On decomposable MS-algebras

Ahmed Gaber^{*}

Department of Mathematics Faculty of Science Ain Shams University Egypt a.gaber@sci.asu.edu.eg

Abd El-Mohsen Badawy

Department of Mathematics Faculty of Science Tanta University Egypt abdel-mohsen.mohamed@science.tanta.edu.eg

Salah El-Din S. Hussein

Department of Mathematics Faculty of Science Ain Shams University Egypt mynsalah@hotmail.com

Abstract. In this paper we give some results on the direct product, subalgebras and homomorphisms of decomposable MS-algebras. We Show how direct products and canonical projections are related. Also, we study homomorphic images of subalgebras of decomposable MS-algebras.

Keywords: direct product, MS-algebra, decomposable MS-algebra, subalgebra, homomorphism.

1. Introduction

MS-algebras were initiated by T.S. Blyth and J.C. Varlet, see [6], as a generalization of both de Morgan and Stone algebras. In [8], T.S. Blyth and J.C. Varlet described the lattice $\Lambda(MS)$ of subclasses of the class MS of all MSalgebras. In [3], S. El-Assar and A. Badawy studied many properties of homomomorphisms and subalgebras of MS-algebras from the subclass K_2 . In [1], A. Badawy, D. Guffova and M. Haviar introduced and characterized decomposable MS-algebras by means of decomposable MS-triples. In [2], A. Badawy and R. El-Fawal studied many properties of decomposable MS-algebras in terms of decomposable MS-triples as homomorphisms and subalgebras. Also, they solved

^{*.} Corresponding author

some fill in problems concerning homomorphisms and subalgebras of decomposable MS-algebras.

In this paper we study many properties related to the direct product and subalgebras of decomposable MS-algebras. Also, we reveal the connection between homomorphisms and direct products. We finish with some results on homomorphic images of subalgebras of decomposable MS-algebras.

2. Preliminaries

In this section, we present definitions and main results which are needed through this paper. For basic facts about MS-algebras and related structures we refer the reader to [5], [6], [7], [8], [9] and [10].

An *MS*-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies:

$$x \le x^{\circ\circ}, (x \land y)^{\circ} = x^{\circ} \lor y^{\circ}, 1^{\circ} = 0.$$

The following theorem gives the basic properties of MS-algebras.

Theorem 2.1 ([6], [9]). For any two elements a, b of an MS-algebra L, we have:

(1)
$$0^{\circ} = 1$$
,
(2) $a \le b \Rightarrow b^{\circ} \le a^{\circ}$,
(3) $a^{\circ \circ \circ} = a^{\circ}$,
(4) $(a \lor b)^{\circ} = a^{\circ} \land b^{\circ}$,
(5) $(a \lor b)^{\circ \circ} = a^{\circ \circ} \lor b^{\circ \circ}$,
(6) $(a \land b)^{\circ \circ} = a^{\circ \circ} \land b^{\circ \circ}$.

Lemma 2.2 ([1], [6]). Let L be an MS-algebra. Then:

(1) $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\}$ is a de Morgan subalgebra of L,

(2) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter (filter of dense elements) of L.

Definition 2.3 ([4]). Let $L = (L; \lor, \land, 0_L, 1_L)$ and $L_1 = (L_1; \lor, \land, 0_{L_1}, 1_{L_1})$ be bounded lattices. The map $f: L \to L_1$ is called a (0,1)-lattice homomorphism if:

(1) $f(0_L) = 0_{L_1}$ and $f(1_L) = 1_{L_1}$,

(2) f preserves joins, that is, $f(x \lor y) = f(x) \lor f(y)$ for every $x, y \in L$,

(3) f preserves meets, that is, $f(x \wedge y) = f(x) \wedge f(y)$ for every $x, y \in L$.

Definition 2.4 ([4]). A (0,1)-lattice homomorphism $f : L \to L_1$ of an MS-algebra L into an MS-algebra L_1 is called a homomorphism if $f(x^\circ) = (f(x))^\circ$ for all $x \in L$.

Definition 2.5 ([1]). An *MS*-algebra *L* is called decomposable *MS*-algebra if for every $x \in L$ there exists $d \in D(L)$ such that $x = x^{\circ \circ} \wedge d$.

Definition 2.6 ([2]). A bounded sublattice of a decomposable MS-algebra L is called a subalgebra of L if:

(1)
$$x^{\circ} \in A, \forall x \in A, \forall x, x \in A, x$$

(2) For every $x \in A$, there exists $d \in D(A)$ such that $x = x^{\circ \circ} \wedge d$.

Definition 2.7 ([2]). A subalgebra of a decomposable MS-algebra L is called a K_2 -subalgebra of L if for every $x, y \in A$, the following holds:

(1)
$$x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ \circ}$$
,

(2) $x \wedge x^{\circ} \leq y \vee y^{\circ}$.

Definition 2.8 ([2]). A subalgebra of a decomposable MS-algebra L is called a Stone subalgebra of L if for every $x \in A$, $x^{\circ} \vee x^{\circ \circ} = 1$

3. Direct products and subalgebras of decomposable MS-algebras

We begin by recalling the definition of direct product of MS-algebras.

Definition 3.1. Let $\{L_i, i \in I_n\}$ be a family of MS-algebras. Then, the direct product $\prod_{i=1}^n L_i$ is defined as $\prod_{i=1}^n L_i = \{(x_1, x_2, ..., x_n), x_i \in L_i, i \in I_n\}$ where the operations \lor, \land are defined componentwise and $(x_1, x_2, ..., x_n)^\circ = (x_1^\circ, x_2^\circ, ..., x_n^\circ)$.

The proof of the following lemma is straightforward.

Lemma 3.2. Let $\{L_i, i \in I_n\}$ be a family of MS-algebras. Then:

1.
$$(\prod_{i=1}^{n} L_i)^{\circ\circ} = \prod_{i=1}^{n} L_i^{\circ\circ},$$

2. $D(\prod_{i=1}^{n} L_i) = \prod_{i=1}^{n} D(L_i).$

Theorem 3.3. Let $\{L_i, i \in I_n\}$ be a family of MS-algebras. Then, $\prod_{i=1}^n L_i$ is decomposable if and only if L_i is decomposable for each $i \in I_n$.

Proof. Suppose that $\prod_{i=1}^{n} L_i$ is decomposable. Let $x_i \in L_i$, $i \in I_n$. Then,

$$(x_{1}, x_{2}, ..., x_{n}) \in \prod_{i=1}^{n} L_{i}$$

$$\Rightarrow (x_{1}, x_{2}, ..., x_{n}) = (x_{1}, x_{2}, ..., x_{n})^{\circ \circ} \wedge (d_{1}, d_{2}, ..., d_{n}), \ d_{i} \in D(L_{i}), \ i \in I_{n}$$

$$\Rightarrow (x_{1}, x_{2}, ..., x_{n}) = (x_{1}^{\circ \circ}, x_{2}^{\circ \circ}, ..., x_{n}^{\circ \circ}) \wedge (d_{1}, d_{2}, ..., d_{n})$$

$$\Rightarrow (x_{1}, x_{2}, ..., x_{n}) = (x_{1}^{\circ \circ} \wedge d_{1}, x_{2}^{\circ \circ} \wedge d_{2}, ..., x_{n}^{\circ \circ} \wedge d_{n})$$

$$\Rightarrow x_{i} = x_{i}^{\circ \circ} \wedge d_{i}, \ d_{i} \in D(L_{i}), \forall \ i \in I_{n},$$

$$\Rightarrow L_{i} \text{ is decomposable}, \forall \ i \in I_{n}.$$

Conversely, suppose that L_i is decomposable, $\forall i \in I_n$, and $(x_1, x_2, ..., x_n) \in \prod_{i=1}^n L_i$. Then,

$$\begin{aligned} (x_1, x_2, ..., x_n) &= (x_1^{\circ \circ} \wedge d_1, x_2^{\circ \circ} \wedge d_2, ..., x_n^{\circ \circ} \wedge d_n), d_i \in D(L_i) \\ &= (x_1^{\circ \circ}, x_2^{\circ \circ}, ..., x_n^{\circ \circ}) \wedge (d_1, d_2, ..., d_n) \\ &= (x_1, x_2, ..., x_n)^{\circ \circ} \wedge (d_1, d_2, ..., d_n) \end{aligned}$$

Since $(d_1, d_2, ..., d_n) \in \prod_{i=1}^n D(L_i) = D(\prod_{i=1}^n L_i)$, then $\prod_{i=1}^n L_i$ is decomposable.

Theorem 3.4. Let A_i be a subalgebra of a decomposable MS-algebra $L_i, i \in I_n$. Then, $\prod_{i=1}^n A_i$ is a subalgebra of $\prod_{i=1}^n L_i$.

Proof. Clearly, $\prod_{i=1}^{n} A_i$ is a bounded sublattice of $\prod_{i=1}^{n} L_i$. Let $(x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} A_i$. Then, $(x_1, x_2, ..., x_n)^{\circ} = (x_1^{\circ}, x_2^{\circ}, ..., x_n^{\circ}) \in \prod_{i=1}^{n} A_i$ (as $x_i^{\circ} \in A_i$). Assuming that $x_i = x_i^{\circ \circ} \wedge d_i$, $d_i \in D(A_i)$, we get

$$(x_1, x_2, ..., x_n) = (x_1^{\circ \circ} \land d_1, x_2^{\circ \circ} \land d_2, ..., x_n^{\circ \circ} \land d_n) = (x_1^{\circ \circ}, x_2^{\circ \circ}, ..., x_n^{\circ \circ}) \land (d_1, d_2, ..., d_n)$$

Since $(d_1, d_2, ..., d_n) \in D(\prod_{i=1}^n A_i)$, then $\prod_{i=1}^n A_i$ is a subalgebra of $\prod_{i=1}^n L_i$. \Box

Corollary 3.5. $(\prod_{i=1}^{n} L_i)^{\circ\circ}$ is a subalgebra of $\prod_{i=1}^{n} L_i$.

Proof. Since $(\prod_{i=1}^{n} L_i)^{\circ\circ} = \prod_{i=1}^{n} L_i^{\circ\circ}$ and $L_i^{\circ\circ}$ is a subalgebra of L_i , then $(\prod_{i=1}^{n} L_i)^{\circ\circ}$ is a subalgebra of $\prod_{i=1}^{n} L_i$.

Lemma 3.6. Let A_i be a K_2 -subalgebra of a decomposable MS-algebra L_i , $i \in I_n$. Then, $\prod_{i=1}^n A_i$ is a K_2 -subalgebra of $\prod_{i=1}^n L_i$.

Proof. By Theorem 3.4, $\prod_{i=1}^{n} A_i$ is a subalgebra of $\prod_{i=1}^{n} L_i$. Let $(x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} A_i$. Then,

$$(x_1, x_2, ..., x_n) \wedge (x_1, x_2, ..., x_n)^{\circ} = (x_1 \wedge x_1^{\circ}, x_2 \wedge x_2^{\circ}, ..., x_n \wedge x_n^{\circ}) = (x_1^{\circ} \wedge x_1^{\circ \circ}, x_2^{\circ} \wedge x_2^{\circ \circ}, ..., x_n^{\circ} \wedge x_n^{\circ \circ}) = (x_1, x_2, ..., x_n)^{\circ} \wedge (x_1, x_2, ..., x_n)^{\circ \circ}.$$

Moreover,

$$(x_1, x_2, ..., x_n) \wedge (x_1, x_2, ..., x_n)^{\circ} = (x_1 \wedge x_1^{\circ}, x_2 \wedge x_2^{\circ}, ..., x_n \wedge x_n^{\circ}) \leq (y_1 \vee y_1^{\circ}, y_2 \vee y_2^{\circ}, ..., y_n \vee y_n^{\circ}), \quad \forall \ y_i \in A_i = (y_1, y_2, ..., y_n) \vee (y_1, y_2, ..., y_n)^{\circ}, \quad \forall \ (y_1, y_2, ..., y_n) \in \prod_{i=1}^n A_i.$$

Hence, $\prod_{i=1}^{n} A_i$ is a K_2 -subalgebra of $\prod_{i=1}^{n} L_i$.

Lemma 3.7. Let S_i be a Stone subalgebra of a decomposable MS-algebra L_i , $i \in I_n$. Then, $\prod_{i=1}^n S_i$ is a Stone subalgebra of $\prod_{i=1}^n A_i$.

Proof. We need to verify the Stone identity. Namely, $z^{\circ} \vee z^{\circ \circ} = 1$, $\forall z \in \prod_{i=1}^{n} S_i$. Let $(x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} S_i$. Then,

$$(x_1, x_2, ..., x_n)^{\circ} \lor (x_1, x_2, ..., x_n)^{\circ \circ} = (x_1^{\circ} \lor x_1^{\circ \circ}, x_2^{\circ} \lor x_2^{\circ \circ}, ..., x_n^{\circ} \lor x_n^{\circ \circ})$$

= $(1_1, 1_2, ..., 1_n),$

where 1_i is the greatest element of S_i . Thus, $\prod_{i=1}^n S_i$ is a Stone subalgebra of $\prod_{i=1}^n L_i$.

The following example shows that the converse of Theorem 3.4, lemma 3.6 and lemma 3.7 is not true, respectively.

Example 3.8. Consider the following two decomposable MS-algebras:

 $A = \{(1,1), (0,0)\}$ is a subalgebra (respectively a K_2 -subalgebra, a Stone subalgebra) of $L_1 \times L_2$ while it can not be written as a product of two subalgebras (respectively K_2 -subalgebras, Stone subalgebras) of L_1 and L_2 .

Lemma 3.9. Let $\{A_i, i \in I_n\}$ be a family of subalgebras of a decomposable MS-algebra L. Then:

- 1. $\bigcap_{i=1}^{n} A_i$ is a subalgebra of L,
- 2. $\bigcup_{i=1}^{n} A_i$ is not necessarily a subalgebra of L.

Proof. 1. Clearly, $\bigcap_{i=1}^{n} A_i$ is a bounded sublattice of L. Let $x \in \bigcap_{i=1}^{n} A_i$. Then, $x \in A_i$, $\forall i \in I_n$. Consequently, $x^{\circ} \in A_i$, $\forall i \in I_n$. Hence, $x^{\circ} \in \bigcap_{i=1}^{n} A_i$. Moreover, we have $x = x^{\circ \circ} \wedge d_i$, $d_i \in D(A_i)$, $i \in I_n$. As $d_i \in A_i$, then $\bigvee_{i=1}^{n} d_i \in A_i$, $\forall i \in I_n$. Also, $(\bigvee_{i=1}^{n} d_i)^{\circ} = \bigwedge_{i=1}^{n} d_i^{\circ} = 0$. Then, $\bigvee_{i=1}^{n} d_i \in \bigcap_{i=1}^{n} D(A_i) = D(\bigcap_{i=1}^{n} A_i)$. Now, we can write $x = x^{\circ \circ} \lor d$ where $d = \bigvee_{i=1}^{n} d_i \in D(\bigcap_{i=1}^{n} A_i)$. Hence, $\bigcap_{i=1}^{n} A_i$ is a subalgebra of L. 2. Consider L_2 of example 3.8, we observe that $A_1 = \{1, 0, x\}$ and $A_2 = \{1, 0, z\}$ are subalgebras of L_2 while $A_1 \cup A_2 = \{1, 0, x, z\}$ is not a subalgebra of L_2 (as $x \wedge z = y \notin A_1 \cup A_2$).

4. Direct products and homomorphisms of decomposable MS-algebras

Theorem 4.1. Let $\{\varphi_i : A_i \to B_i, i \in I_n\}$ be a family of homomorphisms between MS-algebras. Define $\varphi : \prod_{i=1}^n A_i \to \prod_{i=1}^n B_i$, by $\varphi(a_1, a_2, ..., a_n) = (\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n))$. Then:

- 1. φ is a homomorphism,
- 2. φ is one to one if and only if each φ_i is one to one,
- 3. φ is onto if and only if each φ_i is onto,
- 4. $ker\varphi = \prod_{i=1}^{n} ker\varphi_i$,

5. $\varphi(\prod_{i=1}^{n} A_i) = \prod_{i=1}^{n} \varphi_i(A_i).$

Proof.

(1) Let $(a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \in \prod_{i=1}^n A_i$. Then,

$$\begin{aligned} \varphi \big((a_1, a_2, ..., a_n) \lor (b_1, b_2, ..., b_n) \big) \\ &= \varphi(a_1 \lor b_1, a_2 \lor b_2, ..., a_n \lor b_n) \\ &= (\varphi_1(a_1 \lor b_1), \varphi_2(a_2 \lor b_2), ..., \varphi_n(a_n \lor b_n)) \\ &= (\varphi_1(a_1) \lor \varphi_1(b_1), \varphi_2(a_2) \lor \varphi_2(b_2), ..., \varphi_n(a_n) \lor \varphi_n(b_n)) \\ &= (\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n)) \lor (\varphi_1(b_1), \varphi_2(b_2), ..., \varphi_n(b_n)) \\ &= \varphi(a_1, a_2, ..., a_n) \lor \varphi(b_1, b_2, ..., b_n). \end{aligned}$$

Similarly, we can show that

$$\varphi((a_1, a_2, ..., a_n) \land (b_1, b_2, ..., b_n)) = \varphi(a_1, a_2, ..., a_n) \land \varphi(b_1, b_2, ..., b_n).$$

Moreover,

$$\begin{aligned} \varphi(a_1, a_2, ..., a_n)^{\circ} &= \varphi(a_1^{\circ}, a_2^{\circ}, ..., a_n^{\circ}) \\ &= (\varphi_1(a_1^{\circ}), \varphi_2(a_2^{\circ}), ..., \varphi_n(a_n^{\circ})) \\ &= (\varphi_1(a_1)^{\circ}, \varphi_2(a_2)^{\circ}, ..., \varphi_n(a_n)^{\circ}) \\ &= (\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n))^{\circ} \\ &= (\varphi(a_1, a_2, ..., a_n))^{\circ}. \end{aligned}$$

Hence, φ is a homomorphism from $\prod_{i=1}^{n} A_i$ into $\prod_{i=1}^{n} B_i$.

(2) Let φ be one to one and suppose that $\varphi_i(a_i) = \varphi_i(b_i), i \in I_n$. Then,

$$\begin{aligned} \varphi(a_1, a_2, ..., a_n) &= (\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n)) \\ &= (\varphi_1(b_1), \varphi_2(b_2), ..., \varphi_n(b_n)) \\ &= \varphi(b_1, b_2, ..., b_n). \end{aligned}$$

This gives $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$. So, $a_i = b_i$, $\forall i \in I_n$. Hence, each φ_i is one to one. Conversely, assume φ_i is one to one for each i and $\varphi(a_1, a_2, ..., a_n) = \varphi(b_1, b_2, ..., b_n)$. Then, $(\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n)) = (\varphi_1(b_1), \varphi_2(b_2), ..., \varphi_n(b_n))$. Thus, $\varphi_i(a_i) = \varphi_i(b_i) \ \forall i$. Hence, φ is one to one.

(3) Let φ be onto and $b_i \in B_i$, $\forall i$. Then, $(b_1, b_2, ..., b_n) \in \prod_{i=1}^n B_i$. As φ is onto, there exists $(a_1, a_2, ..., a_n) \in \prod_{i=1}^n A_i$ such that $\varphi(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$. Equivalently, $(\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n)) = (b_1, b_2, ..., b_n)$. That is, $\varphi_i(a_i) = b_i$, $\forall i$. Hence, each φ_i is onto. Conversely, let φ_i be onto for each i and $(b_1, b_2, ..., b_n) \in \prod_{i=1}^n B_i$. Since $b_i \in B_i$ and φ_i is onto, then there exists $a_i \in A_i$ such that $b_i = \varphi_i(a_i)$, $\forall i$. So, $(b_1, b_2, ..., b_n) = (\varphi_1(a_1), \varphi_2(a_2), ..., \varphi_n(a_n))$. Consequently, φ is onto.

$$(a_{1}, a_{2}, ..., a_{n}) \in ker\varphi \Leftrightarrow \varphi(a_{1}, a_{2}, ..., a_{n}) = (0_{1}, 0_{2}, ..., 0_{n})$$

$$\Leftrightarrow (\varphi_{1}(a_{1}), \varphi_{2}(a_{2}), ..., \varphi_{n}(a_{n})) = (0_{1}, 0_{2}, ..., 0_{n})$$

$$\Leftrightarrow \varphi_{i}(a_{i}) = 0_{i}, \forall i \in I_{n}$$

$$\Leftrightarrow a_{i} \in ker\varphi_{i} \forall i \in I_{n}$$

$$\Leftrightarrow (a_{1}, a_{2}, ..., a_{n}) \in \prod_{i=1}^{n} ker\varphi_{i}.$$

$$(b_1, b_2, ..., b_n) \in \varphi(\prod_n^{i=1} A_i)$$

$$(5) \qquad \Leftrightarrow (b_1, b_2, ..., b_n) = \varphi((a_1, a_2, ..., a_n)), (a_1, a_2, ..., a_n) \in \prod_n^{i=1} A_i$$

$$\Leftrightarrow \varphi_i(a_i) = b_i, a_i \in A_i$$

$$\Leftrightarrow (b_1, b_2, ..., b_n) \in \prod_{i=1}^n \varphi_i(A_i).$$

Theorem 4.2. Let $\{A_i, i \in I_n\}$ be a family of MS-algebras. Then, the map $\varphi_k : \prod_{i=1}^n A_i \to A_k$ defined by $\varphi_k(a_1, a_2, ..., a_k, ..., a_n) = a_k$ is an epimorphism for each $k \in I_n$.

Proof. Let $(a_1, a_2, ..., a_k, ..., a_n) = (b_1, b_2, ..., b_k, ..., b_n)$. Then, $a_i = b_i \ \forall i \in I_n$. Therefore, $\varphi_k(a_1, a_2, ..., a_k, ..., a_n) = a_k = b_k = \varphi_k(b_1, b_2, ..., b_k, ..., b_n)$. So, φ_k is

well defined, $\forall k \in I_n$. Now, suppose that $(a_1, a_2, ..., a_k, ..., a_n)$, $(b_1, b_2, ..., b_k, ..., b_n) \in \prod_{i=1}^n A_i$. Then, $\varphi_k((a_1, a_2, ..., a_k, ..., a_n) \lor (b_1, b_2, ..., b_k, ..., b_n)) = a_k \lor b_k = \varphi_k(a_1, a_2, ..., a_k, ..., a_n) \lor \varphi_k(b_1, b_2, ..., b_k, ..., b_n)$. Similarly, φ_k preserves the meet operation. Besides,

$$\varphi_k(a_1, a_2, ..., a_k, ..., a_n)^\circ = a_k^\circ = (\varphi_k(a_1, a_2, ..., a_k, ..., a_n))^\circ$$

Finally, if $c_k \in A_K$, then $(0_1, 0_2, ..., c_k, ..., 0_n) \in \prod_{i=1}^n A_i$ with $\varphi_k(0_1, 0_2, ..., c_k, ..., 0_n) = c_k$. Thus, φ_k is onto and hence φ_k is an epimorphism.

The previous maps $(\varphi_k s)$ are called the canonical projections of the direct product.

Theorem 4.3. Let $\{L_i, i \in I_n\}$ be a family of MS-algebras. Then there exists a unique (up to isomorphism) MS-algebra L, together with a family of homomorphisms $\{\varphi_i : L \to L_i, i \in I_n\}$, with the following property:

For any MS-algebra M and any family of homomorphisms $\{f_i : M \to L_i, i \in I_n\}$, there exists a unique homomorphism $f : M \to L$ such that $\varphi_i \circ f = f_i$, $\forall i \in I_n$.

Proof. Let $L = \prod_{i=1}^{n} L_i$ and $\{\varphi_i : L \to L_i, i \in I_n\}$ be the family of canonical projections. Define $f : M \to L$ by $f(a) = (f_1(a), f_2(a), ..., f_n(a)), \forall a \in M$. For any $a, b \in M$, we have

$$f(a \lor b) = (f_1(a \lor b), f_2(a \lor b), ..., f_n(a \lor b))$$

= $(f_1(a) \lor f_1(b), f_2(a) \lor f_2(b), ..., f_n(a) \lor f_n(b))$
= $(f_1(a), f_2(a), ..., f_n(a)) \lor (f_1(b), f_2(b), ..., f_n(b))$
= $f(a) \lor f(b).$

Similarly, $f(a \wedge b) = f(a) \wedge f(b)$. Also,

$$f(a^{\circ}) = (f_1(a^{\circ}), f_2(a^{\circ}), ..., f_n(a^{\circ})) = ((f_1(a))^{\circ}, (f_2(a))^{\circ}, ..., (f_n(a))^{\circ}) = ((f(a))^{\circ}.$$

Thus, f is a homomorphism. Moreover,

$$(\varphi_i \circ f)(a) = \varphi_i(f(a)) = \varphi_i(f_1(a), f_2(a), ..., f_n(a)) = f_i(a), \ \forall a \in M.$$

Hence, $\varphi_i \circ f = f_i$, $\forall i \in I_n$. To prove the uniqueness of f, let $g : M \to L$ be another homomorphism such that $\varphi_i \circ g = f_i$, $\forall i \in I_n$. This implies that $(\varphi_i \circ f)(a) = f_i(a) = (\varphi_i \circ g)(a), \forall a \in M$, Assume that $g(a) = (a_1, a_2, ..., a_n), \forall a \in M$. Then,

$$\begin{aligned} a_i &= \varphi_i(a_1, a_2, ..., a_n) = \varphi_i(g(a)) \\ &= \varphi_i(f(a)) = \varphi_i(f_1(a), f_2(a), ..., f_n(a)) = f_i(a) \; \forall i \in I_n. \end{aligned}$$

Therefore, $f(a) = (a_1, a_2, ..., a_n) = g(a)$, $\forall a \in M$. So, f = g and f is unique. It remains to prove the uniqueness of L. Suppose that L_1 is an MS-algebra which

has the same property as L with the family of homomorphisms $\{\psi_i : L_1 \rightarrow L_i, i \in I_n\}$. Apply the property to L and L_1 , we get unique homomorphisms $\alpha : L_1 \rightarrow L$ and $\beta : L \rightarrow L_1$ with $\varphi_i \circ \alpha = \psi_i$ and $\psi_i \circ \beta = \varphi_i, \forall i \in I_n$. Consequently, $\alpha \circ \beta : L \rightarrow L_1$ is a unique homomorphism with $\varphi_i \circ (\alpha \circ \beta) = \varphi_i \forall i \in I_n$. Since the identity map $id_L : L \rightarrow L$ is also a homomorphism with $\varphi_i \circ id_L = \varphi_i \forall i \in I_n$, then $\alpha \circ \beta = id_L$. Similarly, $\beta \circ \alpha = id_{L_1}$. This shows that β is an isomorphism and L is unique up to isomorphism.

Noting that the proofs of the previous three theorems do not rely on the decomposability of the MS-algebras, we conclude that they hold for decomposable MS-algebras.

Theorem 4.4. Let $\varphi : L_1 \to L_2$ be a homomorphism between decomposable MS-algebras L_1 and L_2 . If A is a subalgebra of L_1 , then $\varphi(A)$ is a subalgebra of L_2 .

Proof. Let $b_1, b_2 \in \varphi(A)$. Then, there exist $a_1, a_2 \in A$ with $\varphi(a_1) = b_1, \varphi(a_2) = b_2$. So, $\varphi(a_1 \vee a_2) = b_1 \vee b_2$. As $a_1 \vee a_2 \in A$, then $b_1 \vee b_2 \in \varphi(A)$. A similar argument shows that $b_1 \wedge b_2 \in \varphi(A)$. Now, let $b \in \varphi(A)$. Then, $b = \varphi(a)$, for some $a \in A$. So, $b^\circ = \varphi(a^\circ)$. Since $a^\circ \in A$, then $b^\circ \in \varphi(A)$. Writing $a = a^{\circ\circ} \wedge d, d \in D(A)$, we get

$$b = \varphi(a) = \varphi(a^{\circ \circ} \wedge d) = \varphi(a^{\circ \circ}) \wedge \varphi(d) = (\varphi(a))^{\circ \circ} \wedge \varphi(d) = b^{\circ \circ} \wedge \varphi(d).$$

We note that $(\varphi(d))^{\circ} = \varphi(d^{\circ}) = \varphi(0_1) = 0_2$. So, $\varphi(d) \in D(\varphi(A))$. Hence, $\varphi(A)$ is a subalgebra of L_2 .

Theorem 4.5. Let $\varphi : L_1 \to L_2$ be a monomorphism. If B is a subalgebra of L_2 , then $\varphi^{-1}(B)$ is a subalgebra of L_1 .

Proof. Let $a_1, a_2 \in \varphi^{-1}(B)$. Then, there exist $b_1, b_2 \in B$ with $\varphi(a_1) = b_1$ and $\varphi(a_2) = b_2$. So, $\varphi(a_1 \lor a_2) = b_1 \lor b_2$ and $\varphi(a_1 \land a_2) = b_1 \land b_2$. As $b_1 \lor b_2, b_1 \land b_2 \in B$, then $a_1 \lor a_2, a_1 \land a_2 \in \varphi^{-1}(B)$. Now, let $a \in \varphi^{-1}(B)$, then $a = \varphi^{-1}(b)$ for some $b \in B$. So, $\varphi(a) = b$. Then, $\varphi(a^\circ) = b^\circ$. As $b^\circ \in B$, then $a^\circ \in \varphi^{-1}(B)$. Assuming that $b = b^{\circ\circ} \land e, \ e \in D(B)$, we get

$$a = \varphi^{-1}(b) = \varphi^{-1}(b^{\circ\circ} \wedge e), \ e \in D(B).$$

$$= \varphi^{-1}(b^{\circ\circ}) \wedge \varphi^{-1}(e)$$

$$= (\varphi^{-1}(b))^{\circ\circ} \wedge \varphi^{-1}(e)) = a^{\circ\circ} \wedge \varphi^{-1}(e).$$

Now, we prove that $\varphi^{-1}(e) \in D(\varphi^{-1}(B))$. Let $d = \varphi^{-1}(e)$. Then, $\varphi(d) = e$. This gives $\varphi(d^{\circ}) = e^{\circ} = 0_2$. Therefore, $d^{\circ} = \varphi^{-1}(0_2) = 0_1$. So, $d \in D(\varphi^{-1}(B))$. Hence, $a = a^{\circ \circ} \wedge d$, $d \in D(\varphi^{-1}(B))$. Hence, $\varphi^{-1}(B)$ is a subalgebra of L_1 . \Box

Theorem 4.6. Let L_1 and L_2 be two MS-algebras. Then, L_1 can be embedded into $L_1 \times L_2$ if and only if there exists a homomorphism from L_1 to L_2 .

Proof. Assume that L_1 can be embedded into $L_1 \times L_2$. Then, there exists a monomorphism $\varphi : L_1 \to L_1 \times L_2$. Let $\varphi(a) = (a_1, a_2), \forall a \in L_1$. Define $f : L_1 \to L_2$ by $f(a) = a_2$. Then, $f(a \lor b) = a_2 \lor b_2 = f(a) \lor f(b)$. Similarly, $f(a \land b) = f(a) \land f(b)$ Also, $f(a^\circ) = a_2^\circ = (f(a))^\circ$. Hence, f is a homomorphism. Conversely, assume that there exists a homomorphism $f : L_1 \to L_2$. Define

Conversely, assume that there exists a homomorphism $f: L_1 \to L_2$. Define $\phi: L_1 \to L_1 \times L_2$ by $\phi(a) = (a, f(a))$. Then,

$$\phi(a \lor b) = (a \lor b, f(a \lor b)) = (a \lor b, f(a) \lor f(b)) = (a, f(a)) \lor (b, f(b))$$
$$= \phi(a) \lor \phi(b), \forall a, b \in L_1.$$

Analogously, $\phi(a \wedge b) = \phi(a) \wedge \phi(b)$. Also, $\phi(a^{\circ}) = (a^{\circ}, f(a^{\circ})) = (a, f(a))^{\circ} = (\phi(a))^{\circ}$. Assume $\phi(a) = \phi(b)$, then (a, f(a)) = (b, f(b)). This gives a = b. Hence, ϕ is an embedding.

References

- A. Badawy, D. Guffova and M. Haviar, *Triple construction of decomposable MS-algebras*, Acta Univ. Palacki Olomuc., Fac. Rer. Nat., Mathematica, 51 (2012), 53-65.
- [2] A. Badawy and Ragaa El-Fawal, Homomorphisms and subalgebras of decomposable MS-algebra, Journal of the Egyption Mathematical Society, 25 (2017), 119-124.
- [3] S. El-Assar and A. Badawy, Homomorphisms and subalgebras of MSalgebra, Quter Univ. Sci. J., 15 (1995), 279-289.
- [4] T.S. Blyth, Lattices and ordered algebraic structures, Springer-Verlag, London, 2005.
- T.S. Blyth and J.C. Varlet, Sur la construction de certaines MS-algebres, Portugaliae Math., 39 (1980), 489-496.
- [6] T.S. Blyth and J.C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburugh, 94A (1983), 301-308.
- [7] T.S. Blyth and J.C. Varlet, corrigendum sur la construction de certaines MS-algebres, Portugaliae Math., 42 (1983), 469-471.
- [8] T.S. Blyth and J.C. Varlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh, 95A (1983), 157-169.
- [9] T.S. Blyth and J.C. Varlet, Ockham algebras, London, Oxford University Press, 1994.
- [10] M. Haviar, On certain construction of MS-algebras. Portugaliae Math., 51 (1994), 71-83.

Accepted: 22.12.2018