if $n = 1$. Suppose that M satisfies Baer (m, n)-criterion for all k-generated submodule of X^m, for $k \leq n - 1$. Write $L = Ax_1, M = Ax_2 + \ldots + Ax_n$, then for each $w_1 \in L$ and $w_2 \in M$, $f(w_1) = y_1 w_1$, $y_2 w_2$.
Let w be a $B - A$ - module. Then X satisfies Baer (m, n)-criterion if and only if $r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}) = AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}$ for n-element subset $\{L_{x_1}, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_n}\}$ of X_n.

Proof. Suppose that Baer (m, n)-criterion holds for n-generated submodule of X^m let $L_{x_i} = (k_{i1}; k_{i2}, \ldots, k_{in})$, for each $i = 1, \ldots, n$ and $K_y = \{K_{y1}, K_{y1,y2}, \ldots, K_{y1,y2,\ldots,y_n}\} \in r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n})$, $K_y = (a_{11}, a_{21}, \ldots, a_{n1})$.

Define $f : AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n} \to X_m$ by $\mu(\sum_{i=1}^{n} a_iL_{x_i}) = \sum_{i=1}^{n} a_iK_{y_i}$. If $\sum_{i=1}^{n} a_iL_{x_i}$, then $\sum_{i=1}^{n} a_iK_{y_i} = 0$. $j = 1, \ldots, m$, this implies that $r_{L_{x_i}} = 0$ where $r = (r_1, \ldots, r_m)$ and hence $r \in \ell_A(\ell_{x_1} + \ell_{x_1,x_2} + \ldots + \ell_{x_1,x_2,\ldots,x_n})$. By assumption $r_{L_{x_i}} = 0$, $i = 1, \ldots, n$ so $\sum_{i=1}^{n} a_iK_{y_i} = 0$. This show that f is well defined. It is an easy matter to see that μ is a multiplier. By assumption there exists $t \in A$ such that $\mu(\sum_{i=1}^{n} a_iL_{x_i}) = t(\sum_{i=1}^{n} a_iK_{y_i}) = \sum_{i=1}^{n} (ta_i)K_{y_i}$ for each $\sum_{i=1}^{n} a_iL_{x_i} \in \sum_{i=1}^{n} AL_{x_i}$. Let $r_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in A^n$ where 1 in the i-th position and 0 otherwise. $K_{y_i} = \mu(\sum_{i=1}^{n} L_{x_i}) = \sum_{i=1}^{n} t_iL_{x_i} \in \sum_{i=1}^{n} AL_{x_i}$ which is contradiction. This implies that $r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}) \subseteq AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}$, the other inclusion is trivial.

Conversely, assume that $r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}) = AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}$, for each $\{L_{x_1}, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_n}\}$ in X_n.

Then for each multiplier $f : AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n} \to X_m$ and $s = (s_1, \ldots, s_n) \in \ell_A(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n})$, $\sum_{k=1}^{n} s_k(\sum_{i=1}^{n} t_iL_{x_i}) = 0$, for each $\sum_{i=1}^{n} t_iL_{x_i} \in \sum_{i=1}^{n} AL_{x_i}$, hence

$$\sum_{k=1}^{n} s_k \cdot f(\sum_{i=1}^{n} t_iL_{x_i}) = \sum_{k=1}^{n} f(\sum_{i=1}^{n} s_k t_iL_{x_i}) = 0,$$

thus $f(\sum_{i=1}^{n} t_iL_{x_i}) \in r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}) = AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}$, for some $t \in A$. Then X satisfies Baer (m, n)-criterion.

Corollary 2.7. Let X be a $B - A$ - module. Then X is $F - (m, n) - S - B - A$ - module if and only if $r_{X_n}(AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}) = AL_{x_1} + AL_{x_1,x_2} + \ldots + AL_{x_1,x_2,\ldots,x_n}$ for n-element subset $\{L_{x_1}, L_{x_1,x_2}, \ldots, L_{x_1,x_2,\ldots,x_n}\}$ of X_n.

Following [8], let A be a unital Banach algebra and let $\alpha > 1$. A-module X is called quasi α-injective if, $\varphi : N \to X$ is A-module homomorphisms such that
\[\| \varphi \| \leq 1, \] there exists \(A \)-module homomorphism \(\theta : X \to X \), such that \(\theta \circ i = \varphi \) and \(\| \theta \| \leq \alpha \) where \(i \) is an isometry from submodule \(N \) of \(X \). We shall say that \(X \) is quasi injective if it is quasi \(\alpha \) - injective for some \(\alpha \). The concepts quasi \((m, n) - \alpha \) - injective for some \(\alpha \) and multiplication \((m, n) - B - A \) - module has been introduced.

Definition 2.8. Let \(A \) be a unital Banach algebra and let \(\alpha > 1 \). \(A \)-module \(X \) is called quasi \((m, n) - \alpha \) - injective if, \(\| \varphi \| \leq 1 \), there exists \(A \)-module homomorphism \(\theta : X \to X \), such that \(\theta \circ i = \varphi \) and \(\| \theta \| \leq \alpha \) where \(i \) is an isometry from \(n \)-generated submodule \(N \) of \(X \). We shall say that \(X \) is quasi \((m, n) \) - injective if it is quasi \((m, n) - \alpha \) - injective for some \(\alpha \).

Definition 2.9. \(B - A \)-module \(X \) is called multiplication \((m, n) - A \)-module if each \(n \)-generated submodule of \(X \) is of the form \(KX_n \) for some ideal \(K \) of \(A^{m \times n} \).

Proposition 2.10. Let \(X \) be multiplication \((m, n) - B - A \)-module. If \(X \) is quasi \((m, n) - B - A \)-module then \(X \) is \(F - (m, n) - S - B - A \)-module.

Proof. Let \(N \) be \(n \)-generated submodule of \(X \), let \(\alpha > 1 \) and \(f \) be any \(A \)-module homomorphism from \(N \) to \(X^m \) such that \(\| f \| \leq 1 \). Since \(X \) is multiplication \((m, n) - B - A \)-module, then \(N = KX_n \), and since \(X \) is quasi \((m, n) - B - A \)-module, then there exist \(A \)-module homomorphism \(g : X^m \to X^m \) such that \(f(N) = g(N) = g(KX_n) = Kg(X_n) \subseteq KX_n = N \).

References

