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Abstract. The aim of this article is to introduce a definition of conjugate trigonomet-
rically ρ-convex functions by using Young’s inequality which plays an important role in
linking the concept of duality between trigonometrically ρ-convex functions, rather the
definition given by Fenchel. Furthermore, we show that the integration of any increasing
function is trigonometrically ρ-convex.
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1. Introduction

In 1908, Phragmén and Lindelöf (see for example [13]) presented that if F (z)
is an analytic function inside an angle D = {z = reıθ : u < θ < v}, then the
function

h(θ) = hF (θ) = lim sup
r→∞

log |F (reiθ)|
rρ

,

is called the indicator function of F (z) with respect to the order 0 < ρ < ∞,
and has the property:

∗. Corresponding author
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If 0 < ρ(v − u) < π, and M(θ) is the function defined by,

M(θ) := A cos ρθ +B sin ρθ,

(such functions are called sinusoidal or ρ-trigonometric) which has the same
value of h(θ) at α and at β, then for u ≤ θ ≤ v. We have

h(θ) ≤ M(θ).

This property is called a trigonometric ρ-convexity.

In [5], Beckenbach and Bing ([4] and [19]) introduced a generalization of the
classical convexity by replacing linear functions with another family of contin-
uous functions such that for each pair of points p1(x1, y1) and p2(x2, y2) of the
plane there exists exactly one member of the family with a graph joining these
points.

In fact, the topic of conjugate convex functions really originate in a paper of
Young [23]. This topic attracted some interests [12], [18] and [20], after the work
of Fenchel. In [9], [10] Fenchel greatly generalized the whole idea and applied it
to the programming problem. Conjugate convex functions have numerous appli-
cations mentioned in [11], [17] and [22]. More precisely, in 2014 Gardiner et al.
[11] modified an algorithm for computing the convex (Legendre-Fenchel) conju-
gate of convex piecewise linear-quadratic functions of two variables, to compute
its partial conjugate i.e. the conjugate with respect to one of the variables. The
structure of the original algorithm is preserved including its time complexity
(linear time with some approximation and log-linear time without approxima-
tion). Applying twice the partial conjugate (and a variable switching operator)
recovers the full conjugate. They presented our partial conjugate algorithm,
which was more flexible and simpler than the original full conjugate algorithm.
They emphasized the difference with the full conjugate algorithm and illustrate
results by computing partial conjugates, partial Moreau envelopes, and partial
proximal averages. In 2017, Notarnicola and Notarstefano [17] proposed that a
class of distributed optimization algorithms based on proximal gradient meth-
ods applied to the dual problem. They showed that, by choosing suitable primal
variable copies, the dual problem is itself separable when written in terms of
conjugate functions, and the dual variables can be stacked into non-overlapping
blocks associated to the computing nodes. In 2018, Rodrigues [22] proposed
that a unified optimal control framework that can be used to formulate and
solve aircraft performance problems, such as maximum endurance and maxi-
mum range, for both propeller-driven airplanes and jet-propelled aircraft. It
was proved that such problems have a common mathematical formulation and,
under strict convexity assumptions, they had a unique feedback solution for the
speed as a function of weight. The feedback solution yields an analytic expres-
sion for the optimal speed. For maximum endurance, the solution corresponds
to the minimization of the rate of fuel consumption per unit time. For maximum
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range, the rate of fuel consumption per unit distance is minimized. Moreover,
the optimal solution for maximum range was interpreted geometrically using
the concept of convex conjugate function and Legendre transformation.

In this paper, we deal with the generalized convex functions in the notion of
Beckenbach. For particular choices of the two parameter family {M(x)}, we
consider the following class of generalized convex functions {M(x) = A cos ρx+
B sin ρx}. This class is called trigonometrically ρ-convex functions (see for ex-
amples [2]-[3], [7]-[8] and [13]) which have interesting applications in the design
of cavitation-free hydrofoils ([1] and [16]) and in the extremum property [2].

The objective of the present paper is to define a conjugate trigonometrically
ρ-convex functions defined on the real line R. We shall be interested in real
finite functions on a finite or infinite interval I such that I ⊂ R and an interior
Io of I.

2. Definitions and preliminary results

In this section, we present the basic definitions and results which are used
later, see for details [2], [13]-[15] and [21].

Definition 2.1 ([14], (see for example [2], [13], [15])). A function f : I → R is
said to be Trigonometrically ρ-Convex Function if for any arbitrary closed
subinterval [u, v] of I such that 0 < ρ(v−u) < π, the graph of f(x) for x ∈ [u, v]
lies nowhere above the ρ-trigonometric function, determined by the equation

M(x) = M(x;u, v, f) = A cos ρx+B sin ρx,

where A and B are chosen such that M(u) = f(u), and M(v) = f(v).

Equivalently, if for all x ∈ [u, v]

(2.1) f(x) ≤ M(x) =
f(u) sin ρ(v − x) + f(v) sin ρ(x− u)

sin ρ(v − u)
.

The trigonometrically ρ-convex functions possess a number of properties
analogous to those of convex functions.

For example: If f : I → R is trigonometrically ρ-convex function, then for
any u, v ∈ I such that 0 < ρ(v − u) < π, the inequality

f(x) ≥ M(x;u, v, f),

holds outside the interval [u, v].

Definition 2.2 ([4], [5]). A function Tu(x) = A cos ρx+ B sin ρx, is said to be
supporting function for f(x) at the point u ∈ I, if

(2.2) Tu(u) = f(u), and Tu(x) ≤ f(x), ∀x ∈ I.
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Theorem 2.1 ([2]). A function f : I → R is trigonometrically ρ-convex function
on I if and only if there exists a supporting function for f(x) at each point x ∈ I.

Remark 2.1. [[2]] If f : I → R is differentiable trigonometrically ρ-convex
function, then the supporting function for f(x) at the point u ∈ I has the form

(2.3) Tu(x) = f(u) cos ρ(x− u) +
f

′
(u)

ρ
sin ρ(x− u), ∀x ∈ I.

Remark 2.2. [[2]] For a trigonometrically ρ-convex function f : I→R, if f(x)
is not differentiable at the point u then the supporting function has the form

(2.4) Tu(x) = f(u) cos ρ(x− u) +Ku,f sin ρ(x− u), ∀x ∈ I,

where Ku,f ∈ [
f
′
−(u)

ρ ,
f
′
+(u)

ρ ].

Theorem 2.2 ([13]-[15]). A trigonometrically ρ-convex function f : I → R has
finite right and left derivatives f

′
+(x), f

′
−(x) at every point x ∈ I and f

′
−(x) ≤

f
′
+(x).

Theorem 2.3 ([14]). Let f : I → R be a two times continuously differentiable
function. Then f is trigonometrically ρ-convex on I if and only if f

′′
(x) +

ρ2f(x) ≥ 0, ∀x ∈ I.

Property 2.1 ([2]). A necessary and sufficient condition for the function f(x)
to be a trigonometrically ρ-convex in I is that the function

φ(x) = f
′
(x) + ρ2

∫ x

w
f(t)dt, w ∈ I

is non-decreasing in I.

Property 2.2 ([15], [21]). If a trigonometrically ρ-convex function f : I → R
is bounded, i.e, |f(x)| < k for x ∈ I, then it is a continuous function of x ∈ I,
and in each closed subinterval J of I, it satisfies a Lipschitz condition, that is

(2.5) |f(x)− f(y)| ≤ k|x− y|, for some k and ∀x, y ∈ J.

The relationship between a convex function and its conjugate is at the heart
of much recent research. The basic idea can be traced back to Young’s Inequality

Theorem 2.4 ([6], Young’s Inequality). Suppose that g : [0,∞) → [0,∞) be
strictly increasing and continuous function with g(0) = 0 and g(t) → ∞ as
t → ∞ (under these circumstances, g has an inverse function g−1, which has
the same properties as g). Then, for any x ≥ 0, y ≥ 0

(2.6) xy ≤
∫ x

0
g(t)dt+

∫ y

0
g−1(t)dt.
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We can now state the main result on the operation of conjugacy:

Theorem 2.5 ([21]). Let f : I → R be a convex and closed function, then
f∗ : I∗ → R is denote the conjugate function and defined by

f∗(y) = sup
x∈I

[xy − f(x)],

it is convex and closed with the domain I∗ = {y ∈ R : f∗(y) < ∞} and

(a) xy ≤ f(x) + f∗(y) for all x ∈ I y ∈ I∗,

(b) xy = f(x) + f∗(y) if and only if y ∈ ∂f(x),

(c) ∂(f∗) = (∂f)−1,

(d) f∗∗ = f ,

where ∂f(x) = {y ∈ R; y is the slope of a support line for f at x}.

3. Main results

The purpose of the present section is to show that the integration of increasing
function is trigonometrically ρ-convex. Moreover, we show Young’s inequality in
the class of trigonometrically ρ-convex. Furthermore, we introduce a definition
of conjugate trigonometrically ρ-convex. The relationship between trigonomet-
rically ρ-convex and its conjugate is revealed through Theorem 3.2.

Theorem 3.1. Let g : I → [0,∞) be an increasing function, and c ∈ Io.
Then,

∫ x
c g(t)dt is trigonometrically ρ-convex function for all x ∈ I.

Proof. Put,

f(x) =

∫ x

c
g(t)dt

let u, v ∈ I such that 0 < ρ(v − u) < π, x = λu + µv, where λ + µ = 1 and
λ, µ ∈ [0, 1],

f(x) =

∫ x

c
g(t)dt

=
sin ρ(v − x+ x− u)

sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v − x) cos ρ(x− u) + cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v−x) cos ρ(x−u)

sin ρ(v−u)

∫ x

c
g(t)dt+

cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)
[

∫ u

c
g(t)dt+

∫ x

u
g(t)dt]

+
cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)
[

∫ v

c
g(t)dt−

∫ v

x
g(t)dt].



608 NASHAT FARIED, MOHAMED S.S. ALI and ASMAA A. BADR

Since

(3.1) cos ρ(x− u) ≤ 1, cos ρ(v − x) ≤ 1,

we get that

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)

∫ x

u
g(t)dt− cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)

∫ v

x
g(t)dt.

Take

λ =
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)
& µ =

cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)
.

We obtain

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
+λ

∫ x

u
g(t)dt−µ

∫ v

x
g(t)dt.

Since g is increasing, then g(t) ≤ g(x) for all t ∈ [u, x], and −g(t) ≤ −g(x) for
all t ∈ [x, v], we conclude that

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+λ

∫ x

u
g(x)dt− µ

∫ v

x
g(x)dt

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+λg(x)[x− u]− µg(x)[v − x]

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+g(x)[(λ+ µ)x− (λu+ µv)]

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
.

Applying Definition 2.1, then
∫ x
c g(t)dt is trigonometrically ρ-convex function

∀x ∈ I.

Example 3.1. Let g(x) = sin ρx, ∀x ∈ [0, π
2ρ ]. Then, f(x) =

∫ x
0 sin ρtdt is

trigonometrically ρ-convex function ∀x ∈ [0, π
2ρ ].

As

(3.2) f(x) =

∫ x

0
sin ρtdt =

1

ρ
(1− cos ρx), ∀x ∈ [0,

π

2ρ
].
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Differentiate f(x) =
∫ x
0 sin ρtdt with respect to x, implies

f
′
(x) = sin ρx,

f
′′
(x) = ρ cos ρx.(3.3)

From equations (3.2), (3.3) implies

f
′′
(x) + ρ2f(x) = ρ cos ρx+ ρ2

1

ρ
(1− cos ρx) = ρ,

since 0 < ρ < ∞, then f
′′
(x) + ρ2f(x) = ρ > 0, ∀x ∈ [0, π

2ρ ]. By using Theorem
2.3, then f(x) trigonometrically ρ-convex function.

Proposition 3.1. Suppose that g : [0, π
2ρ ] → [0,∞) be strictly increasing and

continuous function with g(0) = 0, g(x) → ∞ as x → ∞.
If we take,

(3.4) f(x) =

∫ x

0
g(t)dt, f∗(m) =

∫ m

0
g−1(t)dt.

Then f and f∗ are both trigonometrically ρ-convex functions for all x ∈ [0, π
2ρ ],

m ∈ [0,∞), and satisfy

(3.5) m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0,
π

2ρ
].

Proof. Since g is strictly increasing and continuous function with g(0) = 0,
then g has an inverse function g−1, which has the same properties as g for all
x ∈ [0, π

2ρ ], and by using Theorem 3.1, then f and f∗ are both trigonometrically
ρ-convex functions for any x ∈ [0, π

2ρ ], m ∈ [0,∞).

Now, we prove the inequality (3.5).
Since sin ρx is trigonometrically ρ-convex function and from Property 2.2,

| sin ρx− sin ρ0| ≤ k|ρx− 0|. Take k = 1
ρ , then

(3.6) sin ρx ≤ x, ∀x ∈ [0,
π

2ρ
].

From inequality (3.6) and Theorem 2.4, implies

m sin ρx ≤ mx ≤
∫ x

0
g(t)dt+

∫ m

0
g−1(t)dt, ∀x ∈ [0,

π

2ρ
].

Then, m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0, π
2ρ ].

Example 3.2. Let g(x) = sin ρx for all x ∈ [0, π
2ρ ]. Then, f(x) =

∫ x
0 g(t)dt and

f∗(m) =
∫m
0 g−1(t)dt are trigonometrically ρ-convex functions, and satisfy

m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0,
π

2ρ
].
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As from Example 3.1, f(x) is trigonometrically ρ-convex function. Since
g(x) = sin ρx, we observe that g−1(m) = 1

ρ arcsinm, ∀m ∈ [0, 1], then

f∗(m) =
1

ρ

∫ m

0
arcsin tdt

=
1

ρ
[m arcsinm+

√
1−m2 − 1](3.7)

f∗′(m) =
1

ρ
arcsinm

f∗′′
(m) =

1

ρ

1√
1− t2

,

using Theorem 2.3, we observe that

f∗′′(m) + ρ2f∗(m) =
1

ρ

1√
1− t2

+ ρ

∫ m

0
arcsin tdt ≥ 0,

then f∗(m) is trigonometrically ρ-convex function for all m ∈ [0, 1].
Now, we Check the inequality (3.5).

Define

h(x,m) =

∫ x

0
sin ρtdt+

∫ m

0

1

ρ
arcsin tdt− xm,

for x ∈ [0, π
2ρ ] and m in [0, 1],

h(x,m)− h(x, sin ρx) =

∫ m

0

1

ρ
arcsin tdt−

∫ sin ρx

0

1

ρ
arcsin tdt− xm+ x sin ρx

=

∫ m

sin ρx
[
1

ρ
arcsin t− x]dt

=

∫ sin ρx

m
[x− 1

ρ
arcsin t]dt.

The first case is m ≥ sin ρx, we have arcsinm ≥ arcsin t ≥ arcsin sin ρx = ρx,
∀t ∈ [sin ρx,m].

Consequently,

(3.8) h(x,m)− h(x, sin ρx) =

∫ m

sin ρx
[
1

ρ
arcsin t− x]dt ≥ 0.

The second case is m ≤ sin ρx, we have arcsinm ≤ arcsin t ≤ arcsin sin ρx = ρx
∀t ∈ [m, sin ρx].
Consequently,

(3.9) h(x,m)− h(x, sin ρx) =

∫ sin ρx

m
[x− 1

ρ
arcsin t]dt ≥ 0.
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Using equations (3.2) and (3.7), we obtain that

h(x, sin ρx) =
1

ρ
[1− cos ρx] +

1

ρ
[sin ρx arcsin sin ρx+

√
1− sin2 ρx− 1]

− x sin ρx = 0.(3.10)

From equations (3.8), (3.9), (3.10) and by using inequality (3.6), we conclude
that f(x) + f∗(m) ≥ mx ≥ m sin ρx, ∀x ∈ [0, π

2ρ ].

Lemma 3.1. Let fα : I → R be an arbitrary family of trigonometrically ρ-
convex functions and

(3.11) f(x) = sup
α

(fα(x))

if J = {x ∈ I : f(x) < ∞} is nonempty, then f : J → R is trigonometrically
ρ-convex function.

Proof. Let x ∈ [a, b] ⊆ J ⊆ I such that 0 < ρ(b − a) < π, since fα(x) is
trigonometrically ρ-convex function for all α and equation (3.11). Then,

f(x) = sup
α

(fα(x))

≤ sup
α

[
fα(a) sin ρ(b− x) + fα(b) sin ρ(x− a)

sin ρ(b− a)
]

≤ supα[fα(a)] sin ρ(b− x) + supα[fα(b)] sin ρ(x− a)

sin ρ(b− a)

=
f(a) sin ρ(b− x) + f(b) sin ρ(x− a)

sin ρ(b− a)
.

From Definition 2.1, implies f(x) = supα(fα(x)) is trigonometrically ρ-convex
function.

Definition 3.1. If f : [0, πρ ] → R is trigonometrically ρ-convex function, then
f∗ : I∗ → R is the conjugate of trigonometrically ρ-convex function and
defined by

(3.12) f∗(m) := sup
x
[m sin ρx− f(x)],

with domain I∗ = {m ∈ R : f∗(m) < ∞} such that m sin ρx ≥ f(x), for all m
in I∗.

Example 3.3. Let f(x) = sin ρx ∀x ∈ [0, πρ ] be trigonometrically ρ-convex
function such that m ≥ 1. Then, its conjugate f∗(m) = m− 1, is trigonometri-
cally ρ-convex function
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As from Definition 3.1,

f∗(m) = sup
x
[m sin ρx− sin ρx],= (m− 1) sup

x
[sin ρx],= m− 1,

then f∗′
(m) = 1, f∗′′(m) = 0. From m ≥ 1 and 0 < ρ < ∞. Then

f∗′′(m) + ρ2f∗(m) = ρ2(m− 1) ≥ 0.

By using Theorem 2.3, then f∗(m) = m− 1 is trigonometrically ρ-convex func-
tion.

Theorem 3.2. If f : [0, πρ ] → R is trigonometrically ρ-convex function. Its
conjugate f∗ : I∗ → R such that m sin ρx ≥ f(x), ∀m ∈ I∗. Then

(c1) f∗(m) is trigonometrically ρ-convex function.

(c2) m sin ρx ≤ f(x) + f∗(m).

(c3) If f is differentiable then
m sin ρx = f(x) + f∗(m) if and only if ρm cos ρx = f

′
(x).

(c4) For every

g : [0,
π

ρ
] → R,m sin ρx ≥ g(x), ∀m ∈ I∗, and f ≤ g on [0,

π

ρ
],

implies f∗ ≥ g∗ on I∗.(3.13)

Proof. We first prove that I∗ ̸= ∅. For if I is single point xo, f(x) is trigono-
metrically ρ-convex function and from Theorem 2.1, Remark 2.1, then Txo(x) =
f(xo) cos ρ(x − xo) + Kxo,f sin ρ(x − xo) supports f for each Kxo,f ∈ R. Oth-
erwise, we choose any interior point xo, choose Kxo,f ∈ 1

ρ [f
′
−(xo), f

′
+(xo)], and

again from Theorem 2.1, Remark 2.2 then also Txo(x) is supporting function for
f(x) at xo. In either case then chooseKxo,f such that Txo(x) ≤ f(x), ∀x ∈ [0, πρ ],

(3.14) f(xo) cos ρ(x− xo) +Kxo,f sin ρ(x− xo) ≤ f(x),

implies

f(xo) cos ρx cos ρxo + f(xo) sin ρx sin ρxo +Kxo,f sin ρx cos ρxo

−Kxo,f cos ρx sin ρxo ≤ f(x),

hence

(Kxo,f cos ρxo + f(xo) sin ρxo) sin ρx− f(x) ≤ (Kxo,f sin ρxo

− f(xo) cos ρxo) cos ρx, ∀x ∈ [0,
π

ρ
].(3.15)
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Let m = Kxo,f cos ρxo + f(xo) sin ρxo, A = Kxo,f sin ρxo − f(xo) cos ρxo, implies
m sin ρx− f(x) ≤ A cos ρx. If A positive, then we get

m sin ρx− f(x) ≤ A : cos ρx ≤ 1 ∀x ∈ [0,
π

ρ
].

Otherwise, if A negative, then we get

m sin ρx− f(x) ≤ −A : cos ρx ≥ −1 ∀x ∈ [0,
π

ρ
].

In either case, we have f∗(m) = supx[m sin ρx− f(x)] < ∞.
Then I∗ ̸= ∅.
(c1) Let gx(m) = m sin ρx− f(x), suppose that u, v ∈ I∗ : 0 < ρ(v − u) < π

and let m ∈ (u, v), m = λu+ µv :λ+ µ = 1 and λ, µ ∈ [0, 1],

gx(m) = (λu+ µv) sin ρx− f(x)(λ+ µ)

= λ(u sin ρx− f(x)) + µ(v sin ρx− f(x)).

Take

λ =
sin ρ(v −m) cos ρ(m− u)

sin ρ(v − u)
, µ =

sin ρ(m− u) cos ρ(v −m)

sin ρ(v − u)
,

hence

gx(m) =
sin ρ(v −m) cos ρ(m− u)

sin ρ(v − u)
(u sin ρx− f(x))

+
sin ρ(m− u) cos ρ(v −m)

sin ρ(v − u)
(v sin ρx− f(x)).

Since u, v ∈ I∗ implies u sin ρx − f(x) ≥ 0 and v sin ρx − f(x) ≥ 0, and from
cos ρ(m− u) ≤ 1 and cos ρ(v −m) ≤ 1. Then

gx(m) ≤ sin ρ(v −m)

sin ρ(v − u)
(u sin ρx− f(x)) +

sin ρ(m− u)

sin ρ(v − u)
(v sin ρx− f(x))

=
(u sin ρx− f(x)) sin ρ(v −m) + (v sin ρx− f(x)) sin ρ(m− u)

sin ρ(v − u)

=
gx(u) sin ρ(v −m) + gx(v) sin ρ(m− u)

sin ρ(v − u)
.

By using Definition 2.1, then gx(x) is a trigonometrically ρ-convex function,
and by the Lemma 3.1, f∗(m) = supx(gx(m)) is a trigonometrically ρ-convex
function.

(c2) Since equation (3.12), implies

(3.16) m sin ρx− f(x) ≤ f∗(m),
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then m sin ρx ≤ f(x) + f∗(m).
(c3) To prove the necessity, by differentiate m sin ρx = f(x) + f∗(m) with

respect to x implies, ρm cos ρx = f
′
(x).

The sufficiency, let

(3.17) ρm cos ρx = f
′
(x),

implies
∫ x
0 ρm cos ρtdt =

∫ x
0 f

′
(t)dt. Hence,

(3.18) m sin ρx = f(x)− f(0),

since m ∈ I∗, then

(3.19) −f(0) = m sin ρx− f(x) ≥ 0.

From Remark 2.1, then the supporting function for f(x) at the point 0 ∈ [0, πρ ],
has the form

T0(x) = f(0) cos ρx+
f

′
(0)

ρ
sin ρx ≤ f(x), ∀x ∈ [0,

π

ρ
]

from equation(3.17) at x = 0 implies m = f
′
(0)
ρ , and we get m sin ρx − f(x) ≤

−f(0) cos ρx, hence

sup
x
[m sin ρx− f(x)] ≤ −f(0) cos ρx

f∗(m) = sup
x
[m sin ρx− f(x)] ≤ −f(0) cos ρx

f∗(m) ≤ −f(0) cos ρx.(3.20)

From equation (3.19), inequality (3.20) and cos ρx ≤ 1, implies

(3.21) f∗(m) ≤ m sin ρx− f(x)

from inequalities(3.16), and(3.21), then

(3.22) m sin ρx− f(x) = f∗(m).

(c4) Since f ≤ g implies f(x) ≤ g(x), ∀x ∈ [0, πρ ], then

−g(x) ≤ −f(x)

m sin ρx− g(x) ≤ m sin ρx− f(x)

sup
x
[m sin ρx− g(x)] ≤ m sin ρx− f(x),(3.23)

from Definition 3.1, m sin ρx ≥ g(x) and inequality (3.23) implies

g∗(m) = sup
x
[m sin ρx− g(x)]

≤ m sin ρx− f(x)

≤ sup
x
[m sin ρx− f(x)],



ON CONJUGATE TRIGONOMETRICALLY ρ-CONVEX FUNCTIONS 615

from Definition 3.1, and m sin ρx ≥ f(x) then

(3.24) g∗(m) ≤ f∗(m), ∀m ∈ I∗,

then f∗ ≥ g∗ on I∗.

Remark 3.1. For a trigonometrically ρ-convex function f : [0, π
2ρ ] → R if

inf f(x) ̸= −∞, then the domain of its conjugate I∗ = R, where

f∗(m) = sup
x
[m sin ρx− f(x)] ≤ m− inf f(x).
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