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Abstract. In this paper we give some results on the direct product, subalgebras
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1. Introduction

MS-algebras were initiated by T.S. Blyth and J.C. Varlet, see [6], as a gener-
alization of both de Morgan and Stone algebras. In [8], T.S. Blyth and J.C.
Varlet described the lattice Λ(MS) of subclasses of the class MS of all MS-
algebras. In [3], S. El-Assar and A. Badawy studied many properties of homo-
momorphisms and subalgebras of MS-algebras from the subclass K2. In [1], A.
Badawy, D. Guffova and M. Haviar introduced and characterized decomposable
MS-algebras by means of decomposable MS-triples. In [2], A. Badawy and R.
El-Fawal studied many properties of decomposable MS-algebras in terms of de-
composable MS-triples as homomorphisms and subalgebras. Also, they solved
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some fill in problems concerning homomorphisms and subalgebras of decompos-
able MS-algebras.

In this paper we study many properties related to the direct product and
subalgebras of decomposable MS -algebras. Also, we reveal the connection be-
tween homomorphisms and direct products. We finish with some results on
homomorphic images of subalgebras of decomposable MS-algebras.

2. Preliminaries

In this section, we present definitions and main results which are needed through
this paper. For basic facts about MS-algebras and related structures we refer
the reader to [5], [6], [7], [8], [9] and [10].

AnMS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧,
0, 1) is a bounded distributive lattice and the unary operation ◦ satisfies:

x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.

The following theorem gives the basic properties of MS-algebras.

Theorem 2.1 ([6], [9]). For any two elements a, b of an MS-algebra L, we
have:

(1) 0◦ = 1,

(2) a ≤ b⇒ b◦ ≤ a◦,

(3) a◦◦◦ = a◦,

(4) (a ∨ b)◦ = a◦ ∧ b◦,
(5) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,
(6) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

Lemma 2.2 ([1], [6]). Let L be an MS-algebra. Then:

(1) L◦◦ = {x ∈ L : x = x◦◦} is a de Morgan subalgebra of L,

(2) D(L) = {x ∈ L : x◦ = 0} is a filter (filter of dense elements) of L.

Definition 2.3 ([4]). Let L = (L;∨,∧, 0L, 1L) and L1 = (L1;∨,∧, 0L1 , 1L1) be
bounded lattices. The map f : L → L1 is called a (0,1)-lattice homomorphism
if:

(1) f(0L) = 0L1 and f(1L) = 1L1 ,

(2) f preserves joins, that is, f(x ∨ y) = f(x) ∨ f(y) for every x, y ∈ L,

(3) f preserves meets, that is, f(x ∧ y) = f(x) ∧ f(y) for every x, y ∈ L.

Definition 2.4 ([4]). A (0,1)-lattice homomorphism f : L → L1 of an MS-
algebra L into an MS-algebra L1 is called a homomorphism if f(x◦) = (f(x))◦

for all x ∈ L.
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Definition 2.5 ([1]). An MS-algebra L is called decomposable MS-algebra if
for every x ∈ L there exists d ∈ D(L) such that x = x◦◦ ∧ d.

Definition 2.6 ([2]). A bounded sublattice of a decomposable MS-algebra L
is called a subalgebra of L if:

(1) x◦ ∈ A,∀x ∈ A,

(2) For every x ∈ A, there exists d ∈ D(A) such that x = x◦◦ ∧ d.

Definition 2.7 ([2]). A subalgebra of a decomposable MS-algebra L is called
a K2-subalgebra of L if for every x, y ∈ A, the following holds:

(1) x ∧ x◦ = x◦ ∧ x◦◦,
(2) x ∧ x◦ 6 y ∨ y◦.

Definition 2.8 ([2]). A subalgebra of a decomposable MS-algebra L is called
a Stone subalgebra of L if for every x ∈ A, x◦ ∨ x◦◦ = 1

3. Direct products and subalgebras of decomposable MS-algebras

We begin by recalling the definition of direct product of MS-algebras.

Definition 3.1. Let {Li, i ∈ In} be a family of MS-algebras. Then, the
direct product

∏n
i=1 Li is defined as

∏n
i=1 Li = {(x1, x2, ..., xn), xi ∈ Li, i ∈ In}

where the operations ∨,∧ are defined componentwise and (x1, x2, ..., xn)
◦ =

(x◦1, x
◦
2, ..., x

◦
n).

The proof of the following lemma is straightforward.

Lemma 3.2. Let {Li, i ∈ In} be a family of MS-algebras. Then:

1. (
∏n

i=1 Li)
◦◦ =

∏n
i=1 L

◦◦
i ,

2. D(
∏n

i=1 Li) =
∏n

i=1D(Li).

Theorem 3.3. Let {Li, i ∈ In} be a family of MS-algebras. Then,
∏n

i=1 Li is
decomposable if and only if Li is decomposable for each i ∈ In.

Proof. Suppose that
∏n

i=1 Li is decomposable. Let xi ∈ Li, i ∈ In. Then,

(x1, x2, ..., xn) ∈
n∏

i=1

Li

⇒ (x1, x2, ..., xn) = (x1, x2, ..., xn)
◦◦ ∧ (d1, d2, ..., dn), di ∈ D(Li), i ∈ In

⇒ (x1, x2, ..., xn) = (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n ) ∧ (d1, d2, ..., dn)

⇒ (x1, x2, ..., xn) = (x◦◦1 ∧ d1, x◦◦2 ∧ d2, ..., x◦◦n ∧ dn)
⇒ xi = x◦◦i ∧ di, di ∈ D(Li), ∀ i ∈ In,

⇒ Li is decomposable, ∀ i ∈ In.
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Conversely, suppose that Li is decomposable, ∀i ∈ In, and (x1, x2, ..., xn) ∈∏n
i=1 Li. Then,

(x1, x2, ..., xn) = (x◦◦1 ∧ d1, x◦◦2 ∧ d2, ..., x◦◦n ∧ dn), di ∈ D(Li)

= (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n ) ∧ (d1, d2, ..., dn)

= (x1, x2, ..., xn)
◦◦ ∧ (d1, d2, ..., dn)

Since (d1, d2, ..., dn) ∈
∏n

i=1D(Li) = D(
∏n

i=1 Li), then
∏n

i=1 Li is decomposable.

Theorem 3.4. Let Ai be a subalgebra of a decomposable MS-algebra Li, i ∈ In.
Then,

∏n
i=1Ai is a subalgebra of

∏n
i=1 Li.

Proof. Clearly,
∏n

i=1Ai is a bounded sublattice of
∏n

i=1 Li. Let (x1, x2, ...xn) ∈∏n
i=1Ai. Then, (x1, x2, ..., xn)

◦ = (x◦1, x
◦
2, ..., x

◦
n) ∈

∏n
i=1Ai (as x

◦
i ∈ Ai). As-

suming that xi = x◦◦i ∧ di, di ∈ D(Ai), we get

(x1, x2, ..., xn) = (x◦◦1 ∧d1, x◦◦2 ∧d2, ..., x◦◦n ∧dn) = (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n )∧(d1, d2, ..., dn).

Since (d1, d2, ..., dn) ∈ D(
∏n

i=1Ai), then
∏n

i=1Ai is a subalgebra of
∏n

i=1 Li.

Corollary 3.5. (
∏n

i=1 Li)
◦◦ is a subalgebra of

∏n
i=1 Li.

Proof. Since (
∏n

i=1 Li)
◦◦ =

∏n
i=1 L

◦◦
i and L◦◦

i is a subalgebra of Li, then
(
∏n

i=1 Li)
◦◦ is a subalgebra of

∏n
i=1 Li.

Lemma 3.6. Let Ai be a K2-subalgebra of a decomposable MS-algebra Li, i ∈
In. Then,

∏n
i=1Ai is a K2-subalgebra of

∏n
i=1 Li.

Proof. By Theorem 3.4,
∏n

i=1Ai is a subalgebra of
∏n

i=1 Li.

Let (x1, x2, ..., xn) ∈
∏n

i=1Ai. Then,

(x1, x2, ..., xn) ∧ (x1, x2, ..., xn)
◦ = (x1 ∧ x◦1, x2 ∧ x◦2, ..., xn ∧ x◦n)

= (x◦1 ∧ x◦◦1 , x◦2 ∧ x◦◦2 , ..., x◦n ∧ x◦◦n )

= (x1, x2, ..., xn)
◦ ∧ (x1, x2, ..., xn)

◦◦.

Moreover,

(x1, x2, ..., xn) ∧ (x1, x2, ..., xn)
◦

= (x1 ∧ x◦1, x2 ∧ x◦2, ..., xn ∧ x◦n)
≤ (y1 ∨ y◦1, y2 ∨ y◦2, ..., yn ∨ y◦n), ∀ yi ∈ Ai

= (y1, y2, ..., yn) ∨ (y1, y2, ..., yn)
◦, ∀ (y1, y2, ..., yn) ∈

n∏
i=1

Ai.

Hence,
∏n

i=1Ai is a K2-subalgebra of
∏n

i=1 Li.
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Lemma 3.7. Let Si be a Stone subalgebra of a decomposable MS-algebra Li, i ∈
In. Then,

∏n
i=1 Si is a Stone subalgebra of

∏n
i=1Ai.

Proof. We need to verify the Stone identity. Namely, z◦ ∨ z◦◦ = 1, ∀z ∈∏n
i=1 Si. Let (x1, x2, ..., xn) ∈

∏n
i=1 Si. Then,

(x1, x2, ..., xn)
◦ ∨ (x1, x2, ..., xn)

◦◦ = (x◦1 ∨ x◦◦1 , x◦2 ∨ x◦◦2 , ..., x◦n ∨ x◦◦n )

= (11, 12, ..., 1n),

where 1i is the greatest element of Si. Thus,
∏n

i=1 Si is a Stone subalgebra of∏n
i=1 Li.

The following example shows that the converse of Theorem 3.4, lemma 3.6
and lemma 3.7 is not true, respectively.

Example 3.8. Consider the following two decomposable MS-algebras:

1 = 00 1 = 00

ttt
ttt

ttt
ttt

PPP
PPP

PPP
PPP

b x

II
II

II
II

II
II z = z0 = y0

nnn
nnn

nnn
nnn

nnn

a = a0 y

0 = 10 = b0 0 = 10 = x0

L1 L2

A = {(1, 1), (0, 0)} is a subalgebra (respectively a K2-subalgebra, a Stone subalgebra)
of L1×L2 while it can not be written as a product of two subalgebras (respectively
K2-subalgebras, Stone subalgebras) of L1 and L2.

Lemma 3.9. Let {Ai, i ∈ In} be a family of subalgebras of a decomposable
MS-algebra L. Then:

1.
∩n

i=1Ai is a subalgebra of L,

2.
∪n

i=1Ai is not necessarily a subalgebra of L.

Proof. 1. Clearly,
∩n

i=1Ai is a bounded sublattice of L. Let x ∈
∩n

i=1Ai.
Then, x ∈ Ai, ∀i ∈ In. Consequently, x◦ ∈ Ai, ∀i ∈ In. Hence, x◦ ∈

∩n
i=1Ai.

Moreover, we have x = x◦◦ ∧ di, di ∈ D(Ai), i ∈ In. As di ∈ Ai, then
∨n

i=1 di ∈
Ai, ∀i ∈ In. Also, (

∨n
i=1 di)

◦ =
∧n

i=1 d
◦
i = 0. Then,

∨n
i=1 di ∈

∩n
i=1D(Ai) =

D(
∩n

i=1Ai). Now, we can write x = x◦◦ ∨ d where d =
∨n

i=1 di ∈ D(
∩n

i=1Ai).
Hence,

∩n
i=1Ai is a subalgebra of L.
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2. Consider L2 of example 3.8, we observe that A1 = {1, 0, x} and A2 =
{1, 0, z} are subalgebras of L2 while A1 ∪A2 = {1, 0, x, z} is not a subalgebra of
L2 (as x ∧ z = y ̸∈ A1 ∪A2).

4. Direct products and homomorphisms of decomposable
MS-algebras

Theorem 4.1. Let {φi : Ai → Bi, i ∈ In} be a family of homomorphisms
between MS-algebras. Define φ :

∏n
i=1Ai →

∏n
i=1Bi, by φ(a1, a2, ..., an) =

(φ1(a1), φ2(a2), ..., φn(an)). Then:

1. φ is a homomorphism,

2. φ is one to one if and only if each φi is one to one,

3. φ is onto if and only if each φi is onto,

4. kerφ =
∏n

i=1 kerφi,

5. φ(
∏n

i=1Ai) =
∏n

i=1 φi(Ai).

Proof.

(1) Let (a1, a2, ..., an), (b1, b2, ..., bn) ∈
∏n

i=1Ai. Then,

φ
(
(a1, a2, ..., an) ∨ (b1, b2, ..., bn)

)
= φ(a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn)
= (φ1(a1 ∨ b1), φ2(a2 ∨ b2), ..., φn(an ∨ bn))
= (φ1(a1) ∨ φ1(b1), φ2(a2) ∨ φ2(b2), ..., φn(an) ∨ φn(bn))

= (φ1(a1), φ2(a2), ..., φn(an)) ∨ (φ1(b1), φ2(b2), ..., φn(bn))

= φ(a1, a2, ..., an) ∨ φ(b1, b2, ..., bn).

Similarly, we can show that

φ
(
(a1, a2, ..., an) ∧ (b1, b2, ..., bn)

)
= φ(a1, a2, ..., an) ∧ φ(b1, b2, ..., bn).

Moreover,

φ(a1, a2, ..., an)
◦ = φ(a◦1, a

◦
2, ..., a

◦
n)

= (φ1(a
◦
1), φ2(a

◦
2), ..., φn(a

◦
n))

= (φ1(a1)
◦, φ2(a2)

◦, ..., φn(an)
◦)

= (φ1(a1), φ2(a2), ..., φn(an))
◦

= (φ(a1, a2, ..., an))
◦.

Hence, φ is a homomorphism from
∏n

i=1Ai into
∏n

i=1Bi.
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(2) Let φ be one to one and suppose that φi(ai) = φi(bi), i ∈ In. Then,

φ(a1, a2, ..., an) = (φ1(a1), φ2(a2), ..., φn(an))

= (φ1(b1), φ2(b2), ..., φn(bn))

= φ(b1, b2, ..., bn).

This gives (a1, a2, ..., an) = (b1, b2, ..., bn). So, ai = bi, ∀i ∈ In. Hence, each φi is
one to one. Conversely, assume φi is one to one for each i and φ(a1, a2, ..., an) =
φ(b1, b2, ..., bn). Then, (φ1(a1), φ2(a2), ..., φn(an)) = (φ1(b1), φ2(b2), ..., φn(bn)).
Thus, φi(ai) = φi(bi) ∀i. Hence, φ is one to one.

(3) Let φ be onto and bi ∈ Bi, ∀i. Then, (b1, b2, ..., bn) ∈
∏n

i=1Bi. As φ is onto,
there exists (a1, a2, ..., an) ∈

∏n
i=1Ai such that φ(a1, a2, ..., an) = (b1, b2, ..., bn).

Equivalently, (φ1(a1), φ2(a2), ..., φn(an)) = (b1, b2, ..., bn). That is, φi(ai) =
bi, ∀i. Hence, each φi is onto. Conversely, let φi be onto for each i and
(b1, b2, ..., bn) ∈

∏n
i=1Bi. Since bi ∈ Bi and φi is onto, then there exists ai ∈ Ai

such that bi = φi(ai), ∀i. So, (b1, b2, ..., bn) = (φ1(a1), φ2(a2), ..., φn(an)). Con-
sequently, φ is onto.

(a1, a2, ..., an) ∈ kerφ⇔ φ(a1, a2, ..., an) = (01, 02, ..., 0n)

⇔ (φ1(a1), φ2(a2), ..., φn(an)) = (01, 02, ..., 0n)

⇔ φi(ai) = 0i, ∀i ∈ In(4)

⇔ ai ∈ kerφi ∀i ∈ In

⇔ (a1, a2, ..., an) ∈
n∏

i=1

kerφi.

(b1, b2, ..., bn) ∈ φ(
i=1∏
n

Ai)

⇔ (b1, b2, ..., bn) = φ((a1, a2, ..., an)), (a1, a2, ..., an) ∈
i=1∏
n

Ai(5)

⇔ φi(ai) = bi, ai ∈ Ai

⇔ (b1, b2, ..., bn) ∈
n∏

i=1

φi(Ai).

Theorem 4.2. Let {Ai, i ∈ In} be a family of MS-algebras. Then, the map
φk :

∏n
i=1Ai → Ak defined by φk(a1, a2, ..., ak, ..., an) = ak is an epimorphism

for each k ∈ In.

Proof. Let (a1, a2, ..., ak, ..., an) = (b1, b2, ..., bk, ..., bn). Then, ai = bi ∀i ∈ In.
Therefore, φk(a1, a2, ..., ak, ..., an) = ak = bk = φk(b1, b2, ..., bk, ..., bn). So, φk is
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well defined, ∀k ∈ In. Now, suppose that (a1, a2, ..., ak, ..., an), (b1, b2, ..., bk, ..., bn)
∈

∏n
i=1Ai. Then, φk

(
(a1, a2, ..., ak, ..., an) ∨ (b1, b2, ..., bk, ..., bn)

)
= ak ∨ bk =

φk(a1, a2, ..., ak, ..., an)∨φk(b1, b2, ..., bk, ..., bn). Similarly, φk preserves the meet
operation. Besides,

φk(a1, a2, ..., ak, ..., an)
◦ = a◦k = (φk(a1, a2, ..., ak, ..., an))

◦

Finally, if ck∈AK , then (01, 02, ..., ck, ..., 0n)∈
∏n

i=1Ai with φk(01, 02, ..., ck, ..., 0n)
= ck. Thus, φk is onto and hence φk is an epimorphism .

The previous maps (φks) are called the canonical projections of the direct
product.

Theorem 4.3. Let {Li, i ∈ In} be a family of MS-algebras. Then there exists a
unique (up to isomorphism) MS-algebra L, together with a family of homomor-
phisms {φi : L→ Li, i ∈ In}, with the following property:

For any MS-algebra M and any family of homomorphisms {fi :M → Li, i ∈
In}, there exists a unique homomorphism f : M → L such that φi ◦ f = fi,
∀i ∈ In.

Proof. Let L =
∏n

i=1 Li and {φi : L → Li, i ∈ In} be the family of canonical
projections. Define f : M → L by f(a) = (f1(a), f2(a), ..., fn(a)), ∀a ∈ M . For
any a, b ∈M , we have

f
(
a ∨ b

)
= (f1(a ∨ b), f2(a ∨ b), ..., fn(a ∨ b))
= (f1(a) ∨ f1(b), f2(a) ∨ f2(b), ..., fn(a) ∨ fn(b))
= (f1(a), f2(a), ..., fn(a)) ∨ (f1(b), f2(b), ..., fn(b))

= f(a) ∨ f(b).

Similarly, f
(
a ∧ b

)
= f(a) ∧ f(b). Also,

f(a◦) = (f1(a
◦), f2(a

◦), ..., fn(a
◦)) = ((f1(a))

◦, (f2(a))
◦, ..., (fn(a))

◦) = ((f(a))◦.

Thus, f is a homomorphism. Moreover,

(φi ◦ f)(a) = φi(f(a)) = φi(f1(a), f2(a), ..., fn(a)) = fi(a), ∀a ∈M.

Hence, φi ◦ f = fi, ∀i ∈ In. To prove the uniqueness of f , let g : M → L be
another homomorphism such that φi ◦ g = fi, ∀i ∈ In. This implies that (φi ◦
f)(a) = fi(a) = (φi ◦ g)(a), ∀a ∈ M , Assume that g(a) = (a1, a2, ..., an), ∀a ∈
M . Then,

ai = φi

(
a1, a2, ..., an) = φi(g(a))

= φi(f(a)) = φi

(
f1(a), f2(a), ..., fn(a)) = fi(a) ∀i ∈ In.

Therefore, f(a) = (a1, a2, ..., an) = g(a), ∀a ∈M . So, f = g and f is unique. It
remains to prove the uniqueness of L. Suppose that L1 is an MS-algebra which
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has the same property as L with the family of homomorphisms {ψi : L1 →
Li, i ∈ In}. Apply the property to L and L1, we get unique homomorphisms
α : L1 → L and β : L → L1 with φi ◦ α = ψi and ψi ◦ β = φi, ∀i ∈ In.
Consequently, α ◦ β : L → L1 is a unique homomorphism with φi ◦ (α ◦ β) =
φi ∀i ∈ In. Since the identity map idL : L → L is also a homomorphism with
φi ◦ idL = φi ∀i ∈ In, then α ◦β = idL. Similarly, β ◦α = idL1 . This shows that
β is an isomorphism and L is unique up to isomorphism.

Noting that the proofs of the previous three theorems do not rely on the de-
composability of theMS-algebras, we conclude that they hold for decomposable
MS-algebras.

Theorem 4.4. Let φ : L1 → L2 be a homomorphism between decomposable
MS-algebras L1 and L2. If A is a subalgebra of L1, then φ(A) is a subalgebra of
L2.

Proof. Let b1, b2 ∈ φ(A). Then, there exist a1, a2 ∈ A with φ(a1) = b1, φ(a2) =
b2. So, φ(a1 ∨ a2) = b1 ∨ b2. As a1 ∨ a2 ∈ A, then b1 ∨ b2 ∈ φ(A). A similar
argument shows that b1 ∧ b2 ∈ φ(A). Now, let b ∈ φ(A). Then, b = φ(a),
for some a ∈ A. So, b◦ = φ(a◦). Since a◦ ∈ A, then b◦ ∈ φ(A). Writing
a = a◦◦ ∧ d, d ∈ D(A), we get

b = φ(a) = φ(a◦◦ ∧ d) = φ(a◦◦) ∧ φ(d) = (φ(a))◦◦ ∧ φ(d) = b◦◦ ∧ φ(d).

We note that (φ(d))◦ = φ(d◦) = φ(01) = 02. So, φ(d) ∈ D(φ(A)). Hence, φ(A)
is a subalgebra of L2.

Theorem 4.5. Let φ : L1 → L2 be a monomorphism. If B is a subalgebra of
L2, then φ

−1(B) is a subalgebra of L1.

Proof. Let a1, a2 ∈ φ−1(B). Then, there exist b1, b2 ∈ B with φ(a1) = b1 and
φ(a2) = b2. So, φ(a1∨a2) = b1∨b2 and φ(a1∧a2) = b1∧b2. As b1∨b2, b1∧b2 ∈ B,
then a1 ∨ a2, a1 ∧ a2 ∈ φ−1(B). Now, let a ∈ φ−1(B), then a = φ−1(b) for some
b ∈ B. So, φ(a) = b. Then, φ(a◦) = b◦. As b◦ ∈ B, then a◦ ∈ φ−1(B).
Assuming that b = b◦◦ ∧ e, e ∈ D(B), we get

a = φ−1(b) = φ−1(b◦◦ ∧ e), e ∈ D(B).

= φ−1(b◦◦) ∧ φ−1(e)

= (φ−1(b))◦◦ ∧ φ−1(e)) = a◦◦ ∧ φ−1(e).

Now, we prove that φ−1(e) ∈ D(φ−1(B)). Let d = φ−1(e). Then, φ(d) = e.
This gives φ(d◦) = e◦ = 02. Therefore, d

◦ = φ−1(02) = 01. So, d ∈ D(φ−1(B)).
Hence, a = a◦◦ ∧ d, d ∈ D(φ−1(B)). Hence, φ−1(B) is a subalgebra of L1.

Theorem 4.6. Let L1 and L2 be two MS-algebras. Then, L1 can be embedded
into L1 × L2 if and only if there exists a homomorphism from L1 to L2.
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Proof. Assume that L1 can be embedded into L1 × L2. Then, there exists
a monomorphism φ : L1 → L1 × L2. Let φ(a) = (a1, a2), ∀a ∈ L1. Define
f : L1 → L2 by f(a) = a2. Then, f(a ∨ b) = a2 ∨ b2 = f(a) ∨ f(b). Similarly,
f(a∧b) = f(a)∧f(b) Also, f(a◦) = a◦2 = (f(a))◦. Hence, f is a homomorphism.

Conversely, assume that there exists a homomorphism f : L1 → L2. Define
ϕ : L1 → L1 × L2 by ϕ(a) = (a, f(a)). Then,

ϕ(a ∨ b) = (a ∨ b, f(a ∨ b)) = (a ∨ b, f(a) ∨ f(b)) = (a, f(a)) ∨ (b, f(b))

= ϕ(a) ∨ ϕ(b), ∀a, b ∈ L1.

Analogously, ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b). Also, ϕ(a◦) = (a◦, f(a◦)) = (a, f(a))◦ =
(ϕ(a))◦. Assume ϕ(a) = ϕ(b), then (a, f(a)) = (b, f(b)). This gives a = b.
Hence, ϕ is an embedding.
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