# On decomposable $M S$-algebras 

Ahmed Gaber*<br>Department of Mathematics<br>Faculty of Science<br>Ain Shams University<br>Egypt<br>a.gaber@sci.asu.edu.eg

Abd El-Mohsen Badawy<br>Department of Mathematics<br>Faculty of Science<br>Tanta University<br>Egypt<br>abdel-mohsen.mohamed@science.tanta.edu.eg

Salah El-Din S. Hussein
Department of Mathematics
Faculty of Science
Ain Shams University
Egypt
mynsalah@hotmail.com


#### Abstract

In this paper we give some results on the direct product, subalgebras and homomorphisms of decomposable $M S$-algebras. We Show how direct products and canonical projections are related. Also, we study homomorphic images of subalgebras of decomposable $M S$-algebras.


Keywords: direct product, $M S$-algebra, decomposable $M S$-algebra, subalgebra, homomorphism.

## 1. Introduction

MS-algebras were initiated by T.S. Blyth and J.C. Varlet, see [6], as a generalization of both de Morgan and Stone algebras. In [8], T.S. Blyth and J.C. Varlet described the lattice $\Lambda(\mathbf{M S})$ of subclasses of the class MS of all $M S$ algebras. In [3], S. El-Assar and A. Badawy studied many properties of homomomorphisms and subalgebras of MS-algebras from the subclass $\mathbf{K}_{\mathbf{2}}$. In [1], A. Badawy, D. Guffova and M. Haviar introduced and characterized decomposable $M S$-algebras by means of decomposable $M S$-triples. In [2], A. Badawy and R. El-Fawal studied many properties of decomposable $M S$-algebras in terms of decomposable $M S$-triples as homomorphisms and subalgebras. Also, they solved

[^0]some fill in problems concerning homomorphisms and subalgebras of decomposable $M S$-algebras.

In this paper we study many properties related to the direct product and subalgebras of decomposable $M S$-algebras. Also, we reveal the connection between homomorphisms and direct products. We finish with some results on homomorphic images of subalgebras of decomposable $M S$-algebras.

## 2. Preliminaries

In this section, we present definitions and main results which are needed through this paper. For basic facts about $M S$-algebras and related structures we refer the reader to [5], [6], [7], [8], [9] and [10].

An $M S$-algebra is an algebra $\left(L ; \vee, \wedge,{ }^{\circ}, 0,1\right)$ of type $(2,2,1,0,0)$ where $(L ; \vee, \wedge$, $0,1)$ is a bounded distributive lattice and the unary operation ${ }^{\circ}$ satisfies:

$$
x \leq x^{\circ \circ},(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, 1^{\circ}=0
$$

The following theorem gives the basic properties of $M S$-algebras.
Theorem 2.1 ([6], [9]). For any two elements $a, b$ of an MS-algebra L, we have:
(1) $0^{\circ}=1$,
(2) $a \leq b \Rightarrow b^{\circ} \leq a^{\circ}$,
(3) $a^{\circ \circ 0}=a^{\circ}$,
(4) $(a \vee b)^{\circ}=a^{\circ} \wedge b^{\circ}$,
(5) $(a \vee b)^{\circ \circ}=a^{\circ \circ} \vee b^{\circ \circ}$,
(6) $(a \wedge b)^{\circ \circ}=a^{\circ \circ} \wedge b^{\circ \circ}$.

Lemma 2.2 ([1], [6]). Let $L$ be an MS-algebra. Then:
(1) $L^{\circ \circ}=\left\{x \in L: x=x^{\circ \circ}\right\}$ is a de Morgan subalgebra of $L$,
(2) $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter (filter of dense elements) of $L$.

Definition $2.3([4])$. Let $L=\left(L ; \vee, \wedge, 0_{L}, 1_{L}\right)$ and $L_{1}=\left(L_{1} ; \vee, \wedge, 0_{L_{1}}, 1_{L_{1}}\right)$ be bounded lattices. The map $f: L \rightarrow L_{1}$ is called a ( 0,1 )-lattice homomorphism if:
(1) $f\left(0_{L}\right)=0_{L_{1}}$ and $f\left(1_{L}\right)=1_{L_{1}}$,
(2) $f$ preserves joins, that is, $f(x \vee y)=f(x) \vee f(y)$ for every $x, y \in L$,
(3) $f$ preserves meets, that is, $f(x \wedge y)=f(x) \wedge f(y)$ for every $x, y \in L$.

Definition 2.4 ([4]). A (0,1)-lattice homomorphism $f: L \rightarrow L_{1}$ of an $M S$ algebra $L$ into an $M S$-algebra $L_{1}$ is called a homomorphism if $f\left(x^{\circ}\right)=(f(x))^{\circ}$ for all $x \in L$.

Definition 2.5 ([1]). An $M S$-algebra $L$ is called decomposable $M S$-algebra if for every $x \in L$ there exists $d \in D(L)$ such that $x=x^{\circ \circ} \wedge d$.

Definition 2.6 ([2]). A bounded sublattice of a decomposable $M S$-algebra $L$ is called a subalgebra of $L$ if:
(1) $x^{\circ} \in A, \forall x \in A$,
(2) For every $x \in A$, there exists $d \in D(A)$ such that $x=x^{\circ \circ} \wedge d$.

Definition 2.7 ([2]). A subalgebra of a decomposable $M S$-algebra $L$ is called a $K_{2}$-subalgebra of $L$ if for every $x, y \in A$, the following holds:
(1) $x \wedge x^{\circ}=x^{\circ} \wedge x^{\circ \circ}$,
(2) $x \wedge x^{\circ} \leqslant y \vee y^{\circ}$.

Definition 2.8 ([2]). A subalgebra of a decomposable $M S$-algebra $L$ is called a Stone subalgebra of $L$ if for every $x \in A, x^{\circ} \vee x^{\circ \circ}=1$

## 3. Direct products and subalgebras of decomposable $M S$-algebras

We begin by recalling the definition of direct product of $M S$-algebras.
Definition 3.1. Let $\left\{L_{i}, i \in I_{n}\right\}$ be a family of $M S$-algebras. Then, the direct product $\prod_{i=1}^{n} L_{i}$ is defined as $\prod_{i=1}^{n} L_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{i} \in L_{i}, i \in I_{n}\right\}$ where the operations $\vee, \wedge$ are defined componentwise and $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ}=$ $\left(x_{1}^{\circ}, x_{2}^{\circ}, \ldots, x_{n}^{\circ}\right)$.

The proof of the following lemma is straightforward.
Lemma 3.2. Let $\left\{L_{i}, i \in I_{n}\right\}$ be a family of $M S$-algebras. Then:

1. $\left(\prod_{i=1}^{n} L_{i}\right)^{\circ \circ}=\prod_{i=1}^{n} L_{i}^{\circ \circ}$,
2. $D\left(\prod_{i=1}^{n} L_{i}\right)=\prod_{i=1}^{n} D\left(L_{i}\right)$.

Theorem 3.3. Let $\left\{L_{i}, i \in I_{n}\right\}$ be a family of MS-algebras. Then, $\prod_{i=1}^{n} L_{i}$ is decomposable if and only if $L_{i}$ is decomposable for each $i \in I_{n}$.

Proof. Suppose that $\prod_{i=1}^{n} L_{i}$ is decomposable. Let $x_{i} \in L_{i}, i \in I_{n}$. Then,

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} L_{i} \\
\Rightarrow & \left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ \circ} \wedge\left(d_{1}, d_{2}, \ldots, d_{n}\right), d_{i} \in D\left(L_{i}\right), i \in I_{n} \\
\Rightarrow & \left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}^{\circ}, x_{2}^{\circ \circ}, \ldots, x_{n}^{\circ \circ}\right) \wedge\left(d_{1}, d_{2}, \ldots, d_{n}\right) \\
\Rightarrow & \left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}^{\circ \circ} \wedge d_{1}, x_{2}^{\circ \circ} \wedge d_{2}, \ldots, x_{n}^{\circ \circ} \wedge d_{n}\right) \\
\Rightarrow & x_{i}=x_{i}^{\circ \circ} \wedge d_{i}, d_{i} \in D\left(L_{i}\right), \forall i \in I_{n}, \\
\Rightarrow & L_{i} \text { is decomposable }, \forall i \in I_{n} .
\end{aligned}
$$

Conversely, suppose that $L_{i}$ is decomposable, $\forall i \in I_{n}$, and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $\prod_{i=1}^{n} L_{i}$. Then,

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\left(x_{1}^{\circ \circ} \wedge d_{1}, x_{2}^{\circ \circ} \wedge d_{2}, \ldots, x_{n}^{\circ \circ} \wedge d_{n}\right), d_{i} \in D\left(L_{i}\right) \\
& =\left(x_{1}^{\circ \circ}, x_{2}^{\circ \circ}, \ldots, x_{n}^{\circ \circ}\right) \wedge\left(d_{1}, d_{2}, \ldots, d_{n}\right) \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ \circ} \wedge\left(d_{1}, d_{2}, \ldots, d_{n}\right)
\end{aligned}
$$

Since $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \prod_{i=1}^{n} D\left(L_{i}\right)=D\left(\prod_{i=1}^{n} L_{i}\right)$, then $\prod_{i=1}^{n} L_{i}$ is decomposable.

Theorem 3.4. Let $A_{i}$ be a subalgebra of a decomposable $M S$-algebra $L_{i}, i \in I_{n}$. Then, $\prod_{i=1}^{n} A_{i}$ is a subalgebra of $\prod_{i=1}^{n} L_{i}$.

Proof. Clearly, $\prod_{i=1}^{n} A_{i}$ is a bounded sublattice of $\prod_{i=1}^{n} L_{i}$. Let $\left(x_{1}, x_{2}, \ldots x_{n}\right) \in$ $\prod_{i=1}^{n} A_{i}$. Then, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ}=\left(x_{1}^{\circ}, x_{2}^{\circ}, \ldots, x_{n}^{\circ}\right) \in \prod_{i=1}^{n} A_{i}\left(\right.$ as $\left.x_{i}^{\circ} \in A_{i}\right)$. Assuming that $x_{i}=x_{i}^{\circ \circ} \wedge d_{i}, d_{i} \in D\left(A_{i}\right)$, we get

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}^{\circ \circ} \wedge d_{1}, x_{2}^{\circ \circ} \wedge d_{2}, \ldots, x_{n}^{\circ \circ} \wedge d_{n}\right)=\left(x_{1}^{\circ \circ}, x_{2}^{\circ \circ}, \ldots, x_{n}^{\circ \circ}\right) \wedge\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

Since $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in D\left(\prod_{i=1}^{n} A_{i}\right)$, then $\prod_{i=1}^{n} A_{i}$ is a subalgebra of $\prod_{i=1}^{n} L_{i}$.
Corollary 3.5. $\left(\prod_{i=1}^{n} L_{i}\right)^{\circ \circ}$ is a subalgebra of $\prod_{i=1}^{n} L_{i}$.
Proof. Since $\left(\prod_{i=1}^{n} L_{i}\right)^{\circ \circ}=\prod_{i=1}^{n} L_{i}^{\circ \circ}$ and $L_{i}^{\circ \circ}$ is a subalgebra of $L_{i}$, then $\left(\prod_{i=1}^{n} L_{i}\right)^{\circ \circ}$ is a subalgebra of $\prod_{i=1}^{n} L_{i}$.

Lemma 3.6. Let $A_{i}$ be a $K_{2}$-subalgebra of a decomposable MS-algebra $L_{i}, i \in$ $I_{n}$. Then, $\prod_{i=1}^{n} A_{i}$ is a $K_{2}$-subalgebra of $\prod_{i=1}^{n} L_{i}$.

Proof. By Theorem 3.4, $\prod_{i=1}^{n} A_{i}$ is a subalgebra of $\prod_{i=1}^{n} L_{i}$.
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} A_{i}$. Then,

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} & =\left(x_{1} \wedge x_{1}^{\circ}, x_{2} \wedge x_{2}^{\circ}, \ldots, x_{n} \wedge x_{n}^{\circ}\right) \\
& =\left(x_{1}^{\circ} \wedge x_{1}^{\circ \circ}, x_{2}^{\circ} \wedge x_{2}^{\circ \circ}, \ldots, x_{n}^{\circ} \wedge x_{n}^{\circ \circ}\right) \\
& =\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} \wedge\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ \circ}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} \\
= & \left(x_{1} \wedge x_{1}^{\circ}, x_{2} \wedge x_{2}^{\circ}, \ldots, x_{n} \wedge x_{n}^{\circ}\right) \\
\leq & \left(y_{1} \vee y_{1}^{\circ}, y_{2} \vee y_{2}^{\circ}, \ldots, y_{n} \vee y_{n}^{\circ}\right), \quad \forall y_{i} \in A_{i} \\
= & \left(y_{1}, y_{2}, \ldots, y_{n}\right) \vee\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\circ}, \quad \forall\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \prod_{i=1}^{n} A_{i} .
\end{aligned}
$$

Hence, $\prod_{i=1}^{n} A_{i}$ is a $K_{2}$-subalgebra of $\prod_{i=1}^{n} L_{i}$.

Lemma 3.7. Let $S_{i}$ be a Stone subalgebra of a decomposable MS-algebra $L_{i}, i \in$ $I_{n}$. Then, $\prod_{i=1}^{n} S_{i}$ is a Stone subalgebra of $\prod_{i=1}^{n} A_{i}$.

Proof. We need to verify the Stone identity. Namely, $z^{\circ} \vee z^{\circ \circ}=1, \forall z \in$ $\prod_{i=1}^{n} S_{i}$. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} S_{i}$. Then,

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} \vee\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ \circ} & =\left(x_{1}^{\circ} \vee x_{1}^{\circ \circ}, x_{2}^{\circ} \vee x_{2}^{\circ \circ}, \ldots, x_{n}^{\circ} \vee x_{n}^{\circ \circ}\right) \\
& =\left(1_{1}, 1_{2}, \ldots, 1_{n}\right),
\end{aligned}
$$

where $1_{i}$ is the greatest element of $S_{i}$. Thus, $\prod_{i=1}^{n} S_{i}$ is a Stone subalgebra of $\prod_{i=1}^{n} L_{i}$.

The following example shows that the converse of Theorem 3.4, lemma 3.6 and lemma 3.7 is not true, respectively.

Example 3.8. Consider the following two decomposable MS-algebras:

$L_{1}$
$A=\{(1,1),(0,0)\}$ is a subalgebra (respectively a $K_{2}$-subalgebra, a Stone subalgebra) of $L_{1} \times L_{2}$ while it can not be written as a product of two subalgebras (respectively $K_{2}$-subalgebras, Stone subalgebras) of $L_{1}$ and $L_{2}$.

Lemma 3.9. Let $\left\{A_{i}, i \in I_{n}\right\}$ be a family of subalgebras of a decomposable MS-algebra L. Then:

1. $\bigcap_{i=1}^{n} A_{i}$ is a subalgebra of $L$,
2. $\bigcup_{i=1}^{n} A_{i}$ is not necessarily a subalgebra of $L$.

Proof. 1. Clearly, $\bigcap_{i=1}^{n} A_{i}$ is a bounded sublattice of $L$. Let $x \in \bigcap_{i=1}^{n} A_{i}$. Then, $x \in A_{i}, \forall i \in I_{n}$. Consequently, $x^{\circ} \in A_{i}, \forall i \in I_{n}$. Hence, $x^{\circ} \in \bigcap_{i=1}^{n} A_{i}$. Moreover, we have $x=x^{\circ \circ} \wedge d_{i}, d_{i} \in D\left(A_{i}\right), i \in I_{n}$. As $d_{i} \in A_{i}$, then $\bigvee_{i=1}^{n} d_{i} \in$ $A_{i}, \forall i \in I_{n}$. Also, $\left(\bigvee_{i=1}^{n} d_{i}\right)^{\circ}=\bigwedge_{i=1}^{n} d_{i}^{\circ}=0$. Then, $\bigvee_{i=1}^{n} d_{i} \in \bigcap_{i=1}^{n} D\left(A_{i}\right)=$ $D\left(\bigcap_{i=1}^{n} A_{i}\right)$. Now, we can write $x=x^{\circ \circ} \vee d$ where $d=\bigvee_{i=1}^{n} d_{i} \in D\left(\bigcap_{i=1}^{n} A_{i}\right)$. Hence, $\bigcap_{i=1}^{n} A_{i}$ is a subalgebra of $L$.
2. Consider $L_{2}$ of example 3.8, we observe that $A_{1}=\{1,0, x\}$ and $A_{2}=$ $\{1,0, z\}$ are subalgebras of $L_{2}$ while $A_{1} \cup A_{2}=\{1,0, x, z\}$ is not a subalgebra of $L_{2}\left(\right.$ as $\left.x \wedge z=y \notin A_{1} \cup A_{2}\right)$.

## 4. Direct products and homomorphisms of decomposable MS-algebras

Theorem 4.1. Let $\left\{\varphi_{i}: A_{i} \rightarrow B_{i}, i \in I_{n}\right\}$ be a family of homomorphisms between MS-algebras. Define $\varphi: \prod_{i=1}^{n} A_{i} \rightarrow \prod_{i=1}^{n} B_{i}$, by $\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)$. Then:

1. $\varphi$ is a homomorphism,
2. $\varphi$ is one to one if and only if each $\varphi_{i}$ is one to one,
3. $\varphi$ is onto if and only if each $\varphi_{i}$ is onto,
4. $\operatorname{ker} \varphi=\prod_{i=1}^{n} \operatorname{ker} \varphi_{i}$,
5. $\varphi\left(\prod_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \varphi_{i}\left(A_{i}\right)$.

## Proof.

(1) Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} A_{i}$. Then,

$$
\begin{aligned}
& \varphi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right) \vee\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right) \\
= & \varphi\left(a_{1} \vee b_{1}, a_{2} \vee b_{2}, \ldots, a_{n} \vee b_{n}\right) \\
= & \left(\varphi_{1}\left(a_{1} \vee b_{1}\right), \varphi_{2}\left(a_{2} \vee b_{2}\right), \ldots, \varphi_{n}\left(a_{n} \vee b_{n}\right)\right) \\
= & \left(\varphi_{1}\left(a_{1}\right) \vee \varphi_{1}\left(b_{1}\right), \varphi_{2}\left(a_{2}\right) \vee \varphi_{2}\left(b_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right) \vee \varphi_{n}\left(b_{n}\right)\right) \\
= & \left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right) \vee\left(\varphi_{1}\left(b_{1}\right), \varphi_{2}\left(b_{2}\right), \ldots, \varphi_{n}\left(b_{n}\right)\right) \\
= & \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right) \vee \varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right) .
\end{aligned}
$$

Similarly, we can show that

$$
\varphi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right) \wedge\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right)=\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right) \wedge \varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

Moreover,

$$
\begin{aligned}
\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\circ} & =\varphi\left(a_{1}^{\circ}, a_{2}^{\circ}, \ldots, a_{n}^{\circ}\right) \\
& =\left(\varphi_{1}\left(a_{1}^{\circ}\right), \varphi_{2}\left(a_{2}^{\circ}\right), \ldots, \varphi_{n}\left(a_{n}^{\circ}\right)\right) \\
& =\left(\varphi_{1}\left(a_{1}\right)^{\circ}, \varphi_{2}\left(a_{2}\right)^{\circ}, \ldots, \varphi_{n}\left(a_{n}\right)^{\circ}\right) \\
& =\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)^{\circ} \\
& =\left(\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)^{\circ} .
\end{aligned}
$$

Hence, $\varphi$ is a homomorphism from $\prod_{i=1}^{n} A_{i}$ into $\prod_{i=1}^{n} B_{i}$.
(2) Let $\varphi$ be one to one and suppose that $\varphi_{i}\left(a_{i}\right)=\varphi_{i}\left(b_{i}\right), i \in I_{n}$. Then,

$$
\begin{aligned}
\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right) \\
& =\left(\varphi_{1}\left(b_{1}\right), \varphi_{2}\left(b_{2}\right), \ldots, \varphi_{n}\left(b_{n}\right)\right) \\
& =\varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

This gives $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. So, $a_{i}=b_{i}, \forall i \in I_{n}$. Hence, each $\varphi_{i}$ is one to one. Conversely, assume $\varphi_{i}$ is one to one for each $i$ and $\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Then, $\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)=\left(\varphi_{1}\left(b_{1}\right), \varphi_{2}\left(b_{2}\right), \ldots, \varphi_{n}\left(b_{n}\right)\right)$. Thus, $\varphi_{i}\left(a_{i}\right)=\varphi_{i}\left(b_{i}\right) \forall i$. Hence, $\varphi$ is one to one.
(3) Let $\varphi$ be onto and $b_{i} \in B_{i}, \forall i$. Then, $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} B_{i}$. As $\varphi$ is onto, there exists $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \prod_{i=1}^{n} A_{i}$ such that $\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Equivalently, $\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. That is, $\varphi_{i}\left(a_{i}\right)=$ $b_{i}, \forall i$. Hence, each $\varphi_{i}$ is onto. Conversely, let $\varphi_{i}$ be onto for each $i$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} B_{i}$. Since $b_{i} \in B_{i}$ and $\varphi_{i}$ is onto, then there exists $a_{i} \in A_{i}$ such that $b_{i}=\varphi_{i}\left(a_{i}\right)$, $\forall i$. So, $\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)$. Consequently, $\varphi$ is onto.

$$
\begin{align*}
&\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in k e r \varphi \Leftrightarrow \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(0_{1}, 0_{2}, \ldots, 0_{n}\right) \\
& \Leftrightarrow\left(\varphi_{1}\left(a_{1}\right), \varphi_{2}\left(a_{2}\right), \ldots, \varphi_{n}\left(a_{n}\right)\right)=\left(0_{1}, 0_{2}, \ldots, 0_{n}\right) \\
& \Leftrightarrow \varphi_{i}\left(a_{i}\right)=0_{i}, \forall i \in I_{n}  \tag{4}\\
& \Leftrightarrow a_{i} \in k e r \varphi_{i} \forall i \in I_{n} \\
& \Leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \prod_{i=1}^{n} k e r \varphi_{i} . \\
&\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \varphi\left(\prod_{n}^{i=1} A_{i}\right) \\
& \Leftrightarrow\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\varphi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \prod_{n}^{i=1} A_{i}  \tag{5}\\
& \Leftrightarrow \varphi_{i}\left(a_{i}\right)=b_{i}, a_{i} \in A_{i} \\
& \Leftrightarrow\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} \varphi_{i}\left(A_{i}\right)
\end{align*}
$$

Theorem 4.2. Let $\left\{A_{i}, i \in I_{n}\right\}$ be a family of $M S$-algebras. Then, the map $\varphi_{k}: \prod_{i=1}^{n} A_{i} \rightarrow A_{k}$ defined by $\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)=a_{k}$ is an epimorphism for each $k \in I_{n}$.

Proof. Let $\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots, b_{n}\right)$. Then, $a_{i}=b_{i} \forall i \in I_{n}$. Therefore, $\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)=a_{k}=b_{k}=\varphi_{k}\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots, b_{n}\right)$. So, $\varphi_{k}$ is
well defined, $\forall k \in I_{n}$. Now, suppose that $\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots, b_{n}\right)$ $\in \prod_{i=1}^{n} A_{i}$. Then, $\varphi_{k}\left(\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \vee\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots, b_{n}\right)\right)=a_{k} \vee b_{k}=$ $\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \vee \varphi_{k}\left(b_{1}, b_{2}, \ldots, b_{k}, \ldots, b_{n}\right)$. Similarly, $\varphi_{k}$ preserves the meet operation. Besides,

$$
\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)^{\circ}=a_{k}^{\circ}=\left(\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)\right)^{\circ}
$$

Finally, if $c_{k} \in A_{K}$, then $\left(0_{1}, 0_{2}, \ldots, c_{k}, \ldots, 0_{n}\right) \in \prod_{i=1}^{n} A_{i}$ with $\varphi_{k}\left(0_{1}, 0_{2}, \ldots, c_{k}, \ldots, 0_{n}\right)$ $=c_{k}$. Thus, $\varphi_{k}$ is onto and hence $\varphi_{k}$ is an epimorphism .

The previous maps $\left(\varphi_{k} s\right)$ are called the canonical projections of the direct product.

Theorem 4.3. Let $\left\{L_{i}, i \in I_{n}\right\}$ be a family of MS-algebras. Then there exists a unique (up to isomorphism) MS-algebra L, together with a family of homomorphisms $\left\{\varphi_{i}: L \rightarrow L_{i}, i \in I_{n}\right\}$, with the following property:

For any MS-algebra $M$ and any family of homomorphisms $\left\{f_{i}: M \rightarrow L_{i}, i \in\right.$ $\left.I_{n}\right\}$, there exists a unique homomorphism $f: M \rightarrow L$ such that $\varphi_{i} \circ f=f_{i}$, $\forall i \in I_{n}$.

Proof. Let $L=\prod_{i=1}^{n} L_{i}$ and $\left\{\varphi_{i}: L \rightarrow L_{i}, i \in I_{n}\right\}$ be the family of canonical projections. Define $f: M \rightarrow L$ by $f(a)=\left(f_{1}(a), f_{2}(a), \ldots, f_{n}(a)\right), \forall a \in M$. For any $a, b \in M$, we have

$$
\begin{aligned}
f(a \vee b) & =\left(f_{1}(a \vee b), f_{2}(a \vee b), \ldots, f_{n}(a \vee b)\right) \\
& =\left(f_{1}(a) \vee f_{1}(b), f_{2}(a) \vee f_{2}(b), \ldots, f_{n}(a) \vee f_{n}(b)\right) \\
& =\left(f_{1}(a), f_{2}(a), \ldots, f_{n}(a)\right) \vee\left(f_{1}(b), f_{2}(b), \ldots, f_{n}(b)\right) \\
& =f(a) \vee f(b) .
\end{aligned}
$$

Similarly, $f(a \wedge b)=f(a) \wedge f(b)$. Also,
$f\left(a^{\circ}\right)=\left(f_{1}\left(a^{\circ}\right), f_{2}\left(a^{\circ}\right), \ldots, f_{n}\left(a^{\circ}\right)\right)=\left(\left(f_{1}(a)\right)^{\circ},\left(f_{2}(a)\right)^{\circ}, \ldots,\left(f_{n}(a)\right)^{\circ}\right)=\left((f(a))^{\circ}\right.$.
Thus, $f$ is a homomorphism. Moreover,

$$
\left(\varphi_{i} \circ f\right)(a)=\varphi_{i}(f(a))=\varphi_{i}\left(f_{1}(a), f_{2}(a), \ldots, f_{n}(a)\right)=f_{i}(a), \forall a \in M
$$

Hence, $\varphi_{i} \circ f=f_{i}, \forall i \in I_{n}$. To prove the uniqueness of $f$, let $g: M \rightarrow L$ be another homomorphism such that $\varphi_{i} \circ g=f_{i}, \forall i \in I_{n}$. This implies that ( $\varphi_{i} \circ$ $f)(a)=f_{i}(a)=\left(\varphi_{i} \circ g\right)(a), \forall a \in M$, Assume that $g(a)=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \forall a \in$ $M$. Then,

$$
\begin{aligned}
a_{i} & =\varphi_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\varphi_{i}(g(a)) \\
& =\varphi_{i}(f(a))=\varphi_{i}\left(f_{1}(a), f_{2}(a), \ldots, f_{n}(a)\right)=f_{i}(a) \forall i \in I_{n} .
\end{aligned}
$$

Therefore, $f(a)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)=g(a), \forall a \in M$. So, $f=g$ and $f$ is unique. It remains to prove the uniqueness of $L$. Suppose that $L_{1}$ is an $M S$-algebra which
has the same property as $L$ with the family of homomorphisms $\left\{\psi_{i}: L_{1} \rightarrow\right.$ $\left.L_{i}, i \in I_{n}\right\}$. Apply the property to $L$ and $L_{1}$, we get unique homomorphisms $\alpha: L_{1} \rightarrow L$ and $\beta: L \rightarrow L_{1}$ with $\varphi_{i} \circ \alpha=\psi_{i}$ and $\psi_{i} \circ \beta=\varphi_{i}, \forall i \in I_{n}$. Consequently, $\alpha \circ \beta: L \rightarrow L_{1}$ is a unique homomorphism with $\varphi_{i} \circ(\alpha \circ \beta)=$ $\varphi_{i} \forall i \in I_{n}$. Since the identity map $i d_{L}: L \rightarrow L$ is also a homomorphism with $\varphi_{i} \circ i d_{L}=\varphi_{i} \forall i \in I_{n}$, then $\alpha \circ \beta=i d_{L}$. Similarly, $\beta \circ \alpha=i d_{L_{1}}$. This shows that $\beta$ is an isomorphism and $L$ is unique up to isomorphism.

Noting that the proofs of the previous three theorems do not rely on the decomposability of the $M S$-algebras, we conclude that they hold for decomposable $M S$-algebras.

Theorem 4.4. Let $\varphi: L_{1} \rightarrow L_{2}$ be a homomorphism between decomposable MS-algebras $L_{1}$ and $L_{2}$. If $A$ is a subalgebra of $L_{1}$, then $\varphi(A)$ is a subalgebra of $L_{2}$.

Proof. Let $b_{1}, b_{2} \in \varphi(A)$. Then, there exist $a_{1}, a_{2} \in A$ with $\varphi\left(a_{1}\right)=b_{1}, \varphi\left(a_{2}\right)=$ $b_{2}$. So, $\varphi\left(a_{1} \vee a_{2}\right)=b_{1} \vee b_{2}$. As $a_{1} \vee a_{2} \in A$, then $b_{1} \vee b_{2} \in \varphi(A)$. A similar argument shows that $b_{1} \wedge b_{2} \in \varphi(A)$. Now, let $b \in \varphi(A)$. Then, $b=\varphi(a)$, for some $a \in A$. So, $b^{\circ}=\varphi\left(a^{\circ}\right)$. Since $a^{\circ} \in A$, then $b^{\circ} \in \varphi(A)$. Writing $a=a^{\circ \circ} \wedge d, d \in D(A)$, we get

$$
b=\varphi(a)=\varphi\left(a^{\circ \circ} \wedge d\right)=\varphi\left(a^{\circ \circ}\right) \wedge \varphi(d)=(\varphi(a))^{\circ \circ} \wedge \varphi(d)=b^{\circ \circ} \wedge \varphi(d) .
$$

We note that $(\varphi(d))^{\circ}=\varphi\left(d^{\circ}\right)=\varphi\left(0_{1}\right)=0_{2}$. So, $\varphi(d) \in D(\varphi(A))$. Hence, $\varphi(A)$ is a subalgebra of $L_{2}$.

Theorem 4.5. Let $\varphi: L_{1} \rightarrow L_{2}$ be a monomorphism. If $B$ is a subalgebra of $L_{2}$, then $\varphi^{-1}(B)$ is a subalgebra of $L_{1}$.

Proof. Let $a_{1}, a_{2} \in \varphi^{-1}(B)$. Then, there exist $b_{1}, b_{2} \in B$ with $\varphi\left(a_{1}\right)=b_{1}$ and $\varphi\left(a_{2}\right)=b_{2}$. So, $\varphi\left(a_{1} \vee a_{2}\right)=b_{1} \vee b_{2}$ and $\varphi\left(a_{1} \wedge a_{2}\right)=b_{1} \wedge b_{2}$. As $b_{1} \vee b_{2}, b_{1} \wedge b_{2} \in B$, then $a_{1} \vee a_{2}, a_{1} \wedge a_{2} \in \varphi^{-1}(B)$. Now, let $a \in \varphi^{-1}(B)$, then $a=\varphi^{-1}(b)$ for some $b \in B$. So, $\varphi(a)=b$. Then, $\varphi\left(a^{\circ}\right)=b^{\circ}$. As $b^{\circ} \in B$, then $a^{\circ} \in \varphi^{-1}(B)$. Assuming that $b=b^{\circ \circ} \wedge e, e \in D(B)$, we get

$$
\begin{aligned}
a=\varphi^{-1}(b) & =\varphi^{-1}\left(b^{\circ \circ} \wedge e\right), e \in D(B) \\
& =\varphi^{-1}\left(b^{\circ \circ}\right) \wedge \varphi^{-1}(e) \\
& \left.=\left(\varphi^{-1}(b)\right)^{\circ \circ} \wedge \varphi^{-1}(e)\right)=a^{\circ \circ} \wedge \varphi^{-1}(e) .
\end{aligned}
$$

Now, we prove that $\varphi^{-1}(e) \in D\left(\varphi^{-1}(B)\right)$. Let $d=\varphi^{-1}(e)$. Then, $\varphi(d)=e$. This gives $\varphi\left(d^{\circ}\right)=e^{\circ}=0_{2}$. Therefore, $d^{\circ}=\varphi^{-1}\left(0_{2}\right)=0_{1}$. So, $d \in D\left(\varphi^{-1}(B)\right)$. Hence, $a=a^{\circ \circ} \wedge d, d \in D\left(\varphi^{-1}(B)\right)$. Hence, $\varphi^{-1}(B)$ is a subalgebra of $L_{1}$.

Theorem 4.6. Let $L_{1}$ and $L_{2}$ be two $M S$-algebras. Then, $L_{1}$ can be embedded into $L_{1} \times L_{2}$ if and only if there exists a homomorphism from $L_{1}$ to $L_{2}$.

Proof. Assume that $L_{1}$ can be embedded into $L_{1} \times L_{2}$. Then, there exists a monomorphism $\varphi: L_{1} \rightarrow L_{1} \times L_{2}$. Let $\varphi(a)=\left(a_{1}, a_{2}\right), \forall a \in L_{1}$. Define $f: L_{1} \rightarrow L_{2}$ by $f(a)=a_{2}$. Then, $f(a \vee b)=a_{2} \vee b_{2}=f(a) \vee f(b)$. Similarly, $f(a \wedge b)=f(a) \wedge f(b)$ Also, $f\left(a^{\circ}\right)=a_{2}^{\circ}=(f(a))^{\circ}$. Hence, $f$ is a homomorphism.

Conversely, assume that there exists a homomorphism $f: L_{1} \rightarrow L_{2}$. Define $\phi: L_{1} \rightarrow L_{1} \times L_{2}$ by $\phi(a)=(a, f(a))$. Then,

$$
\begin{aligned}
\phi(a \vee b) & =(a \vee b, f(a \vee b))=(a \vee b, f(a) \vee f(b))=(a, f(a)) \vee(b, f(b)) \\
& =\phi(a) \vee \phi(b), \forall a, b \in L_{1} .
\end{aligned}
$$

Analogously, $\phi(a \wedge b)=\phi(a) \wedge \phi(b)$. Also, $\phi\left(a^{\circ}\right)=\left(a^{\circ}, f\left(a^{\circ}\right)\right)=(a, f(a))^{\circ}=$ $(\phi(a))^{\circ}$. Assume $\phi(a)=\phi(b)$, then $(a, f(a))=(b, f(b))$. This gives $a=b$. Hence, $\phi$ is an embedding.

## References

[1] A. Badawy, D. Guffova and M. Haviar, Triple construction of decomposable MS-algebras, Acta Univ. Palacki Olomuc., Fac. Rer. Nat., Mathematica, 51 (2012), 53-65.
[2] A. Badawy and Ragaa El-Fawal, Homomorphisms and subalgebras of decomposable MS-algebra, Journal of the Egyption Mathematical Society, 25 (2017), 119-124.
[3] S. El-Assar and A. Badawy, Homomorphisms and subalgebras of MSalgebra, Quter Univ. Sci. J., 15 (1995), 279-289.
[4] T.S. Blyth, Lattices and ordered algebraic structures, Springer-Verlag, London, 2005.
[5] T.S. Blyth and J.C. Varlet, Sur la construction de certaines MS-algebres, Portugaliae Math., 39 (1980), 489-496.
[6] T.S. Blyth and J.C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburugh, 94A (1983), 301-308.
[7] T.S. Blyth and J.C. Varlet, corrigendum sur la construction de certaines MS-algebres, Portugaliae Math., 42 (1983), 469-471.
[8] T.S. Blyth and J.C. Varlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh, 95A (1983), 157-169.
[9] T.S. Blyth and J.C. Varlet, Ockham algebras, London, Oxford University Press, 1994.
[10] M. Haviar, On certain construction of MS-algebras. Portugaliae Math., 51 (1994), 71-83.

Accepted: 22.12.2018


[^0]:    *. Corresponding author

