Nonlinear left $*$-Lie triple mappings of standard operator algebras

Lin Chen
College of Mathematics and Information Science
Shaanxi Normal University
Xi’an P. R. China
Department of Mathematics
Anshan University
Anshan P. R. China
linchen198112@163.com

Jun Li
Department of Mathematics
Anshan University
Anshan P. R. China
lijunjun2005@163.com

Jianhua Zhang
College of Mathematics and Information Science
Shaanxi Normal University
Xi’an P. R. China
jhzhang@snnu.edu.cn

Abstract. Let \mathcal{H} be an infinite dimensional complex Hilbert space and \mathcal{A} be a standard operator algebra on \mathcal{H} which is closed under the adjoint operation. For $A, B \in \mathcal{A}$, define by $*[A, B] = AB - B^*A$ the left $*$-Lie product of A and B. In this paper, we prove that a mapping $\phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ satisfies $\phi([A, [B, C]]) = \phi([A, B, C])$, for all $A, B, C \in \mathcal{A}$ is automatically linear. Moreover, ϕ is an inner $*$-derivation.

Keywords: left $*$-Lie triple product, derivation, standard operator algebras.

1. Introduction

Let \mathcal{A} be an algebra. A mapping $\phi : \mathcal{A} \to \mathcal{A}$ is called a nonlinear Lie derivation if $\phi([A, B]) = [\phi(A), B] + [A, \phi(B)]$ holds true for all $A, B \in \mathcal{A}$, where $[A, B] = AB - BA$ is the usual Lie product. Furthermore, if \mathcal{A} is an algebra with involution, a mapping $\phi : \mathcal{A} \to \mathcal{A}$ is called a nonlinear $*$-Lie derivation if for any $A, B \in \mathcal{A}$, $\phi([A, B]) = [\phi(A), B] + [A, \phi(B)]$, where $[A, B] = AB - BA^*$ is the skew Lie product of A and B. Note that for both cases no additivity is assumed on ϕ. A linear mapping $\phi : \mathcal{A} \to \mathcal{A}$ is called a derivation if $\phi(AB) = \phi(A)B + A\phi(B)$, for all $A, B \in \mathcal{A}$. ϕ is a $*$-derivation provided that $\phi(A^*) = \phi(A)^*$. Corresponding author
\[\phi(A^*) = \phi(A)^* \text{ for all } A \in \mathcal{A}. \]

A derivation on \(\mathcal{A} \) is inner if there exists \(T \in \mathcal{A} \) such that \(\phi(A) = AT - TA \). A linear mapping \(\phi : \mathcal{A} \rightarrow \mathcal{A} \) is called a Jordan derivation if \(\phi(A^2) = \phi(A)A + A\phi(A) \), for all \(A \in \mathcal{A} \). A linear mapping \(\phi : \mathcal{A} \rightarrow \mathcal{A} \) is called a Jordan left \(*\)-derivation if \(\phi(A^2) = \phi(A)A + A^*\phi(A) \) holds true for any \(A \in \mathcal{A} \).

Concerning Lie product, Lu and Liu [6] proved that every Lie derivation on \(\mathcal{B}(\mathcal{X}) \) can be expressed as the sum of an additive derivation of \(\mathcal{B}(\mathcal{X}) \) into itself and a central mapping on \(\mathcal{B}(\mathcal{X}) \) vanishing on each commutator. This result was generalized to the case of Lie derivation on prime rings in [3]. The skew Lie product is found playing an important role in the problem of representing quadratic functionals with sesquilinear functionals (see, for example, [8, 9, 10]) and in the problem of characterizing ideals (see, for example, [1, 7]). In [13] Yu and Zhang showed that every nonlinear \(*\)-Lie derivation from a factor von Neumann algebra on an infinite dimensional complex Hilbert space into itself is an additive \(*\)-derivation. In [5], Li, Lu and Fang arrived the same conclusion on von Neumann algebra without central abelian projections. Recently, Jing [4] proved that every nonlinear \(*\)-Lie derivation of standard operator algebra on complex Hilbert space is an inner \(*\)-derivation.

In this paper, we define left \(*\)-Lie product by \([A, B] = AB - B^*A \), for all \(A, B \in \mathcal{A} \), in fact, it has a close relationship to Jordan left \(*\)-derivation [11]. And we call a nonlinear mapping \(\phi \) a nonlinear left \(*\)-Lie triple mapping if it satisfies \(\phi([A, [B, C]]) = [\phi(A), [B, C]] + [A, [\phi(B), C]] + [A, [B, \phi(C)]] \) for all \(A, B, C \in \mathcal{A} \). We shall show every nonlinear left \(*\)-Lie triple mapping of standard operator algebras which are closed under adjoint operation on infinite dimensional complex Hilbert space is automatically linear. Moreover it is an inner \(*\)-derivation.

Throughout this paper, \(\mathbb{R} \) and \(\mathbb{C} \) denote respectively the real field and complex field, \(\mathcal{B}(\mathcal{H}) \) will represent the algebra of all bounded linear operators on a complex Hilbert space \(\mathcal{H} \). We will denote by \(\mathcal{F}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H}) \) the subalgebra of all bounded finite rank operators. We call a subalgebra \(\mathcal{A} \) of \(\mathcal{B}(\mathcal{H}) \) a standard operator algebra if it contain \(\mathcal{F}(\mathcal{H}) \). Note that, different from von Neumann algebra which are always weakly closed, a standard operator algebra is not necessarily closed. Recall that an algebra \(\mathcal{A} \) is prime if \(\mathcal{A}AB = \{0\} \) for \(A, B \in \mathcal{A} \) implies either \(A = 0 \) or \(B = 0 \). An operator \(P \in \mathcal{B}(\mathcal{H}) \) is said to be a projection provided \(P^2 = P \) and \(P^2 = P \). It is well known that every standard operator algebra is prime and its commutant is \(\mathbb{C}I \).

2. The main result and its proof

The main result in this paper is as follows.

Theorem 2.1. Let \(\mathcal{H} \) be an infinite dimensional complex Hilbert space and \(\mathcal{A} \) be a standard operator algebra on \(\mathcal{H} \) containing the identity operator \(I \). If \(\mathcal{A} \) is
closed under the adjoint operation and \(\phi : \mathcal{A} \to \mathcal{B}(\mathcal{H}) \) satisfies
\[
\phi(\ast [A, \ast [B, C]]) = \ast [\phi(A), \ast [B, C]] + \ast [A, \ast [\phi(B), C]] + \ast [A, \ast [B, \phi(C)]]
\]
for all \(A, B, C \in \mathcal{A} \), then \(\phi \) is a linear *-derivation. Moreover, there exists an operator \(T \in \mathcal{B}(\mathcal{H}) \) satisfying \(T + T^* = 0 \) such that \(\phi(A) = AT - TA \), for all \(A \in \mathcal{A} \), that is, \(\phi \) is inner.

To complete the proof of the main theorem, we begin with the following lemmas.

Lemma 2.1. Let \(\mathcal{A} \) be a standard operator algebra containing identity \(I \) on a complex Hilbert space which is closed under adjoint operation. If \(AB = B^*A \) holds true for all \(A \in \mathcal{A} \), then \(B \in \mathbb{R}I \).

Proof. In fact, take \(A = I \), then \(B = B^* \). Thus the condition becomes \(AB = BA \). It follows that \(B \in \mathbb{C}I \), the center of \(\mathcal{A} \), and so \(B \in \mathbb{R}I \). \(\square \)

Lemma 2.2. \(\phi(0) = 0 \).

Proof. It follows from the following:
\[
\phi(0) = \phi(\ast [0, \ast [0, 0]]) = \ast [\phi(0), \ast [0, 0]] + \ast [0, \ast [\phi(0), 0]] + \ast [0, \ast [0, \phi(0)]] = 0.
\]
\(\square \)

Lemma 2.3. \(\phi(\mathbb{R}I) \subseteq \mathbb{R}I, \phi(\mathbb{C}I) \subseteq \mathbb{C}I. \) For any \(A \in \mathcal{A} \) with \(A = A^* \), \(\phi(A^*) = \phi(A)^* \).

Proof. For any \(\lambda \in \mathbb{R} \), we consider
\[
0 = \phi(\ast [I, \ast [A, \lambda I]])
= \ast [\phi(I), \ast [A, \lambda I]] + \ast [I, \ast [\phi(A), \lambda I]] + \ast [I, \ast [A, \phi(\lambda I)]]
= \ast [I, \ast [A, \phi(\lambda I)]]
= (A + A^*)\phi(\lambda I) - \phi(\lambda I)^*(A + A^*).
\]
This gives us \((A + A^*)\phi(\lambda I) = \phi(\lambda I)^*(A + A^*) \) holds true for all \(A \in \mathcal{A} \). That is, \(B\phi(\lambda I) = \phi(\lambda I)^*B \) holds true for all \(B = B^* \in \mathcal{A} \). Since every element in \(\mathcal{A} \) is a linear span of two self-adjoint operators, it follows that \(B\phi(\lambda I) = \phi(\lambda I)^*B \) holds true for all \(B \in \mathcal{A} \). By Lemma 2.1, we have \(\phi(\lambda I) \in \mathbb{R}I \). Hence \(\phi(\mathbb{R}I) \subseteq \mathbb{R}I \).

Let \(A = A^* \in \mathcal{A} \). Since \(\phi(I) \in \mathbb{R}I \), we have that
\[
0 = \phi(\ast [I, \ast [I, A]])
= \ast [\phi(I), \ast [I, A]] + \ast [I, \ast [\phi(I), A]] + \ast [I, \ast [I, \phi(A)]]
= \ast [I, \ast [I, \phi(A)]]
= 2\phi(A) - 2\phi(A)^*.
\]
Hence $\phi(A) = \phi(A)^*$. For any $\lambda \in \mathbb{C}$ and $A \in \mathcal{A}$ with $A = A^* \in \mathcal{A}$, applying above results, we see that
\[
0 = \phi(\star[C, \star[\lambda I, A]])
= \star[\phi(C), \star[\lambda I, A]] + \star[C, \star[\phi(\lambda I), A]] + \star[C, \star[\lambda I, \phi(A)]]
= \star[C, \star[\phi(\lambda I), A]]
\]
holds true for all $C \in \mathcal{A}$. It follows from Lemma 2.1 that $\star[\phi(\lambda I), A] \in \mathbb{R}I$. This yields that $[\phi(\lambda I), A] \in \mathbb{R}I$, for all $A \in \mathcal{A}$ with $A = A^*$. By the Kleinecke-Shirokov theorem (cf. [2, Problem 230]) , we get $[\phi(\lambda I), A] = 0$, that is, $\phi(\lambda I)A = A\phi(\lambda I)$, for all $A \in \mathcal{A}$ with $A = A^*$. It follows that $\phi(\lambda I)A = A\phi(\lambda I)$ for any $A \in \mathcal{A}$, and so $\phi(\lambda I) \in \mathbb{C}I$. Therefore, $\phi(\mathbb{C}I) \subseteq \mathbb{C}I$.

Lemma 2.4. $\phi(\frac{1}{2}I) = \phi(\frac{1}{2}iI) = 0$ and $\phi(iA) = i\phi(A)$, for all $A \in \mathcal{A}$, where i is the imaginary unit.

Proof. We compute
\[
0 = \phi(\star[-\frac{1}{2}I, \star[-\frac{1}{2}iI, -\frac{1}{2}iI]])
= \star[\phi(-\frac{1}{2}I), \star[-\frac{1}{2}I, -\frac{1}{2}iI]] + \star[-\frac{1}{2}I, \star[\phi(-\frac{1}{2}iI), -\frac{1}{2}iI]]
+ \star[-\frac{1}{2}I, \star[-\frac{1}{2}iI, \phi(-\frac{1}{2}iI)]]
= \star[\phi(-\frac{1}{2}I), -\frac{1}{2}I] + \star[-\frac{1}{2}I, -i\phi(-\frac{1}{2}iI)] + \star[-\frac{1}{2}I, -\frac{1}{2}i(\phi(-\frac{1}{2}iI) - \phi(-\frac{1}{2}iI)^*)]
= i\phi(-\frac{1}{2}I) - i\phi(-\frac{1}{2}iI)^*.
\]

It follows that $\phi(-\frac{1}{2}iI) = -\phi(-\frac{1}{2}iI)^*$. Similarly, by the equality $0 = \star[\frac{1}{2}I, \star[\frac{1}{2}iI, \frac{1}{2}iI]]$, we can get $\phi(\frac{1}{2}iI) = -\phi(\frac{1}{2}iI)^*$. We may also compute
\[
\phi(-\frac{1}{2}iI) = \phi(\star[-\frac{1}{2}I, \star[-\frac{1}{2}I, -\frac{1}{2}iI]])
= \star[\phi(-\frac{1}{2}I), -\frac{1}{2}iI] + \star[-\frac{1}{2}I, -i\phi(\frac{1}{2}iI)] + \star[-\frac{1}{2}I, -\phi(-\frac{1}{2}iI)]
= 2i\phi(-\frac{1}{2}I) + \phi(-\frac{1}{2}iI).
\]

It follows that $\phi(-\frac{1}{2}I) = 0$. The equality $-\frac{1}{2}I = \star[\frac{1}{2}iI, \star[-\frac{1}{2}I, -\frac{1}{2}iI]]$ implies
\[
0 = \phi(-\frac{1}{2}I) = \phi(\star[\frac{1}{2}iI, \star[-\frac{1}{2}I, -\frac{1}{2}iI]])
= \star[\phi(\frac{1}{2}iI), \star[-\frac{1}{2}I, -\frac{1}{2}iI]] + 0 + \star[\frac{1}{2}iI, \star[-\frac{1}{2}I, \phi(-\frac{1}{2}iI)]]
= i\phi(\frac{1}{2}iI) - i\phi(-\frac{1}{2}iI).
\]
Hence

\[
(1) \quad \phi(\frac{1}{2}i) = \phi(-\frac{1}{2}i).
\]

Since the equality \(\frac{1}{2}i = \star[\frac{1}{2}i, \star[-\frac{1}{2}I, -\frac{1}{2}i]] \) hold true, we have

\[
\phi(\frac{1}{2}i) = \phi(\star[\frac{1}{2}i, \star[-\frac{1}{2}I, -\frac{1}{2}i]])
\]
\[
= \star[\phi(\frac{1}{2}i), \star[-\frac{1}{2}I, -\frac{1}{2}i]] + 0 + \star[\frac{1}{2}I, \star[-\frac{1}{2}I, \phi(-\frac{1}{2}i)]]
\]
\[
= \star[\phi(\frac{1}{2}i), \frac{1}{2}iI] + \star[\frac{1}{2}I, -\phi(-\frac{1}{2}i)]
\]
\[
= i\phi(\frac{1}{2}I) - \phi(-\frac{1}{2}i).
\]

It follows that

\[
(2) \quad \phi(\frac{1}{2}i) + \phi(-\frac{1}{2}i) = i\phi(\frac{1}{2}i).
\]

Finally, by the equality \(\frac{1}{2}I = \star[-\frac{1}{2}I, \star[-\frac{1}{2}I, -\frac{1}{2}i]] \), we can get

\[
\phi(\frac{1}{2}I) = \phi(\star[-\frac{1}{2}I, \star[-\frac{1}{2}I, \frac{1}{2}iI]])
\]
\[
= \star[\phi(-\frac{1}{2}I), \star[-\frac{1}{2}I, \frac{1}{2}iI]] + 0 + \star[-\frac{1}{2}I, \star[-\frac{1}{2}I, \phi(\frac{1}{2}iI)]]
\]
\[
= \star[\phi(-\frac{1}{2}I), \frac{1}{2}I] + \star[-\frac{1}{2}I, -\phi(-\frac{1}{2}iI)]
\]
\[
= i\phi(-\frac{1}{2}I) + i\phi(-\frac{1}{2}i) = 2i\phi(-\frac{1}{2}i).
\]

It follows that

\[
(3) \quad 2\phi(-\frac{1}{2}i) = -i\phi(\frac{1}{2}I).
\]

Hence by Eq. (1), Eq. (2) and Eq. (3), we have \(\phi(\frac{1}{2}iI) = \phi(-\frac{1}{2}iI) = 0 \). For every \(A \in \mathcal{A} \), it follows from \(iA = \star[A, \star[\frac{1}{2}I, \frac{1}{2}iI]] \) that

\[
\phi(iA) = \phi(\star[A, \star[\frac{1}{2}I, \frac{1}{2}iI]]) = \star[\phi(A), \star[\frac{1}{2}I, \frac{1}{2}iI]] = i\phi(A). \quad \Box
\]

We now choose a nontrivial projection \(P_1 \in \mathcal{A} \) and let \(P_2 = I - P_1 \). Denote \(A_{ij} = P_iAP_j, i, j = 1, 2, \). Then we have the Peirce decomposition of \(A \) as \(A = \sum_{i,j=1}^2 A_{ij} \). Note that any operator \(A \in \mathcal{A} \) can be expressed as \(A = A_{11} + A_{12} + A_{21} + A_{22} \), and \(A_{ij}^* \in \mathcal{A}_{ji} \) for any \(A_{ij} \in \mathcal{A}_{ij} \).

Lemma 2.5. For any \(A \in \mathcal{A} \),

1. \(\star[A, \star[\frac{1}{2}iI, \frac{1}{2}iI]] = 0 \) implies \(A_{11} = A_{22} = 0 \),
2. \(\star[I, \star[P_1, A]] = 0 \) implies \(A_{12} = 0 \),
3. \(\star[I, \star[P_2, A]] = 0 \) implies \(A_{21} = 0 \),
4. \(\star[A, \star[I, P_1]] = 0 \) implies \(A_{11} = A_{12} = A_{21} = 0 \),
5. \(\star[A, \star[I, P_2]] = 0 \) implies \(A_{22} = A_{12} = A_{21} = 0 \).
We only show (1). The proofs of (2), (3), (4) and (5) go similarly. We compute

\[
0 = \ast[A, \ast[I, i(P_2 - P_1)]] = \ast[A, 2i(P_2 - P_1)] \\
= 2i(A(P_2 - P_1) + (P_2 - P_1)A) \\
= 4i(A_{22} - A_{11}),
\]

which leads to \(A_{22} = A_{11} = 0 \). \qed

Lemma 2.6. For any \(A_{12} \in A_{12} \) and \(B_{21} \in A_{21} \), we have

\[
\phi(A_{12} + B_{21}) = \phi(A_{12}) + \Phi(B_{21}).
\]

Proof. Let \(M = \phi(A_{12} + B_{21}) - \phi(A_{12}) - \phi(B_{21}) \). We now show that \(M = 0 \).

On one hand, since \(\ast[A_{12}, \ast[I, i(P_2 - P_1)]] = \ast[B_{21}, \ast[I, i(P_2 - P_1)]] = 0 \), we have

\[
0 = \phi(\ast[A_{12} + B_{21}, \ast[I, i(P_2 - P_1)]] \\
= \ast[\phi(A_{12} + B_{21}), \ast[I, i(P_2 - P_1)] + \ast[A_{12} + B_{21}, \ast[\phi(I), i(P_2 - P_1)]] \\
+ \ast[A_{12} + B_{21}, \ast[I, \phi(i(P_2 - P_1))]].
\]

On the other hand,

\[
0 = \phi(\ast[A_{12}, \ast[I, i(P_2 - P_1)]] + \phi(\ast[B_{21}, \ast[I, i(P_2 - P_1)]])) \\
= \ast[\phi(A_{12}) + \phi(B_{21}), \ast[I, i(P_2 - P_1)] + \ast[A_{12} + B_{21}, \ast[\phi(I), i(P_2 - P_1)]] \\
+ \ast[A_{12} + B_{21}, \ast[I, \phi(i(P_2 - P_1))]].
\]

Comparing the above two equalities, we arrive at \(\ast[M, \ast[I, i(P_2 - P_1)]] = 0 \). It follows from Lemma 2.5 (1), that \(M_{11} = M_{22} = 0 \).

Since \(\ast[I, \ast[P_1, B_{21}]] = 0 \), we have that

\[
\ast[\phi(I), \ast[P_1, A_{12} + B_{21}]] = \ast[I, \ast[\phi(P_1), A_{12} + B_{21}]] + \ast[I, \ast[P_1, \phi(A_{12} + B_{21})]] \\
= \phi(\ast[I, \ast[P_1, A_{12} + B_{21}]]) \\
= \phi(\ast[I, \ast[P_1, A_{12}]]) + \phi(\ast[I, \ast[P_1, B_{21}]]]) \\
= \ast[\phi(I), \ast[P_1, A_{12} + B_{21}]] + \ast[I, \ast[\phi(P_1), A_{12} + B_{21}]] + \ast[I, \ast[P_1, \phi(A_{12} + B_{21})]]].
\]

Hence \(\ast[I, \ast[P_1, M]] = 0 \). By Lemma 2.5 (2), we get that \(M_{12} = 0 \). Similarly, by using the fact \(\ast[I, \ast[P_2, A_{12}]] = 0 \), one can show \(M_{21} = 0 \). \qed

Lemma 2.7. For any \(A_{11} \in A_{11}, B_{12} \in A_{12}, C_{21} \in A_{21}, \) and \(D_{22} \in A_{22}, \)

1. \(\phi(A_{11} + B_{12} + C_{21}) = \phi(A_{11}) + \phi(B_{12}) + \phi(C_{21}) \).
2. \(\phi(B_{12} + C_{21} + D_{22}) = \phi(B_{12}) + \phi(C_{21}) + \phi(D_{22}) \).
Proof. (1) Since \([A_{11}, [I, iP_2]] = 0 \), by Lemma 2.6, we obtain
\[
\begin{align*}
&\star [\phi(A_{11} + B_{12} + C_{21}), [I, iP_2]] + \star [A_{11} + B_{12} + C_{21}, \star \phi(I), iP_2] \\
+ &\star [A_{11} + B_{12} + C_{21}, \star I, i\phi(iP_2)] \\
= &\phi(\star [A_{11} + B_{12} + C_{21}, [I, iP_2]]) \\
= &\phi(\star [A_{11}, [I, iP_2]] + \phi(\star [B_{12} + C_{21}, [I, P_2]]) \\
= &\star \phi(A_{11}) + \phi(B_{12}) + \phi(C_{21}), [I, iP_2]) + \star [A_{11} + B_{12} + C_{21}, \star \phi(I), iP_2] \\
+ &\star [A_{11} + B_{12} + C_{21}, [I, i\phi(iP_2)].
\end{align*}
\]
Letting \(M = \phi(A_{11} + B_{12} + C_{21}) - \phi(A_{11}) - \phi(B_{12}) - \phi(C_{21}) \), we get \(\star [M, [I, iP_2]] = 0 \).

We now show that \(M_{11} = 0 \). By noting \([B_{12}, [I, i(P_2 - P_1)] = [C_{21}, [I, i(P_2 - P_1)] = 0 \), we have
\[
\begin{align*}
&\phi(\star [A_{11} + B_{12} + C_{21}, [I, i(P_2 - P_1)]]) \\
= &\phi(\star [A_{11}, [I, i(P_2 - P_1), I]) + \phi(\star [B_{12}, [I, i(P_2 - P_1)]) \\
+ &\phi(\star [C_{21}, [I, i(P_2 - P_1)])].
\end{align*}
\]
By using the similar argument, we can get \(\star [M, [I, i(P_2 - P_1)] = 0 \). Therefore, \(M_{11} = 0 \) by Lemma 2.5 (3).

(2) Considering \([\phi(A_{11}) + \phi(B_{12}) + \phi(C_{21}), [I, iP_1]] \) and \(\phi(\star [A_{11} + B_{12} + C_{21}, [I, i(P_2 - P_1)]) \), with the same argument as in (1), one can get \(\phi(B_{12} + C_{21} + D_{22}) = \phi(B_{12}) + \phi(C_{21}) + \phi(D_{22}). \)

Lemma 2.8. For any \(A_{11} \in A_{11}, B_{12} \in A_{12}, C_{21} \in A_{21}, \) and \(D_{22} \in A_{22}, \)
\[
\phi(A_{11} + B_{12} + C_{21} + D_{22}) = \phi(A_{11}) + \phi(B_{12}) + \phi(C_{21}) + \phi(D_{22}).
\]
Proof. Let \(M = \phi(A_{11} + B_{12} + C_{21} + D_{22}) - \phi(A_{11}) - \phi(B_{12}) - \phi(C_{21}) - \phi(D_{22}). \)
Noticing that \([D_{22}, [I, iP_1]] = 0 \) and applying (1) in Lemma 2.7, we have
\[
\begin{align*}
&\star [\phi(A_{11} + B_{12} + C_{21} + D_{22}), [I, iP_1]] + \star [A_{11} + B_{12} + C_{21} + D_{22}, [\phi(I), iP_1]] \\
+ &\star [A_{11} + B_{12} + C_{21} + D_{22}, [I, \phi(iP_1)] \\
= &\phi(\star [A_{11} + B_{12} + C_{21} + D_{22}, [I, iP_1]) \\
= &\phi(\star [A_{11} + B_{12} + C_{21}, [I, iP_1])] + \phi(\star [D_{22}, [I, iP_1]]) \\
= &\star \phi(A_{11}) + \phi(B_{12}) + \phi(C_{21}) + \phi(D_{22}), [I, iP_1]) \\
+ &\star [A_{11} + B_{12} + C_{21} + D_{22}, [I, \phi(iP_1)] \\
+ &\star [A_{11} + B_{12} + C_{21} + D_{22}, [I, i\phi(iP_1)].
\end{align*}
\]
It follows that \(\star [M, [I, iP_1]] = 0 \), so \(M_{11} = M_{12} = M_{21} = 0 \) by Lemma 2.5.

Using the fact that \(\star [A_{11}, [I, iP_2]] = 0 \) and the similar argument above, we can get \(\star [M, [I, iP_2]] = 0 \) which leads \(M_{22} = 0 \), completing the proof. \(\square \)
** Lemma 2.9.** For any \(A_{jk}, B_{jk} \in A_{jk} \), where \(1 \leq j \neq k \leq 2 \), we have

\[
\phi(A_{jk} + B_{jk}) = \phi(A_{jk}) + \phi(B_{jk}).
\]

Proof. On one hand, by Lemma 2.7,

\[
\phi(iA_{jk} + iB_{jk} + iA_{jk}^* + iA_{jk}^* B_{jk}) = \phi(iA_{jk} + iB_{jk}) + \phi(iA_{jk}^*) + \phi(iA_{jk}^* B_{jk}).
\]

On the other hand, since

\[
[P_j + B_{jk}, \ [P_k + A_{jk}, \frac{i}{2} I]] = i(A_{jk} + B_{jk}) + i(A_{jk}^) + i(A_{jk}^* B_{jk}),
\]

using Lemma 2.8 again,

\[
\phi(iA_{jk} + iB_{jk} + iA_{jk}^* + iA_{jk}^* B_{jk}) = \phi(*[P_j + B_{jk}, \ [P_k + A_{jk}, \frac{i}{2} I]])
\]

\[
= *[\phi(P_j + B_{jk}), \ [P_k + A_{jk}, \frac{i}{2} I]] + *[P_j + B_{jk}, \ *[P_k + A_{jk}, \frac{i}{2} I]]
\]

\[
+ *[P_j + B_{jk}, \ *[P_k + A_{jk}, \phi(\frac{i}{2} I)]]
\]

\[
= *[\phi(P_j) + \phi(B_{jk}), \ *[P_k + A_{jk}, \frac{i}{2} I]] + *[P_j + B_{jk}, \ *[\phi(P_k) + \phi(A_{jk}), \frac{i}{2} I]]
\]

\[
+ *[P_j + B_{jk}, \ *[P_k + A_{jk}, \phi(\frac{i}{2} I)]]
\]

\[
= \phi(*[P_j, \ *[P_k, \frac{i}{2} I]]) + \phi(*[B_{jk}, \ *[P_j, \frac{i}{2} I]]) + \phi(*[P_j, \ *[A_{jk}, \frac{i}{2} I]])
\]

\[
+ \phi(*[B_{jk}, \ *[A_{jk}, \frac{i}{2} I]])
\]

\[
= \phi(iB_{jk}) + \phi(iA_{jk}) + \phi(iA_{jk}^* B_{jk})
\]

\[
= \phi(iB_{jk}) + \phi(iA_{jk} + iA_{jk}^*) + \phi(iA_{jk}^* B_{jk})
\]

\[
= \phi(A_{jk} + B_{jk}) = \phi(A_{jk}) + \phi(B_{jk})
\]

Note that in the last identity above, we are using Lemma 2.6. We now can conclude that \(\phi(A_{jk} + B_{jk}) = \phi(A_{jk}) + \phi(B_{jk}) \) by Lemma 2.4.

** Lemma 2.10.** For any \(A_{jj}, B_{jj} \in A_{jj} \), where \(1 \leq j \leq 2 \), we have

\[
\phi(A_{jj} + B_{jj}) = \phi(A_{jj}) + \phi(B_{jj}).
\]

Proof. Let \(k \in \{1, 2\} \), with \(k \neq j \). We compute

\[
*[\phi(A_{jj} + B_{jj}), \ [I, iP_k]] + *[A_{jj} + B_{jj}, \ *[I, \phi(iP_k)]] + *[A_{jj} + B_{jj}, \ [I, \phi(iP_k)]]
\]

\[
= \phi(*[A_{jj} + B_{jj}, \ [I, iP_k]]) + \phi(*[A_{jj} + B_{jj}, \ [I, \phi(iP_k)]])
\]

\[
= \phi(*[A_{jj} + B_{jj}, \ [I, iP_k]]) + \phi(*[A_{jj} + B_{jj}, \ [I, \phi(iP_k)]])
\]

\[
= \phi(*[A_{jj} + B_{jj}, \ [I, iP_k]]) + \phi(*[A_{jj} + B_{jj}, \ [I, \phi(iP_k)]])
\]

\[
+ *[A_{jj} + B_{jj}, \ [I, \phi(iP_k)]]
\]

...
Write $M = \phi(A_{jj} + B_{jj}) - \phi(A_{jj}) - \phi(B_{jj})$. The above computation yields that $s[M, s[I, iP_k]] = 0$. By Lemma 2.4, we have $M_{kj} = M_{jk} = M_{kk} = 0$. We now show that $M_{jj} = 0$. For any $C_{jk} \in A_{jk}$, by Lemma 2.7, \[
s[\phi(C_{jk}), s[A_{jj} + B_{jj}, \frac{1}{2} iP_j]] + s[C_{jk}, s[\phi(A_{jj} + B_{jj}), \frac{1}{2} iP_j]]
+ s[C_{jk}, s[A_{jj} + B_{jj}, \phi(\frac{1}{2} iP_j)]] = \phi(s[C_{jk}, s[A_{jj} + B_{jj}, \frac{1}{2} iP_j]]),
= \phi(s[C_{jk}, s[A_{jj}, \frac{1}{2} iP_j]]) + \phi(s[C_{jk}, s[B_{jj}, \frac{1}{2} iP_j]])
+ \phi(s[C_{jk}, s[A_{jj} + B_{jj}, \phi(\frac{1}{2} iP_j)])] = 0.
\]
Therefore, $s[C_{jk}, s[M, \frac{1}{2} iP_j]] = 0$ which leads to $M_{jj}^* C_{jk} = 0$, for all $C_{jk} \in A_{jk}$. Since \mathcal{A} is prime, we see that $M_{jj} = 0$. \hfill \qed

Lemma 2.11. ϕ is an additive derivation with $\phi(A^*) = \phi(A)^*$, for all $A \in \mathcal{A}$.

Proof. We first show that ϕ is additive. For arbitrary $A, B \in \mathcal{A}$, we write $A = \sum_{i,j=1}^2 A_{ij}$ and $B = \sum_{i,j=1}^2 B_{ij}$. By Lemma 2.8, Lemma 2.9 and Lemma 2.10, we obtain \[
\phi(A + B) = \phi(\sum_{i,j=1}^2 A_{ij} + \sum_{i,j=1}^2 B_{ij}) = \sum_{i,j=1}^2 \Phi(A_{ij} + B_{ij})
= \sum_{i,j=1}^2 \phi(A_{ij}) + \sum_{i,j=1}^2 \phi(B_{ij}) = \phi(\sum_{i,j=1}^2 A_{ij}) + \phi(\sum_{i,j=1}^2 B_{ij})
= \phi(A) + \phi(B).
\]
We now show $\phi(A^*) = \phi(A)^*$. For every $A \in \mathcal{A}$, we write $A = A_1 + iA_2$, where $A_1 = \frac{A + A^*}{2}$ and $A_2 = \frac{A - A^*}{2i}$ are self-adjoint elements. By Lemma 2.3 and Lemma 2.4, we have \[
\phi(A^*) = \phi(A_1 - iA_2) = \phi(A_1) - i\phi(A_2)
= \phi(A_1) - i\phi(A_2) = \phi(A_1)^* - i\phi(A_2)^*
= \phi(A_1)^* + (i\phi(A_2))^* = \phi(A_1 + iA_2)^* = \phi(A)^*.
\]
To complete the proof, we need to show that ϕ is a derivation. By the additivity of ϕ and Lemma 2.5, we have $\phi(iI) = 2\phi(\frac{1}{2} iI) = 0$. Note that $s[A, s[B, iI]] = 2i(AB + B^* A)$. We compute \[
2i\phi(AB + B^* A) = \phi(2i(AB + B^* A))
= \phi(s[A, s[B, iI]])
= s[\phi(A), s[B, iI]] + s[A, s[\phi(B), iI]] + s[A, s[B, \phi(iI)]
= 2i(\phi(A)B + B^* \phi(A)) + A\phi(B) + \phi(B)^* A).
\]
It follows that
\[\phi(AB + B^*A) = \phi(A)B + B^*\phi(A) + A\phi(B) + \phi(B)^*A. \]
Replacing \(B \) by \(iB \) in the above equality, we get
\[\phi(AB - B^*A) = \phi(A)B - B^*\phi(A) + A\phi(B) - \phi(B)^*A. \]
Thus \(\phi(AB) = \phi(A)B + A\phi(B) \), it is a derivation. □

The proof of the main theorem. By Lemma 2.11, we see that \(\phi \) is an additive derivation with \(\phi(A^*) = \phi(A)^* \). It follows from [12, Theorem 2.3] that \(\phi \) is a linear inner derivation, that is, there exists an operator \(A \in \mathcal{B}(\mathcal{H}) \) such that \(\phi(A) = AS - SA \), for all \(A \in \mathcal{A} \). Since \(\phi(A^*) = \phi(A)^* \), we have
\[A^*S - SA^* = \phi(A^*) = \phi(A)^* = S^*A^* - A^*S^* \]
for any \(A \in \mathcal{A} \). This leads to \(A^*(S + S^*) = (S + S^*)A^* \). Hence, \(S + S^* = \lambda I \) for some \(\lambda \in \mathbb{R} \). Letting \(T = S - \frac{1}{2}\lambda I \), one can check that \(T + T^* = 0 \) and \(\phi(A) = AT - TA \), for all \(A \in \mathcal{A} \).

Corollary 2.1. Let \(\mathcal{H} \) be an infinite dimensional complex Hilbert space and \(\phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \) is nonlinear left \(\ast \)-Lie triple mapping, then \(\phi \) is an inner \(\ast \)-derivation, that is, there exists an operator \(T \in \mathcal{B}(\mathcal{H}) \) satisfying \(T + T^* = 0 \) such that \(\phi(A) = AT - TA \), for all \(A \in \mathcal{A} \).

Acknowledgments

The authors wish to thank anonymous reviewers for their constructive and valuable suggestions which have considerably improved the presentation of the paper. This work was supported by the National Natural Science Foundation of China (No.11471199, No.11601010) and the Postdoctoral Science Foundation of China (No. 2018M633450). The first author is supported by Foundation of Educational Commission (No. KY[2017]092) and of Science and Technology department (No. [2018]1001) of Guizhou Province of China.

References

Accepted: 9.10.2018