Some results on K-frames

Sithara Ramesan*
Department of Mathematics
Payyanur College
Payyanur
sithara127@gmail.com

K.T. Ravindran
Department of Mathematics
Gurudev Arts and Science College
Mathil
drktravindran@gmail.com

Abstract. In this paper we present some results on K-frames when $K \in B(H)$ is an injective closed range operator. Also we give a condition on K-frames $\{f_n\}_{n \in \mathbb{N}}$ and $\{g_n\}_{n \in \mathbb{N}}$ so that $\{f_n + g_n\}_{n \in \mathbb{N}}$ is again a K-frame for H. Finally, Schatten class operators are also discussed in terms of K-frames.

Keywords: K-frames, Schatten class operators.

1. Introduction

Frames in Hilbert spaces were introduced by R.J. Duffin and A.C. Schaffer. Later Daubechies, Grossmann and Meyer gave a strong place to frames in harmonic analysis. Frame theory plays an important role in signal processing, sampling theory, coding and communications and so on. Frames were introduced as a better replacement to orthonormal basis. We refer [2] for an introduction to frame theory.

K-frames were introduced by L. Gavruta, to study atomic systems with respect to bounded linear operators. K-frames are more general than classical frames. In K-frames the lower bound only holds for the elements in the range of K.

Some basic definitions and results related to frames and K-frames are contained in section 2. In section 3 we have included some new results on K-frames. Section 4 contains our main results relating K-frames and operators in Schatten classes.

Throughout this paper, H is a separable Hilbert space and we denote by $B(H)$, the space of all linear bounded operators on H. For $K \in B(H)$, we denote $R(K)$ the range of K. Also, $GL(H)$ denote the set of all bounded linear operators which have bounded inverses.

* Corresponding author
2. Preliminaries

For a separable Hilbert space H, a sequence $\{f_n\}_{n \in \mathbb{N}} \subset H$ is said to be a frame ([2]) for H if there exist $A, B > 0$ such that

$$A\|x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \leq B\|x\|^2,$$

for all $x \in H$. If $A = B$, we say that $\{f_n\}_{n \in \mathbb{N}}$ is a tight frame in H. Let $K \in B(H)$. We say that $\{f_n\}_{n \in \mathbb{N}} \subset H$ is a K-frame ([3]) for H if there exist constants $A, B > 0$ such that

$$A\|Kx\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \leq B\|x\|^2,$$

for all $x \in H$.

If $\{f_n\}_{n \in \mathbb{N}} \subset H$ is an ordinary frame for H, then $\{Kf_n\}_{n \in \mathbb{N}}$ is a frame for K^*H and hence $\{KK^*f_n\}_{n \in \mathbb{N}}$ is a K-frame for H.

3. K-frames

In this section we present our results on K-frames.

Theorem 3.1. Let $K \in B(H)$ be an injective and closed range operator. If $\{f_n\}_{n \in \mathbb{N}}$ is a frame for $R(K)$, then $\{K^*f_n\}_{n \in \mathbb{N}}$ is a frame for H and hence $\{KK^*f_n\}_{n \in \mathbb{N}}$ is a K-frame for H.

Proof. Let $\{f_n\}_{n \in \mathbb{N}}$ be a frame for $R(K)$. Then there exist constants $A, B > 0$ such that, for all $x \in R(K),

$$A\|x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \leq B\|x\|^2.$$

Also, by our assumption, there exists $c > 0$ such that $c\|x\|^2 \leq \|Kx\|^2$, for all $x \in H$. For $x \in H, Kx \in R(K)$, and we get

$$A\|Kx\|^2 \leq \sum_{n=1}^{\infty} |\langle Kx, f_n \rangle|^2 \leq B\|Kx\|^2.$$
Therefore,

\[Ac \|x\|^2 \leq A\|Kx\|^2 \leq \sum_{n=1}^{n=\infty} |\langle Kx, f_n \rangle|^2 \leq B\|Kx\|^2 \leq B\alpha^2 \|x\|^2, \]

for all \(x \in H \) and for some \(\alpha > 0 \), i.e.

\[E\|x\|^2 \leq \sum_{n=1}^{n=\infty} |\langle x, K^* f_n \rangle|^2 \leq F\|x\|^2, \]

for all \(x \in H \) where \(E = Ac > 0, F = B\alpha^2 > 0 \). Therefore, \(\{K^* f_n\}_{n \in N} \) is a frame for \(H \) and hence \(\{KK^* f_n\}_{n \in N} \) is a \(K \)-frame for \(H \).

Corollary 3.2. Let \(K \in B(H) \) be an injective and closed range operator and \(\{f_n\}_{n \in N} \subset H \) be such that \(\{(K^{-1})^* f_n\}_{n \in N} \) is a frame for \(R(K) \). Then \(\{f_n\}_{n \in N} \) is a frame for \(H \).

Theorem 3.3. Suppose \(\{f_n\}_{n \in N} \) is a \(K \)-frame for \(H \) where \(K^* \) is an injective and closed range operator. Then there exist constants \(A, B > 0 \) such that

\[A\|K^*x\|^2 \leq \sum_{n=1}^{n=\infty} |\langle x, f_n \rangle|^2 \leq B\|K^*x\|^2, \]

for all \(x \in H \).

Proof. Since \(\{f_n\}_{n \in N} \) is a \(K \)-frame for \(H \), there exist constants \(C, D > 0 \) such that

\[C\|K^*x\|^2 \leq \sum_{n=1}^{n=\infty} |\langle x, f_n \rangle|^2 \leq D\|x\|^2, \]

for all \(x \in H \). Since \(K^* \in B(H) \) is an injective and closed range operator, there exist \(d > 0 \) such that

\[d\|x\|^2 \leq \|K^*x\|^2, \]

for all \(x \in H \). Therefore, for all \(x \in H \),

\[C\|K^*x\|^2 \leq \sum_{n=1}^{n=\infty} |\langle x, f_n \rangle|^2 \leq D\|x\|^2 \leq \frac{D}{d}\|K^*x\|^2, \]

for all \(x \in H \) there exist \(A = C, B = D/d > 0 \) such that

\[A\|K^*x\|^2 \leq \sum_{n=1}^{n=\infty} |\langle x, f_n \rangle|^2 \leq B\|K^*x\|^2. \]

Corollary 3.4. Suppose \(\{f_n\}_{n \in N} \) is a \(K \)-frame for \(H \) where \(K^* \) is an injective and closed range operator. Then \(\{f_n\}_{n \in N} \) is a frame for \(H \).
Definition 3.5. A sequence \(\{f_n\}_{n \in \mathbb{N}} \subset H \) is said to be a \(2K \)-frame for \(H \) if there exist \(A, B > 0 \) such that
\[
A \|K^* x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \leq B \|K^* x\|^2,
\]
for all \(x \in H \).

Theorem 3.6. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a \(K \)-frame for \(H \) with bounds \(A_1, B_1 \) and \(\{g_n\}_{n \in \mathbb{N}} \) be a \(2K \)-frame for \(H \) with bounds \(A_2, B_2 \) such that \(0 < B_2 < A_1 \). Then \(\{f_n + g_n\}_{n \in \mathbb{N}} \) is a \(K \)-frame for \(H \) with frame bounds \(A_1 - B_2 \) and \(B_1 + B_2 \|K^*\|^2 \).

Proof. By definition of \(K \)-frame and \(2K \)-frame, we have
\[
A_1 \|K^* x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 \leq B_1 \|x\|^2
\]
and
\[
A_2 \|K^* x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, g_n \rangle|^2 \leq B_2 \|K^* x\|^2,
\]
for all \(x \in H \). Consider,
\[
\sum_{n=1}^{\infty} |\langle x, f_n + g_n \rangle|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 + \sum_{n=1}^{\infty} |\langle x, g_n \rangle|^2 \leq B_1 \|x\|^2 + B_2 \|K^* x\|^2 \leq (B_1 + B_2 \|K^*\|^2) \|x\|^2,
\]
for all \(x \in H \).

Consider,
\[
\sum_{n=1}^{\infty} |\langle x, f_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle x, f_n + g_n - g_n \rangle|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n + g_n \rangle|^2 + \sum_{n=1}^{\infty} |\langle x, g_n \rangle|^2.
\]
This implies that,
\[
A_1 \|K^* x\|^2 \leq \sum_{n=1}^{\infty} |\langle x, f_n + g_n \rangle|^2 + B_2 \|K^* x\|^2
\]
i.e. \(\sum_{n=1}^{\infty} |\langle x, f_n + g_n \rangle|^2 \geq (A_1 - B_2) \|K^* x\|^2 \)
where \(A_1 - B_2 > 0 \). This completes the proof. \(\square \)
4. *K*-frames and operators in Schatten classes

Definition 4.1 ([7]). Let T be a compact operator on a separable Hilbert space H. Given $0 < p < \infty$, we define the **Schatten p-class** of H, denoted by $S_p(H)$ or simply S_p, to be the space of all compact operators T on H with its singular value sequence $\{\lambda_n\}$ belonging to l^p. $S_p(H)$ is a two sided ideal in $B(H)$.

Following two theorems by H. Bingyang, L.H. Khoi and K. Zhu gives a characterization for Schatten p-class operators in terms of frames.

Theorem 4.2 ([1]). Suppose T is a compact operator on H and $2 \leq p < \infty$. Then the following conditions are equivalent:

(a) $T \in S_p$;

(b) $\|Te_n\|_{n \in \mathbb{N}} \in l^p$ for every orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ in H;

(c) $\|Tf_n\|_{n \in \mathbb{N}} \in l^p$ for every frame $\{f_n\}_{n \in \mathbb{N}}$ in H.

Theorem 4.3 ([1]). Suppose T is a compact operator on H and $0 \leq p \leq 2$. Then the following conditions are equivalent:

(a) $T \in S_p$;

(b) $\|Te_n\|_{n \in \mathbb{N}} \in l^p$ for some orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ in H;

(c) $\|Tf_n\|_{n \in \mathbb{N}} \in l^p$ for some frame $\{f_n\}_{n \in \mathbb{N}}$ in H.

At first we focus on the case where $2 \leq p < \infty$.

Theorem 4.4. Suppose T is a compact operator on H and $K \in B(H)$. If T is in the Schatten class S_p, then $\|Tf_n\|_{n \in \mathbb{N}} \in l^p$ for every K-frame $\{f_n\}_{n \in \mathbb{N}}$ in H, where $2 \leq p < \infty$.

Proof. Suppose $T \in S_p, 2 \leq p < \infty$.

Let $\{f_n\}_{n \in \mathbb{N}}$ be a K-frame for H and $\{e_n\}_{n \in \mathbb{N}}$ be an orthonormal basis for H. Then $\{h_n\}_{n \in \mathbb{N}} = \{f_n\}_{n \in \mathbb{N}} \cup \{e_n\}_{n \in \mathbb{N}}$ is a frame for H and $\|T_h_n\|_{n \in \mathbb{N}} \in l^p, 2 \leq p < \infty$. Therefore $\|Tf_n\|_{n \in \mathbb{N}} \in l^p, 2 \leq p < \infty$ and the result is proved.

Theorem 4.5. Suppose T is a compact operator on H and $K \in B(H)$. If $\|Tf_n\|_{n \in \mathbb{N}} \in l^p$ for every K-frame $\{f_n\}_{n \in \mathbb{N}}$ in H, then $\|TKe_n\|_{n \in \mathbb{N}} \in l^p$ for every orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ in H, where $2 \leq p < \infty$.

Proof. Let $\{e_n\}_{n \in \mathbb{N}}$ be an orthonormal basis for H. Then $\{Ke_n\}_{n \in \mathbb{N}}$ is a K-frame for H. Therefore by our assumption $\|TKe_n\|_{n \in \mathbb{N}} \in l^p, 2 \leq p < \infty$. Hence $\|TKe_n\|_{n \in \mathbb{N}} \in l^p$ for every orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ in H.

Theorem 4.6. Suppose T is a compact operator on H and $K \in GL(H)$ and $2 \leq p < \infty$. Then the following are equivalent:
(a) T is in the Schatten class S_p;

(b) $\|Tf_n\|_{n \in N} \in l^p$ for every K-frame $\{f_n\}_{n \in N}$ in H.

Proof. Clearly, (a) implies (b) holds by Theorem 4.4. Now suppose (b) holds. Then $\|TK e_n\|_{n \in N} \in l^p$ for every orthonormal basis $\{e_n\}_{n \in N}$ in H. This implies that $TK \in S_p$. Using the fact that S_p is a two-sided ideal in $B(H)$, $TKK^{-1} \in S_p$, i.e. $T \in S_p$. This completes the proof. \qed

Now we move onto the case where $0 < p \leq 2$.

Theorem 4.7. Let T be a compact operator on H and $K \in B(H)$. Suppose $\|Te_n\|_{n \in N} \in l^p$ for some orthonormal basis $\{e_n\}_{n \in N} \subset H$. Then $\|Tf_n\|_{n \in N} \in l^p$ for some K-frame $\{f_n\}_{n \in N}$ for H, where $0 < p \leq 2$.

Proof. Suppose $\|Te_n\|_{n \in N} \in l^p$ for some orthonormal basis $\{e_n\}_{n \in N} \subset H$. Then $T \in S_p$, which implies that $TK \in S_p$ for any $K \in B(H)$. By Theorem 4.3, $\|TK e_n\|_{n \in N} \in l^p$ for some orthonormal basis $\{e_n\}_{n \in N}$ in H. Now take $f_n = Ke_n$, so that $\{f_n\}_{n \in N}$ is a K-frame for H and hence the theorem holds. \qed

Theorem 4.8. Let T be a compact operator on H and $K \in B(H)$, where K^* is an injective closed range operator. If $\|Tf_n\|_{n \in N} \in l^p$ for some K-frame $\{f_n\}_{n \in N}$ for H, then $T \in S_p$, where $0 < p \leq 2$.

Proof. By Corollary 3.4, if K^* is an injective closed range operator, then every K-frame is a frame and then applying Theorem 4.3, we get $T \in S_p$. \qed

5. Acknowledgement

The first author acknowledges the financial support of University Grants Commission.

References

Accepted: 20.12.2018