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Abstract. This study interested in two subclasses of analytic functions defined on
the open unit disc of the complex plain, we discuss some neighborhood properties,
integral means inequalities and some results concerning the partial sums of the functions
belonging to these subclasses.
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1. Introduction

Let T denoted to class of function of the form

(1.1) f(z) = z −
∞∑
k=2

akz
k (ak ≥ 0),

which are analytic function in the open disc U = {z ∈ C : |z| < 1}.
We denote by T ∗(α) and C(α) the subclasses of starlike functions of order α,

and convex functions of order α, respectively. Theses two subclases are defined
by Silverman [11] as following:

(1.2) T ∗(α) =

{
f ∈ T : ℜ

{
zf

′
(z)

f(z)

}
> α (0 ≤ α < 1; z ∈ U)

}
,

and

(1.3) C(α) =

{
f ∈ T : ℜ

{
1 +

zf
′′
(z)

f ′(z)

}
> α (0 ≤ α < 1; z ∈ U)

}
.

For µ > 0 and a, c ∈ C, are such that ℜ{c− a} ≥ 0, Raina and Sharma [9] (see
also [3], [4]) defined the integral operator Ja,c

µ : T −→ T , as following:
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(i) for ℜ{c− a} > 0 and ℜ{a} > −µ by

(1.4) Ja,c
µ f(z) =

Γ(c+ µ)

Γ(a+ µ)Γ(c− a)

1∫
0

(1− t)c−a−1 ta−1f(ztµ)dt;

(ii) for a = c by

(1.5) Ja,a
µ f(z) = f(z),

where Γ stands for Euler’s Gamma function (which is valid for all complex
numbers except the non-positive integers).

For f(z) defined by (1.1), it is easily from (1.4) and (1.5) that:
(1.6)

Ja,c
µ f(z) = z − Γ(c+ µ)

Γ(a+ µ)

∞∑
k=2

Γ(a+ kµ)

Γ(c+ kµ)
akz

k (µ > 0,ℜ{c} ≥ ℜ{a} > −µ).

Let Ma,c
µ (α;A,B) be the subclass of functions f ∈ T for which:

(1.7)
z(Ja,c

µ f(z))
′

Ja,c
µ f(z)

≺ (1− α)
1 +Az

1 +Bz
+ α (−1 ≤ B < A ≤ 1, 0 ≤ α < 1),

that is, that

(1.8) Ma,c
µ (α;A,B) =

f ∈ T :

∣∣∣∣∣∣
z(Ja,c

µ f(z))′

Ja,c
µ f(z)

−1

B
z(Ja,c

µ f(z))′

Ja,c
µ f(z)

−[B+(A−B)(1−α)]

∣∣∣∣∣∣ < 1, z ∈ U

 .

Also, let Na,c
µ (α;A,B) be the subclass of functions f ∈ T for which:

1 +
z(Ja,c

µ f(z))
′′

(Ja,c
µ f(z))′

≺ (1− α)
1 +Az

1 +Bz
+ α,

form (1.7) and (1.8), it is clear that

(1.9) f(z) ∈ Na,c
µ (α;A,B) ⇐⇒ zf

′
(z) ∈ Ma,c

µ (α;A,B).

It is easily to see that:
(i) Ma,a

µ (α;A,B) = T ∗(A,B, α) and Na,c
µ (α;A,B) = C(A,B, α), see [2, with

p = 1];
(ii) Ma,a

µ (α;β,−β) = T ∗(α, β) and Na,a
µ (α;β,−β) = C(α, β) the subclasses

of starlike and convex of order 0 ≤ α < 1 and type 0 < β ≤ 1, see [6];
(iii) Ma,a

µ (α; 1,−1) = T ∗(α) and Na,a
µ (α; 1,−1) = C(α) the subclasses of

starlike and convex of order 0 ≤ α < 1, see [11].
The object of the present paper is to determine the neighborhood properties

for each of the subclasses Ma,c
µ (α;A,B) and Na,c

µ (α;A,B). Moreover, investi-
gate integral means inequalities, and some results concerning partial sums for
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functions belonging to the subclass Ma,c
µ (α;A,B). We will make use of the fol-

lowing lemmas, also otherwise mentioned, we assume in the reminder of this
paper that, 0 ≤ α < 1,−1 ≤ B < A ≤ 1, µ > 0, a, c ∈ R, c > a > −µ and z ∈ U .

Lemma 1 ([8]). Let the function f(z) be given by (1.1). Then f ∈ Ma,c
µ (α;A,B),

if and only if

∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)]
Γ(a+ kµ)

Γ(c+ kµ)
ak

≤ (A−B)(1− α)
Γ(a+ µ)

Γ(c+ µ)
.(1.10)

Lemma 2 ([8]). Let the function f(z) be given by (1.1). Then f ∈ Na,c
µ (α;A,B),

if and only if

∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)]
Γ(a+ kµ)

Γ(c+ kµ)
kak

≤ (A−B)(1− α)
Γ(a+ µ)

Γ(c+ µ)
.(1.11)

2. Neighborhood results

Following the earlier investigations of Goodman [5] and Ruscheweyh [10], the
δ− neighborhood is defined as following:

(2.1) Nδ(f) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |ak − bk| ≤ δ

}
.

For the identity function e(z) = z, we immediately have

(2.2) Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |bk| ≤ δ

}
,

where the function f is given by (1.1).

Theorem 1. If the function f(z) defined by (1.1) is in the subclass Ma,c
µ (α;A,B).

Then Ma,c
µ (α;A,B) ⊂ Nδ(e), where

(2.3) δ =
2Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Proof. Since f ∈ Ma,c
µ (α;A,B), by using Lemma 1 and from (1.10), we find

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

2Γ(a+ µ)Γ(c+ 2µ)

∞∑
k=2

kak ≤
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∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)]
Γ(a+ kµ)

Γ(c+ kµ)
ak ≤ (A−B)(1− α).

It is clear

∞∑
k=2

kak ≤ 2Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
= δ.

Corollary 1. If f ∈ T is in the class T ∗(A,B, α). Then

T ∗(A,B, α) ⊂ N(e),

where

δ =
2(A−B)(1− α)

(1−B) + (A−B)(1− α)
.

Corollary 2. If f ∈ T is in the class T ∗(α, β). Then

T ∗(α, β) ⊂ N(e),

where

δ =
4β(1− α)

1 + 2β(2− α)
.

Corollary 3. If f ∈ T is in the class T ∗(α). Then

T ∗(α) ⊂ N(e),

where

δ =
2(1− α)

2− α
.

by similarly applying Lemma 2 instead of Lemma1, we can prove following.

Theorem 2. If the function f(z) defined by (1.1) is in the subclass Na,c
µ (α;A,B).

Then Na,c
µ (α;A,B) ⊂ Nδ(e), where

(2.4) δ =
Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Corollary 4. If f ∈ T is in the class C(A,B, α). Then

C(A,B, α) ⊂ N(e),

where

δ =
(A−B)(1− α)

(1−B) + (A−B)(1− α)
.
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Corollary 5. If f ∈ T is in the class C(α, β). Then

C(α, β) ⊂ N(e),

where

δ =
2β(1− α)

(1 + β) + 2β(1− α)
.

Corollary 6. If f ∈ T is in the class C(α). Then

C(α) ⊂ N(e),

where

δ =
1− α

2− α
.

We will determine the neighborhood properties for each of the following
(slightly modified) function subclass Ma,c,ρ

µ (α;A,B).
A functions f ∈ T is said to be in the class Ma,c,ρ

µ (α;A,B) if there exists a
function g ∈ Ma,c

µ (α;A,B) such that

(2.5)

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1− ρ (z ∈ U ; 0 ≤ ρ < 1).

The proofs of the following results involving the neighborhood properties for
the subclass Ma,c,ρ

µ (α;A,B), is similar to those given in [1].

Theorem 3. If g ∈ Ma,c
µ (α;A,B). Suppose also that

(2.6) ρ = 1− δΓ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)
2[Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)−Γ(a+µ)(A−B)(1−α)Γ(c+2µ)] ,

then
Nδ(g) ⊂ Ma,c,ρ

µ (α;A,B).

Proof. let f(z) be in Nδ(g). We then find from the definition (2.1) that

(2.7)
∞∑
k=2

k |ak − bk| ≤ δ,

since g ∈ Ma,c
µ (α;A,B), we have

∞∑
k=2

bk ≤ Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

so that∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ <

∞∑
k=2

|ak−bk|

1−
∞∑

k=2
bk

≤ δ

2
Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)

Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)−Γ(a+µ)(A−B)(1−α)Γ(c+2µ)

= 1− ρ,
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provided that ρ is given precisely by (2.6). Thus, by definition, f ∈ Ma,c,ρ
µ (α;

A,B) for ρ given by (2.6). This evidently completes our proof of Theorem 3.

A function f ∈ T is said to be in the class Ha,c
µ (α, ϕ;A,B) if it satisfies the

following non-homogeneous Cauchy-Euler differential equation:

(2.8) z2
d2f

dz2
+ 2(ϕ+ 1)z

df(z)

dz
+ ϕ(ϕ+ 1)f(z) = (1 + ϕ)(2 + ϕ)g(z)

(
g ∈ Ma,c

µ (α;A,B);ϕ > −1
)

Theorem 4. If f ∈ T is in the class Ha,c
µ (α, ϕ;A,B) then

(2.9) Ha,c
µ (α, ϕ;A,B) ⊂ Nδ(g),

where

(2.10) δ =
4Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

(
2 + ϕ

3 + ϕ

)
Proof. Suppose that f ∈ Ha,c

µ (α, ϕ;A,B) and f is given by (1.1). From (2.8)

ak =
(1 + ϕ)(2 + ϕ)

(k + ϕ)(k + ϕ+ 1)
bk (k ≥ 2),

∞∑
k=2

k |bk − ak| ≤
∞∑
k=2

kbk +

∞∑
k=2

kak (ak ≥ 0, bk ≥ 0),

we obtain

(2.11)
∞∑
k=2

k |bk − ak| ≤
∞∑
k=2

kbk +
∞∑
k=2

(1 + ϕ)(2 + ϕ)

(k + ϕ)(k + ϕ+ 1)
kbk.

Next, since g ∈ Ma,c
µ (α;A,B), from (1.10) of the Lemma 1 yields

(2.12)

∞∑
k=2

kbk ≤ 2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Finally, by making use of (2.11) on the right-hand side of (2.12), we find that

∞∑
k=2

k |bk − ak| ≤
2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

(
1 +

(1 + ϕ)

(3 + ϕ)

)
=

2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

(
2(2 + ϕ)

3 + ϕ

)
= δ.

Thus, by definition (2.1) with g(z) interchanged by f(z), f ∈ Nδ(g).This, evi-
dently, completes the proof of Theorem 4.
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3. Integral means inequalities

We shall need the concept of subordination theorem of Littlewood [7] in our
investigation.

Lemma 3. (Littlewood’s theory [7]). If the functions f(z) and g(z) are analytic
in U with g(z) ≺ f(z) then

(3.1)

∫ 2π

0

∣∣∣g(reiθ)∣∣∣τ dθ ≤
∫ 2π

0

∣∣∣f(reiθ)∣∣∣τ dθ (τ > 0; 0 < r < 1).

Theorem 5. Let f ∈ Ma,c
µ (α;A,B) and suppose that

(3.2) f2(z) = z − Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)
z2,

then for τ > 0, z = reiθ(0 < r < 1),

(3.3)

∫ 2π

0

∣∣∣f(reiθ)∣∣∣τ dθ ≤
∫ 2π

0

∣∣∣f2(reiθ)∣∣∣τ dθ
Proof. From (3.1), it would suffice to show that

1−
∞∑
k=2

akz
k−1 ≺ 1− Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)
z.

By setting

1−
∞∑
k=2

akz
k−1 = 1− Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)
w(z),

we find that

|w(z)| =

∣∣∣∣∣
∞∑
k=2

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)
akz

k−1

∣∣∣∣∣(3.4)

≤ |z|
∞∑
k=2

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)
ak

≤ |z| ≤ 1,

by using (1.10). Hence f(z) ≺ g(z) which readily yields the integral means
inequality (3.3).
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4. Partial sums

In this section we will study the ratio of a function of the form (1.1) to its
sequence of partial sums defined by fm(z) = z and fm(z) = z−

∑m
k=2 akz

k, when
the coefficients of f(z) are sufficiently small to satisfy the condition (1.9). We

will determine sharp lower bounds, for ℜ
∫
( f(z)
fm(z)

∫
),ℜ

∫
(fm(z)

f(z)

∫
),ℜ

∫
( f

′
(z)

f ′
m(z)

∫
)

and ℜ
∫
(f

′
m(z)

f ′ (z)

∫
).

In what follows, we will use the well known result

ℜ
(
1− w(z)

1 + w(z)

)
(z ∈ U) ,

if and only if

w(z) =
∞∑
k=1

Dkz
k,

satisfies the inequality |w(z)| ≤ |z| .

Theorem 6. Let f ∈ Ma,c
µ (α;A,B), then

(4.1) ℜ
(

f(z)

fm(z)

)
≥ 1− 1

Dm+1
(z ∈ U,m ∈ N) ,

and

(4.2) ℜ
(
fm(z)

f(z)

)
≥ Dm+1

1 +Dm+1
(z ∈ U,m ∈ N) ,

where

(4.3) Dk =
Γ(c+ µ)[(1−B)(k − 1) + (A−B)(1− α)]Γ(a+ kµ)

Γ(a+ µ)Γ(c+ kµ)(A−B)(1− α)
.

The estimates in (4.1) and (4.2) are sharp.

Proof. Employing the same technique used by Silverman [12]. The function
f ∈ Ma,c

µ (α;A,B) if and only if
∑∞

k=1Dkz
k ≤ 1. It is easy to verify that

Dk+1 > Dk > 1. Thus

(4.4)

m∑
k=1

ak +Dm+1

∞∑
k=m+1

ak ≤
∞∑
k=2

Dkak < 1.

Now, setting

Dm+1

{
f(z)

fm(z)
−
(
1− 1

Dm+1

)}

=

1−
m∑
k=2

akz
k−1 −Dm+1

∞∑
k=m+1

akz
k−1

1−
m∑
k=1

akzk−1

=
1 + E(z)

1 + Y (z)
,
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and 1+E(z)
1+Y (z) =

1−w(z)
1+w(z) , then we have

w(z) =
Y (z)− E(z)

2 + E(z) + Y (z)
=

Dm+1

∞∑
k=m+1

akz
k−1

2− 2
m∑
k=2

akzk−1 −Dm+1

∞∑
k=m+1

akzk−1

which implies

|w(z)| ≤
Dm+1

∞∑
k=m+1

ak

2− 2
m∑
k=2

ak −Dm+1

∞∑
k=m+1

ak

.

Hence |w(z)| ≤ 1 if and only if

m∑
k=2

ak +Dm+1

∞∑
k=m+1

ak ≤ 1

which is true by (4.4). This readily yields (4.1).
Now consider the function

(4.5) f(z) = 1− zm+1

Dm+1

Thus f(z)
fm(z) = 1− zm

Dm+1
. Letting z −→ 1−, then f(z) = 1− 1

Dm+1
. So f(z) given

by (4.5) satisfies the sharp result in (4.1). This shows that the bounds in (4.1)
are best possible for each m ∈ N.

Similarly, setting

(1 +Dm+1)

{
fm(z)

f(z)
− Dm+1

1 +Dm+1

}
=

1−
m∑
k=2

akz
k−1 +Dm+1

∞∑
k=m+1

akz
k−1

1−
m∑
k=2

akzk−1

≡ 1− w(z)

1 + w(z)
,

where

|w(z)| ≤
(1 +Dm+1)

∞∑
k=m+1

ak

2− 2
m∑
k=2

ak + (1−Dm+1)
∞∑

k=m+1

ak

.

Now |w(z)| ≤ 1 if and only if

m∑
k=2

ak +Dm+1

∞∑
k=m+1

ak ≤ 1,
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which readily implies the assertion (4.2). The estimate in (4.2) is sharp with the
extremal function f(z) given by (4.5). This completes the proof of the theorem.

Following similar steps to that followed in Theorem 6, we can state the
following theorem

Theorem 7. Let f ∈ Ma,c
µ (α;A,B), then

(4.6) ℜ

(
f

′
(z)

f ′
m(z)

)
≥ 1− m+ 1

Dm+1
(z ∈ U,m ∈ N) ,

and

(4.7) ℜ

(
f

′
m(z)

f ′(z)

)
≥ Dm+1

m+ 1 +Dm+1
(z ∈ U,m ∈ N) ,

where Dk, k ∈ N is given by (4.3). The estimates in (4.6) and (4.7) are sharp
with the extremal function f(z) is as defined in (4.5).
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