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Abstract. Nutrient pollution is one of most harmful environmental problems, and is
caused by surplus nitrogen in water. This nitrogen concentration occurring in water can
take several forms, such as organic nitrogen, ammonia, nitrite, nitrate, and dissolved
nitrogen gas. Pollution levels can be measured via data collection; however, this is a
rather difficult and complex process, and the results obtained widely deviate in term of
measurement. A mathematical model can be used in complicated water-quality mea-
surement. The advection-dispersion-reaction model provides a pollutant concentration
field. In this research, there are five numerical models for nitrogen pollutant concentra-
tion measurement in a stream proposed: a total nitrogen dispersion model, an organic
nitrogen dispersion model, an ammonia dispersion model, a nitrite dispersion model,
and a nitrate dispersion model. The traditional Forward Time Central Space finite
difference technique and the unconditionally explicit Saulyev technique are employed
to obtain five approximated types of organic and inorganic nitrogen pollutant concen-
trations in each time and place. This paper proposes five forms of nitrogen pollutant
measurement model for the unconditionally stable Saulyev method, so as to make it
more accurate without incurring any significant loss of computational efficiency. The
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five approximated forms of pollutant concentrations obtained indicate that all models
improve the nutrient pollution measurement process.

Keywords: numerical simulations, nitrogen compound, Saulyev technique.

1. Introduction

Water is a main factor in the survival of life on Earth. Water pollution is
a global problem caused by global population growth and economic growth.
It is an important problem affecting society and the environment. The main
causes of this problem are human settlements, industries, and agriculture. One
of the leading water pollution causes is nutrient pollution. Nutrients, such as
nitrogen and phosphorus, are chemicals that flow into natural water, such as
rivers, lakes, and coastal oceans, coming from either point or nonpoint sources.
Nutrients are necessary for aquatic and coastal ecosystems such as plant growth.
Major sources of nutrients are transportation, industry, urban activity, fertilizer,
animal wastes, plant debris, and nitrogen transported from excess or effluent
communities in soil to water sources [1].

Nitrogen is one of the essential contaminants of water. Nitrogen concen-
trations occurring in natural waters can be modified into a variety of organic
and inorganic forms, five being organic nitrogen, ammonia, nitrite, nitrate, and
dissolved nitrogen gas [2]. Due to dissolved nitrogen gas having no biological
effect, this is ignored. Excess nitrogen in the water can occur in pollution in
general, such as low oxygen concentrations in natural waters caused by nitrogen
compound oxidation, or toxic substances found in aquatic animals and affecting
human health. Nitrogen is seen as one of the key nutrients for eutrophication,
public health matters, and aquatic and the other problems.

Mathematical models are widely used in explaining environmental processes
such as chemical, biology, physical, and other processes; parabolic equations
can be reasonably explained in mathematical models [3]. The advection and
diffusion equation is a form of PDE parabolic equation which plays an impor-
tant role in describing transport processes and has that obtained popularity in
solving various problems, including environmental problems such as water qual-
ity measurement [4], [5], and [6], air quality measurement, and others. For the
measurement of water quality, many researches have used these equations to
measure concentrations occurring in natural water sources, such as rivers, and
to compare computed values with real values; their compared yields are similar
[5] and [6]. The finite difference method is one of the most efficient methods of
problem solving in advection and diffusion equations, etc. They can be classified
into two forms: explicit and implicit schemes [3]. Explicit schemes are simple to
calculate, and have been used to present stability and accuracy properties. In
[4], a water quality assessment of a non-uniform flow stream was conducted by
using the Crank-Nicolson method, and the explicit finite difference schemes were
proposed respectively. The forward Time Central Space (FTCS) and Saulyev
schemes were used to determine water quality concentration. In [7], they were
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implemented to measure air pollutant concentrations in an area under a sky
train; three dimensional advection and diffusion equations were solved by using
the explicit FTCS method, such that this method was used in two cases of wind
inflow as the x direction and the x−y directions. [8], described the measurement
of water pollutant concentration control in a connected-pond reservoir that were
connected two ponds using a hydrodynamic model and a steady-state pollutant
dispersion model through a three different finite difference scheme as backward,
forward, and central-in-space, with a steady-state pollutant dispersion model
that formed a steady-state advection-diffusion equation, which was then used
to perform water pollutant concentration level control and cost optimization.

Thus, the simple finite different methods are represented here as simple
explicit schemes in the forms of the FTCS scheme and the Saulyev scheme
[4]. Both schemes are used in calculating mathematical model as water quality
models. When compared, two comparisons have shown that the Saulyev scheme
is more efficient [4].

For implementation, we analyze nitrogen pollutant models from the advection-
dispersion-reaction equation to estimate pollutant concentrations in terms of
total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate concentrations.
We take two numerical methods, the FTCS and the Saulyev methods, to com-
pare with the analytical solution that forms the governing equation. We com-
pute nitrogen pollutant models with two numerical methods to compare efficient
solvability. We solve previous models with the Saulyev method by comparing
different right boundary conditions.

2. Dispersion models

2.1 Advectiondiffusionreaction equation

In a stream water pollutant concentration measurement model, the governing
equation is a one-dimensional advection-diffusion-reaction equation. A simpli-
fied representation, averaging the equation over the depths, as shown in [6],
is

∂C

∂t
= −u

∂C

∂x
+D

∂2C

∂x2
− f (C) , 0 ≤ x ≤ L, 0 < t ≤ T,(2.1)

with the initial condition :

C (x, 0) = k (x) , 0 ≤ x ≤ L,(2.2)

and the boundary conditions :

C (0, t) = g (t) , 0 < t ≤ T,

C (1, t) = h (t) , 0 < t ≤ T,
(2.3)

where C (x, t) is the concentration at the point x and at time t,D is the diffusion
coefficient of nitrogen pollution, u is the velocity component, f (C) is reaction
to a sink or source terms, and k (x) , g (t) and h (t) are given.
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2.2 Nitrogen dispersion models

We consider the nitrogen pollutant concentration models in surface water by
using a modified model for approximate concentrations of some nitrogen pollu-
tants: the general nitrogen forms, total nitrogen, organic nitrogen, ammonia,
nitrite, and nitrate which play roles in nitrogen processes are described by the
general knowledge of nitrogen [1] and [10].

ON
ammonification−−−−−−−−−→ NH3

nitrification−−−−−−−→ NO2
nitrification−−−−−−−→ NO3(2.4)

Nitrogen from wastewater is discharged from many sources, such as hu-
man, animal, industry, agriculture, and other sources. General discharged raw
wastewater contains around 40−45 % organic nitrogen; and about 55−60% am-
monia, with the sum of nitrates and nitrites making up about 0−5% of the total
nitrogen [12].

Therefore, different nitrogen pollutant concentrations are analyzed under re-
action terms using five different nitrogen dispersion models, which were estab-
lished by (2.1), and associated with (2.2) and (2.3). We consider these models
to approximate nitrogen pollutant concentration behaviors that occur in natu-
ral water sources to be total nitrogen, organic nitrogen, ammonia, nitrite, and
nitrate. These models are described by the different dispersion models, such
as the total nitrogen concentration model, the organic nitrogen concentration
model, the ammonia concentration model, the nitrite concentration model, and
the nitrate concentration model.

2.2.1 Total nitrogen dispersion model

The total nitrogen (TN) pollutant concentration measurement in a stream is
described by the one-dimensional advection-diffusion-reaction equation.

(2.5)
∂C1

∂t
= −u

∂C1

∂x
+D1

∂2C1

∂x2
−R1 (C1) +Q, 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

C1 (x, 0) = k1 (x) , 0 ≤ x ≤ 1,(2.6)

and the boundary conditions :

C1 (0, t) = g1 (t) , 0 < t ≤ 1,

C1 (1, t) = h1 (t) , 0 < t ≤ 1,
(2.7)

where u is water flow velocity, C1(x, t) is the total nitrogen concentration at
the point x and time t, D1 is the total nitrogen diffusion coefficient, R1 is the
reaction rate due to the degradation, Q is the inlet total nitrogen concentration
due to sources, k1(x) is the potential total nitrogen concentration function along
the stream, g1(t) is the total nitrogen concentration function at the discharge
point, and h1(t) is the rate of change of the total nitrogen concentration with
respect to distance at the end of the stream.
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2.2.2 Organic nitrogen dispersion model

Most organic nitrogen (ON) pollutants are dissolved in living and nonliving
forms from domestic wastes such as urea, uric acid, polypeptides and amino
acids [11]. This model describes the organic nitrogen pollutant concentration
behavior where the performance measurement concentration occurs under re-
action term by the degradation of the organic nitrogen concentration in water,
with consideration of the total nitrogen concentration.

The organic nitrogen (ON) pollutant concentration measurement in a stream
is described by the one-dimensional advection-diffusion-reaction equation.

(2.8)
∂C2

∂t
= −u

∂C2

∂x
+D2

∂2C2

∂x2
+R2 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.9) C2 (x, 0) = k2 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C2 (0, t)

∂t
= g2 (t) , 0 < t ≤ 1,

∂C2 (1, t)

∂t
= h2 (t) , 0 < t ≤ 1,

(2.10)

where u is water flow velocity, C2(x, t) is the organic nitrogen concentration at
the point x and time t, D2 is the organic nitrogen diffusion coefficient, R2 is the
reaction rate due to the degradation, k2(x) is the potential organic nitrogen con-
centration function along the stream, g2(t) is the organic nitrogen concentration
function at the discharge point, and h2(t) is the rate of change of the organic
nitrogen concentration with respect to distance at the end of the stream.

2.2.3 Ammonia dispersion model

Ammonia (NH3) occurs in organic nitrogen by the ammonification process,
which gives ammonia (NH3) and ammonium (NH+

4 ). The mass of ammonia
(NH3) and ammonium (NH+

4 ) are considered in terms of pH and temperature.
Ammonia (NH3) is toxic to aquatic life, whereas ammonium (NH+

4 ), supports
algae and aquatic plant growth. However, ammonia and ammonium are similar
[11]. This model describes ammonia pollutant concentration behavior where
the performance measurement concentration occurs under reaction term by the
degradation of the ammonia pollutant concentration in water, with considera-
tion of the total nitrogen concentration.

The ammonia (NH3) pollutant concentration measurement in a stream is
described by the one-dimensional advection-diffusion-reaction equation.

(2.11)
∂C3

∂t
= −u

∂C3

∂x
+D3

∂2C3

∂x2
+R3 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,
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the initial condition

C3 (x, 0) = k3 (x) , 0 ≤ x ≤ 1,(2.12)

and the boundary conditions :

∂C3 (0, t)

∂t
= g3 (t) , 0 < t ≤ 1,

∂C3 (1, t)

∂t
= h3 (t) , 0 < t ≤ 1,

(2.13)

where u is water flow velocity, C3(x, t) is the ammonia concentration at the point
x and time t, D3 is the ammonia diffusion coefficient, R3 is the reaction rate
due to the degradation, k3(x) is the potential ammonia concentration function
along the stream, g3(t) is the ammonia concentration function at the discharge
point, and h3(t) is the rate of change of the ammonia concentration with respect
to distance at the end of the stream.

2.2.4 Nitrite dispersion model

The nitrite (NO2) pollutant is oxidized by the nitrification process, such as
to convert ammonia to nitrite. Nitrite is toxic to infants when at excessive
levels [11]. This model describes nitrite pollutant concentration behavior where
the performance measurement concentration occurs under reaction term by the
degradation of the nitrite pollutant concentration in water, with consideration
of the total nitrogen concentration.

The nitrite (NO2) pollutant concentration measurement in a stream is de-
scribed by the one-dimensional advection-diffusion-reaction equation.

(2.14)
∂C4

∂t
= −u

∂C4

∂x
+D4

∂2C4

∂x2
+R4 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.15) C4 (x, 0) = k4 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C4 (0, t)

∂t
= g4 (t) , 0 < t ≤ 1,

∂C4 (1, t)

∂t
= h4 (t) , 0 < t ≤ 1,

(2.16)

where u is water flow velocity, C4(x, t) is the nitrite concentration at the point
x and time t, D4 is the nitrite diffusion coefficient, R4 is the reaction rate due to
the degradation, k4(x) is the potential nitrite concentration function along the
stream, g4(t) is the nitrite concentration function at the discharge point, and
h4(t) is the rate of change of the nitrite concentration with respect to distance
at the end of the stream.
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2.2.5 Nitrate dispersion model

The nitrate (NO3) pollutant is transformed from nitrite by the nitrification pro-
cess and can convert to nitrite [11], which is toxic and hazardous to infants. This
model describes nitrate pollutant concentration behavior where the performance
measurement concentration occurs under reaction term by the degradation of
the nitrate pollutant concentration in water, with consideration of the total
nitrogen concentration.

The nitrate (NO3) pollutant concentration measurement in a stream is de-
scribed by the one-dimensional advection-diffusion-reaction equation.

(2.17)
∂C5

∂t
= −u

∂C5

∂x
+D5

∂2C5

∂x2
+R5 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.18) C5 (x, 0) = k5 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C5 (0, t)

∂t
= g5 (t) , 0 < t ≤ 1,

∂C5 (1, t)

∂t
= h5 (t) , 0 < t ≤ 1,

(2.19)

where u is water flow velocity, C5(x, t) is the nitrate concentration at the point
x and time t, D5 is the nitrate diffusion coefficient, R5 is the reaction rate due to
the degradation, k5(x) is the potential nitrate concentration function along the
stream, g5(t) is the nitrate concentration function at the discharge point, and
h5(t) is the rate of change of the nitrate concentration with respect to distance
at the end of the stream.

3. Numerical techniques for nitrogen dispersion models

This section presents the two numerical schemes of finite difference methods,
the FTCS scheme and the Saulyev scheme, which are explicit schemes.

We can solve C(xi, tn) or Cn
i at grid point (xi, tn) where 0 ≤ i ≤ M and

0 ≤ n ≤ N such that i and n are positive integers. Each node of xi and tn is
separated by an equal grid on the x-range and t-range as the column of space and
time, respectively, where xi = i∆x, i = 0, 1, 2, ...,M , tn = n∆t, n = 0, 1, 2, ..., N
and the values of ∆x > 0 and ∆t > 0 are the grid of space and time increments,
respectively [4].
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3.1 Forward Time Central Space technique applied to five forms of
nitrogen measurement model

The FTCS scheme can be written as the discretization of time and space deriva-
tive term as follows [4]

∂C

∂t
=

Cn+1
i − Cn

i

∆t
,

∂C

∂x
=

Cn
i+1 − Cn+1

i−1

2∆x
,

and
∂2C

∂x2
=

Cn
i+1 − 2Cn

i + Cn+1
i−1

(∆x)2
.

(3.1)

Substituting (3.1) into nitrogen dispersion models (the total nitrogen, or-
ganic nitrogen, ammonia, nitrite, and nitrate measurement models) results in
(2.5), (2.8), (2.11), (2.14), and (2.17), respectively.

Moreover, the FTCS has numerical stability that depends on the condition
of the diffusion number (λ) and the advection number (γ) , as follows

λ =
D∆t

(∆x)2
<

1

2
,

and γni =
uni ∆t

∆x
< 1.

(3.2)

These values depend on choosing a suitable grid time increment, as ∆t is
not of much high width.

3.1.1 Forward Time Central Space technique for the total nitrogen
dispersion model

Taking (3.1) into (2.5), we obtain the discretization of total nitrogen dispersion
model as

(C1)
n+1
i − (C1)

n
i

∆t
=− uni

(
(C1)

n
i+1 − (C1)

n
i−1

2∆x

)
+D1

(
(C1)

n
i+1 − 2(C1)

n
i + (C1)

n
i−1

(∆x)2

)
−R1(C1)

n
i +Q.

(3.3)

Rearranging (3.3) leads to (3.4) for the FTCS solution, represented as

(C1)
n+1
i =

(
1

2
γni + λ

)
(C1)

n
i−1 + (1−R1∆t− 2λ)(C1)

n
i

+

(
λ− 1

2
γni

)
(C1)

n
i+1 +Q∆t,(3.4)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .
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Substituting (3.1) into (2.7) and rearranging on the right-bound of the
boundary condition, which is the derivative equation, we get (3.5).

The left boundary condition; i = 0,

C1(0, t) = 1 = g1(t),

and the right boundary condition; i = M,

∂C1(M, t)

∂x
=

(C1)
n
M+1 − (C1)

n
M−1

∆x
= h1(t),

(C1)
n
M+1 = 2h1(t)∆x+ (C1)

n
M−1.

(3.5)

Substituting (3.5) into (3.4) leads to (3.6) of the right side equation, given
as

(C1)
n+1
M =2λ(C1)

n
M−1 + 2h1(t)∆x

(
λ− 1

2
γnM

)
+ (1−R1∆t− 2λ)(C1)

n
M +Q∆t.(3.6)

3.1.2 Forward Time Central Space technique for the organic
nitrogen dispersion model

Likewise, substituting (3.1) into (2.8) leads to (3.7), written as

(C2)
n+1
i − (C2)

n
i

∆t
=− uni

(
(C2)

n
i+1 − (C2)

n
i−1

2∆x

)
+D2

(
(C2)

n
i+1 − 2(C2)

n
i + (C2)

n
i−1

(∆x)2

)
+R2R1(C1)

n
i .

(3.7)

Rearranging (3.7) leads to (3.8) for the FTCS solution, represented as

(C2)
n+1
i =

(
1

2
γni + λ

)
(C2)

n
i−1 + (1− 2λ)(C2)

n
i

+

(
λ− 1

2
γni

)
(C2)

n
i+1 +R2R1(C1)

n
i ∆t,(3.8)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

Substituting (3.1) into (2.10) and rearranging on the left and right-bound
of the boundary condition of this model which are the derivative equations, we
get (3.9).

The left boundary condition; i = 0,

∂C2(0, t)

∂x
=
(C2)

n
1 − (C2)

n
−1

2∆x
= g2(t),

(C2)
n
−1 =(C2)

n
1 − 2g2(t)∆x,

and the right boundary condition; i = M,

∂C2(M, t)

∂x
=
(C2)

n
M+1 − (C2)

n
M−1

2∆x
= h2(t),(3.9)

(C2)
n
M+1 =2h2(t)∆x+ (C2)

n
M−1.
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Substituting (3.9) into (3.8) leads to the left and right side (3.10) and (3.11),
respectively, given as follows

(C2)
n+1
0 =2λ(C2)

n
1 − 2g2(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C2)

n
0

+R2R1(C1)
n
0∆t

(3.10)

and

(C2)
n+1
M =2λ(C2)

n
M−1 + 2h2(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C2)

n
M

+R2R1(C1)
n
M∆t.

(3.11)

3.1.3 Forward Time Central Space technique for the ammonia
dispersion model

Likewise, substituting (3.1) into (2.11) leads to (3.12), written as

(C3)
n+1
i − (C3)

n
i

∆t
=− uni

(
(C3)

n
i+1 − (C3)

n
i−1

2∆x

)
+D3

(
(C3)

n
i+1 − 2(C3)

n
i + (C3)

n
i−1

(∆x)2

)
+R3R1(C1)

n
i .

(3.12)

Rearranging (3.12) leads to (3.13), represented as

(C3)
n+1
i =

(
1

2
γni + λ

)
(C3)

n
i−1 + (1− 2λ)(C3)

n
i +

(
λ− 1

2
γni

)
(C3)

n
i+1

+R3R1(C1)
n
i ∆t,(3.13)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.14) for the left and right sides, as
below, from substituting (3.1) into (2.13) and rearranging these equations.

The left boundary condition; i = 0,

∂C3(0, t)

∂x
=
(C3)

n
1 − (C3)

n
−1

2∆x
= g3(t),

(C3)
n
−1 =(C3)

n
1 − 2g3(t)∆x,

and the right boundary condition; i = M,

∂C3(M, t)

∂x
=
(C3)

n
M+1 − (C3)

n
M−1

2∆x
= h3(t),(3.14)

(C3)
n
M+1 =2h3(t)∆x+ (C3)

n
M−1.

Substituting (3.14) into (3.13) which leads to the left and right side, (3.15)
and (3.16), respectively, given as follows

(C3)
n+1
0 =2λ(C3)

n
1 − 2g3(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C3)

n
0

+R3R1(C1)
n
0∆t

(3.15)
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and

(C3)
n+1
M =2λ(C3)

n
M−1 + 2h3(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C3)

n
M

+R3R1(C1)
n
M∆t.

(3.16)

3.1.4 Forward Time Central Space technique for the nitrite
dispersion model

Likewise, substituting (3.1) into (2.14) leads to (3.17), written as

(C4)
n+1
i − (C4)

n
i

∆t
=− uni

(
(C4)

n
i+1 − (C4)

n
i−1

2∆x

)
+D4

(
(C4)

n
i+1 − 2(C4)

n
i + (C4)

n
i−1

(∆x)2

)
+R4R1(C1)

n
i .

(3.17)

Rearranging (3.17) leads to (3.18), represented as

(C4)
n+1
i =

(
1

2
γni + λ

)
(C4)

n
i−1 + (1− 2λ)(C4)

n
i

+

(
λ− 1

2
γni

)
(C4)

n
i+1 +R4R1(C1)

n
i ∆t,(3.18)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.19) for the left and right sides, as
below, from substituting (3.1) into (2.16) and rearranging these equations.

The left boundary condition; i = 0,

∂C4(0, t)

∂x
=
(C4)

n
1 − (C4)

n
−1

2∆x
= g4(t),

(C4)
n
−1 =(C4)

n
1 − 2g4(t)∆x,

and the right boundary condition; i = M,

∂C4(M, t)

∂x
=
(C4)

n
M+1 − (C4)

n
M−1

2∆x
= h4(t),(3.19)

(C4)
n
M+1 =2h4(t)∆x+ (C4)

n
M−1.

Substituting (3.19) into (3.18) leads to the left and right side, (3.20) and
(3.21), respectively, given as follows

(C4)
n+1
0 =2λ(C4)

n
1 − 2g4(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C4)

n
0

+R4R1(C1)
n
0∆t

(3.20)

and

(C4)
n+1
M =2λ(C4)

n
M−1 + 2h4(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C4)

n
M

+R4R1(C1)
n
M∆t.

(3.21)
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3.1.5 Forward Time Central Space technique for the nitrate
dispersion model

Likewise, substituting (3.1) into (2.17) leads to (3.22), written as

(C5)
n+1
i − (C5)

n
i

∆t
=− uni

(
(C5)

n
i+1 − (C5)

n
i−1

2∆x

)
+D5

(
(C5)

n
i+1 − 2(C5)

n
i + (C5)

n
i−1

(∆x)2

)
+R5R1(C1)

n
i .

(3.22)

Rearranging (3.22) leads to (3.23), represented as

(C5)
n+1
i =

(
1

2
γni + λ

)
(C5)

n
i−1 + (1− 2λ)(C5)

n
i

+

(
λ− 1

2
γni

)
(C5)

n
i+1 +R5R1(C1)

n
i ∆t,(3.23)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.24) for the left and right sides, as
below, from substituting (3.1) into (2.19) and rearranging these equations.

The left boundary condition; i = 0,

∂C5(0, t)

∂x
=
(C5)

n
1 − (C5)

n
−1

2∆x
= g5(t),

(C5)
n
−1 =(C5)

n
1 − 2g5(t)∆x,

and the right boundary condition; i = M,

∂C5(M, t)

∂x
=
(C5)

n
M+1 − (C5)

n
M−1

2∆x
= h5(t),(3.24)

(C5)
n
M+1 =2h5(t)∆x+ (C5)

n
M−1.

Substituting (3.24) into (3.23) leads to the left and right side, (3.25) and
(3.26), respectively, given as follows

(C5)
n+1
0 =2λ(C5)

n
1 − 2g5(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C5)

n
0

+R5R1(C1)
n
0∆t

(3.25)

and

(C5)
n+1
M =2λ(C5)

n
M−1 + 2h5(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C5)

n
M

+R5R1(C1)
n
M∆t.

(3.26)
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3.2 Unconditionally stable Saulyev technique applied to five forms
of nitrogen dispersion measurement model

Saulyev (1964) introduced asymmetric approximations for the parabolic equa-
tions that are widely used in environmental solving, such as advection and diffu-
sion equations, etc. The solution is given to be an approximation that is explicit
and has unconditional stability [13].

The Saulyev scheme can be written as the discretization of time, and space
derivative term, as per [4]
where let C(x, t) and u denote Cn

i and uni then

∂C

∂t
=
Cn+1
i − Cn

i

∆t
,

∂C

∂x
=
Cn
i+1 − Cn+1

i−1

2∆x
,

and
∂2C

∂x2
=
Cn
i+1 − Cn

i − Cn+1
i + Cn+1

i−1

(∆x)2
.

(3.27)

Substituting (3.27) into nitrogen dispersion models (the total nitrogen, or-
ganic nitrogen, ammonia, nitrite, and nitrate measurement models) results in
(2.5), (2.8), (2.11), (2.14), and (2.17), respectively.

3.2.1 Saulyev technique for the total nitrogen dispersion model

Likewise, substituting (3.27) into (2.5) leads to (3.28), written as

(C1)
n+1
i − (C1)

n
i

∆t
=− uni

(
(C1)

n
i+1 − (C1)

n+1
i−1

2∆x

)

+D1

(
(C1)

n
i+1 − (C1)

n
i − (C1)

n+1
i + (C1)

n+1
i−1

(∆x)2

)
−R1(C1)

n
i +Q.

(3.28)

Rearranging (3.28) leads to (3.29), represented as

(C1)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C1)

n+1
i−1 + (1− λ−R1∆t)(C1)

n
i

+

(
λ− 1

2
γni

)
(C1)

n
i+1 +Q∆t

)
,

(3.29)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

Substituting (3.27) into (2.7) and rearranging on the right-bound of the
boundary condition, which is the derivative equation, we get (3.30).
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The left boundary condition; i = 0,

C1(0, t) =1,

and the right boundary condition; i = M ,

∂C1(M, t)

∂x
=
(C1)

n
M+1 − (C1)

n
M−1

2∆x
= h1(t),

(C1)
n
M+1 =2h1(t)∆x+ (C1)

n
M−1.

(3.30)

Substituting (3.30) into (3.29) leads to (3.31) of the right side equation, given
as

(C1)
n+1
i =

1

(1 + λ)

(
2λ(C1)

n+1
M−1 + (1− λ−R1∆t)(C1)

n
M + 2h1(t)∆x

(
λ− 1

2
γnM

)
+Q∆t

)
.

(3.31)

3.2.2 Saulyev technique for the organic nitrogen dispersion model

Likewise, substituting (3.27) into (2.8) leads to (3.32), written as

(C2)
n+1
i − (C2)

n
i

∆t
=− uni

(
(C2)

n
i+1 − (C2)

n+1
i−1

2∆x

)

+D2

(
(C2)

n
i+1 − (C2)

n
i − (C2)

n+1
i + (C2)

n+1
i−1

(∆x)2

)
+R2R1(C1)

n
i .

(3.32)

Rearranging (3.32) leads to (3.33), represented as

(C2)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C2)

n+1
i−1 + (1− λ)(C2)

n
i

+

(
λ− 1

2
γni

)
(C2)

n
i+1 +R2R1(C1)

n
i ∆t

)
,

(3.33)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

Substituting (3.27) into (2.10) and rearranging on the left and right-bound
of the boundary condition of this model, which are the derivative equation, we
get (3.34).
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The left boundary condition; i = 0,

∂C2(0, t)

∂x
=
(C2)

n
1 − (C2)

n+1
−1

2∆x
= g2(t),

(C2)
n
−1 =(C2)

n+1
1 − 2g2(t)∆x,

and the right boundary condition; i = M ,

∂C2(M, t)

∂x
=
(C2)

n
M+1 − (C2)

n+1
M−1

2∆x
= h2(t),(3.34)

(C2)
n
M+1 =2h2(t)∆x+ (C2)

n+1
M−1.

Substituting (3.34) into (3.33) leads to the left and right side (3.35) and
(3.36), respectively, given as follows

(C2)
n+1
0 =

1

(1 + λ)

(
2λ(C2)

n+1
1 + (1− λ)(C2)

n
0 − 2g2(t)∆x

(
λ+

1

2
γn0

)
+R2R1(C1)

n
0∆t

)(3.35)

and

(C2)
n+1
M =

1

(1 + λ)

(
(2λ(C2)

n+1
M−1 + (1− λ)(C2)

n
M + 2h2(t)∆x

(
λ− 1

2
γnM

)
+R2R1(C1)

n
M∆t

)
.

(3.36)

3.2.3 Saulyev technique for the ammonia dispersion model

Likewise, substituting (3.27) into (2.11) leads to (3.37), written as

(C3)
n+1
i − (C3)

n
i

∆t
=− uni

(
(C3)

n
i+1 − (C3)

n+1
i−1

2∆x

)

+D3

(
(C3)

n
i+1 − (C3)

n
i − (C3)

n+1
i + (C3)

n+1
i−1

(∆x)2

)
+R3R1(C1)

n
i .

(3.37)

Rearranging (3.37) leads to (3.38), represented as

(C3)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C3)

n+1
i−1 + (1− λ)(C3)

n
i

+

(
λ− 1

2
γni

)
(C3)

n
i+1 +R3R1(C1)

n
i ∆t

)
,

(3.38)
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where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.39) for the left and right sides, as
below, from substituting (3.27) into (2.13) and rearranging these equations.

The left boundary condition; i = 0,

∂C3(0, t)

∂x
=
(C3)

n
1 − (C3)

n+1
−1

2∆x
= g3(t),

(C3)
n
−1 =(C3)

n+1
1 − 2g3(t)∆x,

and the right boundary condition; i = M ,

∂C3(M, t)

∂x
=
(C3)

n
M+1 − (C3)

n+1
M−1

2∆x
= h3(t),(3.39)

(C3)
n
M+1 =2h3(t)∆x+ (C3)

n+1
M−1.

Substituting (3.39) into (3.38) which leads to the left and right side (3.40)
and (3.41), respectively, given as follows

(C3)
n+1
0 =

1

(1 + λ)

(
2λ(C3)

n+1
1 + (1− λ)(C3)

n
0 − 2g3(t)∆x

(
λ+

1

2
γn0

)

+R3R1(C1)
n
0∆t

)(3.40)

and

(C3)
n+1
M =

1

(1 + λ)

(
2λ(C3)

n+1
M−1 + (1− λ)(C3)

n
M + 2h3(t)∆x

(
λ− 1

2
γnM

)

+R3R1(C1)
n
M∆t

)
.

(3.41)

3.2.4 Saulyev technique for the nitrite dispersion model

Likewise, substituting (3.27) into (2.14) leads to (3.42), written as

(C4)
n+1
i − (C4)

n
i

∆t
=− uni

(
(C4)

n
i+1 − (C4)

n+1
i−1

2∆x

)

+D4

(
(C4)

n
i+1 − (C4)

n
i − (C4)

n+1
i + (C4)

n+1
i−1

(∆x)2

)
+R4R1(C1)

n
i .

(3.42)
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Rearranging (3.42) which leads to (3.43), represented as

(C4)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C4)

n+1
i−1 + (1− λ)(C4)

n
i

+

(
λ− 1

2
γni

)
(C4)

n
i+1 +R4R1(C1)

n
i ∆t

)
,

(3.43)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.44) for the left and right sides, as
below, from substituting (3.27) into (2.16) and rearranging these equations.

The left boundary condition; i = 0,

∂C4(0, t)

∂x
=
(C4)

n
1 − (C4)

n+1
−1

2∆x
= g4(t),

(C4)
n
−1 =(C4)

n+1
1 − 2g4(t)∆x,

and the right boundary condition; i = M ,

∂C4(M, t)

∂x
=
(C4)

n
M+1 − (C4)

n+1
M−1

2∆x
= h4(t),(3.44)

(C4)
n
M+1 =2h4(t)∆x+ (C4)

n+1
M−1.

Substituting (3.44) into (3.43) leads to the left and right side (3.45) and
(3.46), respectively, given as follows

(C4)
n+1
0 =

1

(1 + λ)

(
2λ(C4)

n+1
1 + (1− λ)(C4)

n
0 − 2g4(t)∆x

(
λ+

1

2
γn0

)

+R4R1(C1)
n
0∆t

)(3.45)

and

(C4)
n+1
M =

1

(1 + λ)

(
2λ(C4)

n+1
M−1 + (1− λ)(C4)

n
M + 2h4(t)∆x

(
λ− 1

2
γnM

)

+R4R1(C1)
n
M∆t

)
.

(3.46)
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3.2.5 Saulyev technique for the nitrate dispersion model

Likewise, substituting (3.27) into (2.17) leads to (3.47), written as

(C5)
n+1
i − (C5)

n
i

∆t
=− uni

(
(C5)

n
i+1 − (C5)

n+1
i−1

2∆x

)

+D5

(
(C5)

n
i+1 − (C5)

n
i − (C5)

n+1
i + (C5)

n+1
i−1

(∆x)2

)
+R5R1(C1)

n
i .

(3.47)

Rearranging (3.47) leads to (3.48), represented as

(C5)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C5)

n+1
i−1 + (1− λ)(C5)

n
i

+

(
λ− 1

2
γni

)
(C5)

n
i+1 +R5R1(C1)

n
i ∆t

)
,

(3.48)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.49) for the left and right sides, as
below, from substituting (3.27) into (2.19) and rearranging these equations.

The left boundary condition; i = 0,

∂C5(0, t)

∂x
=
(C5)

n
1 − (C5)

n+1
−1

2∆x
= g5(t),

(C5)
n
−1 =(C5)

n+1
1 − 2g5(t)∆x,

and the right boundary condition; i = M ,

∂C5(M, t)

∂x
=
(C5)

n
M+1 − (C5)

n+1
M−1

2∆x
= h5(t),(3.49)

(C5)
n
M+1 =2h5(t)∆x+ (C5)

n+1
M−1.

Substituting (3.49) into (3.48) leads to the left and right side (3.50) and
(3.51), respectively, given as follows

(C5)
n+1
0 =

1

(1 + λ)

(
2λ(C5)

n+1
1 + (1− λ)(C5)

n
0 − 2g5(t)∆x

(
λ+

1

2
γn0

)

+R5R1(C1)
n
0∆t

)(3.50)
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and

(C5)
n+1
M =

1

(1 + λ)

(
2λ(C5)

n+1
M−1 + (1− λ)(C5)

n
M + 2h5(t)∆x

(
λ− 1

2
γnM

)

+R5R1(C1)
n
M∆t

)
.

(3.51)

4. Numerical experiments

In the section, we implement analytical, FTCS, and Saulyev solutions for ap-
proximation in three experiments. The first experiment is an accuracy compar-
ison of the numerical methods with an analytical solution. The second exper-
iment is an efficiency comparison between the FTCS and Saulyev solutions of
the nitrogen dispersion models. The last part is a performance simulation of
the nitrogen dispersion models with the Saulyev method.

4.1 Numerical simulation of an ideal pollutant dispersion
measurement

We compare effective methods between the analytical method and numerical
solutions using the FTCS and Saulyev methods. We consider an analytical
solution to the simplest case of the governing equation with defined initial and
boundary conditions, taken from [9], as an example to compare with the two
numerical solutions.

We perform all three cases by computing (2.1) without the term of reactive
pollutant (f(C) = 0) with the analytical, FTCS, and Saulyev methods. All
three cases are easily solvable where it is assumed that the stream length is 1
km, the performance over the entire time interval is [0,1], the velocity component
(u) is 1 m/s, the diffusion coefficient (D) is 0.01 m2/s, and the grid step size of
space (∆x) and time (∆t) are 0.05 and 0.0025.

The initial and boundary conditions are given to follow (2.2) and (2.3), and
are, respectively [9];

C(x, 0) =k(x) = exp

(
−(x+ 0.5)2

0.00125

)
, 0 ≤ x ≤ 1,

C(0, t) =g(t) =
0.025√

0.000625 + 0.02t
exp

(
− (0.5− t)2

(0.00125 + 0.04t)

)
,(4.1)

0 < t ≤ 1,

C(1, t) =h(t) =
0.025√

0.000625 + 0.02t
exp

(
− (1.5− t)2

(0.00125 + 0.04t)

)
,

0 < t ≤ 1.
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Performing (2.1) without the term of reactive pollutant leads to (4.2) for
analytical solution, represented as follows [9]

C(x, t) =
0.025√

0.000625 + 0.02t
exp

(
− (x+ 0.5− t)2

0.00125 + 0.04t

)
,

0 ≤ x ≤ 1, 0 < t ≤ 1.

(4.2)

Conducting (2.1) without the term of reactive pollutant by using the FTCS
scheme from (3.1), we get and rearrange (4.3), which leads to (4.4)

Cn+1
i − Cn

i

∆t
= −uni

(
Cn
i+1 − Cn

i−1

2∆x

)
+D

(
Cn
i+1 − 2Cn

i + Cn
i−1

(∆x)2

)
,(4.3)

and

Cn+1
i =

(
1

2
γni + λ

)
Cn
i−1 + (1− 2λ)Cn

i +

(
λ− 1

2
γni

)
Cn
i+1,(4.4)

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

Performing (2.1) without the term of reactive pollutant by using the Saulyev
scheme from (3.27), we get and rearrange (4.5), which leads to (4.6).

(4.5)
Cn+1
i − Cn

i

∆t
= −uni

(
Cn
i+1 − Cn

i−1

2∆x

)
+D

(
Cn
i+1 − Cn

i − Cn+1
i + Cn+1

i−1

(∆x)2

)
,

and

(4.6) Cn+1
i =

1

(1 + λ)

((
λ+

1

2
γni

)
Cn
i−1 + (1− λ)Cn

i +

(
λ− 1

2
γni

)
Cn
i+1

)
,

where λ = D∆t
(∆x)2

and γni =
un
i ∆t
∆x .

Consider that (4.2), (4.4), and (4.6) associate with the initial and boundary
condition from (4.1). We get the approximate values for all three cases as
analytical, FTCS, and Saulyev solutions, respectively.

Hence, these solutions can be shown by graph in order to compare the ac-
curacy assessment of the two numerical methods. Fig. 1 shows the result of
two numerical solutions for comparison with the analytical solution at C(0.5, t),
which describe the approximate values of two numerical solutions near fixed
points of the analytic solution, showing that the numerical solutions are best.

4.2 Numerical simulations of five forms of nitrogen pollutant
concentration measurements

We consider here the experiment for comparing two numerical methods, the
FTCS and Saulyev methods, with the application of nitrogen dispersion models
in section 2.2. It is possible to use numerical methods to solve each case of the
defined grid space (∆x) and time (∆t) increments.
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Figure 1: Comparison of concentrations (kg/m3) of analytic, FTCS and Saulyev
solutions at C(0.5, t).

Table 1: Comparison ∆x and ∆t for computing nitrogen pollutant models of
the total nitrogen with two numerical methods which are possible in the solving.

∆x ∆t λ γ FTCS SAULYEV

0.2

0.1 0.25 0.05 stable stable
0.05 0.125 0.025 stable stable
0.025 0.0625 0.0125 stable stable
0.0125 0.0313 0.00625 stable stable

0.1

0.1 1 0.1 unstable stable
0.05 0.5 0.05 stable stable
0.025 0.25 0.025 stable stable
0.0125 0.125 0.0125 stable stable

0.05

0.1 4 0.2 unstable stable
0.05 2 0.1 unstable stable
0.025 1 0.05 unstable stable
0.0125 0.5 0.025 stable stable

0.025

0.1 16 0.4 unstable stable
0.05 8 0.2 unstable stable
0.025 4 0.1 unstable stable
0.0125 2 0.05 unstable stable

For example, considering the concentration measurement of the nitrogen pol-
lutant concentration in a stream at time t of total nitrogen (C1), organic nitrogen
(C2), ammonia (C3), nitrite (C4), and nitrate (C5) concentrations, assume that
the stream reach is about 1 km, which is considered over the entire time inter-
val [0,1]. This stream is surrounded by residential components. Wastewater is
discharged into the stream, such that the wastewater contains nitrogen as the
total nitrogen concentration form, which is everywhere throughout the stream,
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is described by a interpolated function C1(x, 0) = k1(x) = 1 + x(1 − x) kg/m3

initially, this discharged pollutant concentration at the left side of the stream
(x = 0) is C1(0, t) = g1(t) = 1 kg/m3 for all time and at t = 0, and the right side
of the stream (x = 1) is the rate of change of the total nitrogen concentration

for releasing out ∂C1(1,t)
∂x = h1(t) = −0.001 for all time and at t = 0. Organic

nitrogen, ammonia, nitrite, and nitrate pollutant concentrations depend on the
total nitrogen concentration, such that they are defined by the same values as
there are pollutant concentrations everywhere throughout the stream, and are
kept at C2(x, 0) = C3(x, 0) = C4(x, 0) = C5(x, 0) = 0 kg/m3 initially, at the left
side of the stream (x = 0) is the rate of change of nitrogen pollutant concentra-

tion for releasing in as ∂C2(0,t)
∂x = ∂C3(0,t)

∂x = ∂C4(0,t)
∂x = ∂C5(0,t)

∂x = 0 for all time
and at t = 0, and the right side of the stream is the rate of change of nitro-
gen pollutant concentration for releasing out as ∂C2(1,t)

∂x = ∂C3(1,t)
∂x = ∂C4(1,t)

∂x =
∂C5(1,t)

∂x = −0.001 for all time and at t = 0. The component of velocity is a con-
stant as u = 0.1 m/s. This stream has approximate diffusion coefficients of total
nitrogen (D1), organic nitrogen (D2), ammonia (D3), nitrite (D4), and nitrate
(D5) concentrations of 0.1, 0.85D1, 0.65D1, 0.45D1, and 0.3D1 m2/s, respec-
tively. The rates of degradation of total nitrogen (R1), organic nitrogen (R2),
ammonia (R3), nitrite (R4), and nitrate (R5) concentrations are 0.1, 0.85R1,
0.65R1, 0.45R1, and 0.3R1 s−1, respectively. The inlet flow of the total nitrogen
concentration into the stream is 0.001 m2/s.

Start by computing the numerical solution equations (the FTCS and Saulyev
methods). For the FTCS method, implement solution equatios as the total
nitrogen, organic nitrogen, ammonia, nitrite, and nitrate in section 3.1, which
associate with setting parameter values. For the Saulyev method, implement
solution equations as the total nitrogen, organic nitrogen, ammonia, nitrite, and
nitrate in section 3.2, which associate with setting parameter values.

Perform both methods for each ∆x and ∆t to compare each output of the
numerical method that can be possible to measure for each case, as shown in
Table 1.

From Table 1, we observe that it is possible to use the test to solve all of the
cases for the Saulyev solutions. The FTCS solutions represent divergent yields
and cannot be used in some cases. Therefore, the Saulyev method shows that
is a consistent method for all cases under unconditional stability.

The FTCS method is impossible to compute if ∆t has such large increases
to not be satisfied for stability conditions which depend on λ and γ.

4.3 Numerical simulations of water-quality measurement in a
stream with nitrogen pollutant concentration measurement
using Saulyev method

According to the numerical computation of the nitrogen dispersion models, the
FTCS method is impossible to use for the majority of cases. In the current
section, we implement the Saulyev method with the nitrogen dispersion models.
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This presents a comparative computation of nitrogen pollutant concentration for
the different rates of change observed in them at the right boundary conditions,
in order to explain the different nitrogen pollutant concentration behaviors.

Similarly, from the previous section, the same implementation of the Saulyev
method is done with the concentration measurement of the nitrogen pollu-
tant concentration in the stream at time t as the total nitrogen(C1), organic
nitrogen(C2), ammonia (C3), nitrite (C4), and nitrate (C5). Assume that the
stream reach is about 1 km, which is considered over the entire time interval [0,1],
some stream physical characteristics, initial and boundary conditions are similar,
but some stream physical characteristics are different, such as the component of
velocity depending on distance x, described by a function u = 0.1+x(1−x)(0.1)
m/s. This stream has an approximate diffusion coefficient of the total nitrogen
concentration (D1) with a function D1 = 0.1+(1+x(1−x))(0.1) m2/s, depend-
ing on distances. Furthermore, the grid space (∆x) and time (∆t) increments
are defined by 0.00625 and 0.01, respectively.

We perform solution equations for the total nitrogen, organic nitrogen, am-
monia, nitrite, and nitrate with the Saulyev method in section 3.2, all five cases
which associate with setting parameter values above and the previous section,
by determining the different rates of change of nitrogen pollutant concentrations
at right boundary conditions of -0.001, -0.002, -0.003, -0.004 and -0.005. Table
2 and 3 show each nitrogen pollutant concentration where the rates of change
of nitrogen pollutant concentrations at the right boundary conditions of -0.001
and -0.005, respectively.

We observed that each measurement of all five cases gives each output of
concentration in the same direction of the approximated value and each output
of concentration in the cases of organic nitrogen, ammonia, nitrite, and nitrate
obtained depend on the different defined rates of change of nitrogen pollutant
concentrations at right boundary conditions.

5. Discussion

Consider that the given five graphs in Fig. 2 are examples from the nitrogen
pollutant models in the case of the rate of change of nitrogen pollutant con-
centrations at the right boundary condition of -0.001. The graphs clearly show
the effects of the increase or decrease in nitrogen pollutant concentrations in
the stream, such that the total nitrogen pollutant concentration decreased con-
tinuously in Fig.2 (a), while the organic nitrogen, ammonia, nitrite and nitrate
pollutant concentrations increased continuously in Fig. 2 (b)-(e). It can be
explained that discharged wastewater consists of nitrogen pollutant concentra-
tions, as the total nitrogen concentration, which is the origination concentration,
can measure four different nitrogen pollutant concentrations (organic nitrogen,
ammonia, nitrite, and nitrate) at many space points at various times. Fig. 3
compares each nitrogen pollutant concentration (organic nitrogen, ammonia,
nitrite, and nitrate pollutant concentrations) from the total nitrogen concentra-
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(a) (b)

(c) (d)

(e)

Figure 2: (a)The total nitrogen, (b)organic nitrogen, (c)ammonia, (d) nitrite,
and (e)nitrate (kg/m3) where the rate of change at the right boundary condition
is -0.001.

tions by considering the different rates of change of nitrogen pollutant concentra-
tions at right boundary conditions of -0.001, -0.002, -0.003, -0.004, and, -0.005,
such that the different rates of change of nitrogen pollutant concentrations at the
right boundary condition is similar, the organic nitrogen pollutant concentration
is at a higher level, and the other pollutant concentrations (ammonia, nitrite,
and nitrate) have high concentrations, respectively, following nature. Fig. 4



576 AREERAT VONGKOK and NOPPARAT POCHAI

(a) (b)

(c) (d)

(e)

Figure 3: The organic nitrogen, ammonia, nitrite, and nitrate concentrations
(kg/m3) from the total nitrogen concentration in cases of the rates of change
at right boundary condition of (a)-0.001, (b)-0.002, (c)-0.003, (d)-0.004, and
(e)-0.005 at C(1, t).

compares the different rates of change of nitrogen pollutant concentrations at
right boundary conditions of -0.001, -0.002, -0.003, -0.004, and -0.005 such that
they affect the pollutant concentration levels of each nitrogen pollutant con-
centration (the total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate
pollutant concentrations). The difference of each nitrogen pollutant concentra-
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(a) (b)

(c) (d)

(e)

Figure 4: Comparison (a) the total nitrogen, (b) organic nitrogen, (c) ammo-
nia, (d) nitrite, and (e) nitrate (kg/m3) when the rates of change at the right
boundary condition are -0.001, -0.002, -0.003, -0.004, and -0.005 at C(1, t).

tion between the rates of change at right boundary conditions at C(1, t) have
equal pollutant concentration values, which shown in Table 4. Observe that if
the rates of change of nitrogen pollutant concentrations have low values to high
values, the nitrogen pollutant concentration levels will also have low values to
high values respectively.
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Table 2. (a) The total nitrogen, (b) organic nitrogen, (c) ammonia, (d) ni-
trite, and (e) nitrate, (kg/m3) where the rate of change at the right boundary
condition is -0.001 such that there are ∆x=0.00625 and ∆t=0.01.

6. Conclusion

In this study, the nitrogen pollutant concentration models in a stream, the
total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate concentrations,
are considered. These models show that each nitrogen pollutant concentration
behavior, such as the total nitrogen concentration, affects the measurement
of various pollutant concentrations of nitrogen, such as the organic nitrogen,
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Table 3. (a) The total nitrogen, (b) organic nitrogen, (c) ammonia, (d) nitrite, and

(e) nitrate, (kg/m3) where the rate of change at the right boundary condition is -0.005

such that there are ∆x=0.00625 and ∆t=0.01.

ammonia, nitrite, and nitrate. The solution performance of these models can be
shown by using the numerical methods (the FTCS and Saulyev methods), which
are explicit schemes. Both methods are in good agreement with the analytic
solution but they have differences under conditions, such that the FTCS method
can solve problems under a stability condition, while the Saulyev method be
able to solve many scenarios without the limitation of stability conditions. The
Saulyev method gives good agreement approximated solutions without stability
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Table 4. Comparison each two rates of change at C(1, t) right boundary condition at

of (a) the total nitrogen, (b) organic nitrogen, (c) ammonia, (d) nitrite, and (e) nitrate

concentrations (kg/m3) such that there are ∆x=0.00625 and ∆t=0.01.

limitation. It is a good method for several realistic scenarios. In the simulation,
we can see that the total nitrogen pollutant controlling gives better overall
water-quality levels than another nitrogen pollutant compounds controlling.
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