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Abstract. This paper considers the pricing of European call options with default risk
within the framework of reduced-form model. We model the stock price and the default
intensity by two dependent jump-diffusion models with common jumps. By using a
Girsanov theorem, we give the explicit expression for the Fourier transform of the price
of call options with default risk.
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1. Introduction

Vulnerable option is a kind of option with credit risk. Credit risk is the risk that
the counterparty to a financial contract will default prior to the expiration of the
contract and will not make all the payments required by the contract. There are
two primary approaches for pricing credit derivatives, the structural approach
and the reduced-form approach. Structural models, initially proposed by Black
and Scholes (1973) and Merton (1974), could give an intuitive understanding for
the credit risk by specifying a firm value process. Reduced-form models, intro-
duced by Jarrow and Turnbull (1995), Duffie and Singleton (1999), and others,
focus directly on the modeling of the default probability. This methodology does
not intend to explain the default of a firm by means of an economic construction.
Instead, the time of default is defined as the first jump time of a point process.
Comparing with structural models, reduced-form models are more flexible and
tractable in the real market. For more information on reduced-form models, we
refer the interested reader to Bielecki and Rutkowski (2004) and Dong et al.
(2014).

Extending the corporate bond default model of Merton (1974), Johnson and
Stulz (1987) firstly proposed the conception of vulnerable option and investi-
gated the option pricing with credit risk based on a structural model. Hull and
White (1995) derived the price of vulnerable option by adopting a reduced-form
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approach under the assumption that the underlying asset and the counterparty
asset were independent of each other. Extending Hull and White (1995), Klein
(1996) relaxed the assumption of independence condition and deduced option
pricing via a martingale method. By generalizing the results of Klein (1996),
Klein and Inglis (2001) considered the stochastic default boundary which de-
pends on options and counterparty debts for the discussion of option pricing.
Wu and Dong (2019) investigated the pricing of European vulnerable option
under a correlated diffusion process.

Most of the literature on vulnerable options assume that the dynamics of
the assets follow the log-normal diffusion process. However, this assumption
ignores sudden shocks in price due to the arrival of important new information.
The purpose of this study is to provide a new pricing model for vulnerable
options, where the dynamics of the underlying asset and the default intensity
follow jump-diffusion processes with common jumps. The paper is organized as
follows. In Section 2, we present the pricing model. In Section 3, we derive the
price of the vulnerable options. Section 4 presents some numerical analysis by
using FFT. Section 5 concludes.

2. The model

Consider a continuous-time model with a finite time horizon T = [0, T ] with
T < ∞. Let {Ω,ℑ, {ℑt}0≤t≤T , Q} be a filtered complete probability space, where
Q is the risk neutral measure such that the discounted asset price processes
are martingales, and {ℑt}0≤t≤T is a filtration satisfying the usual conditions.
Throughout the paper, it is assumed that all random variables are well defined
on this probability space and ℑT−measurable.

Assume that the dynamics of the process Bt for the bank account are de-
scribed by

dBt = rtBtdt, B0 = 1,

where the interest rate rt is given by

drt = κ(θ − rt)dt+ σ1dW1(t).(2.1)

Here, κ > 0, θ > 0, σ1 > 0 are constants; {W1(t), t ≥ 0} is a standard Brownian
motion. From (2.1), we have∫ T

t
rsds = θ(T − t) + (rt − θ)D(t, T ) +

∫ T

t
σ1D(s, T )dW1(s),(2.2)

where D(t, T ) = 1−e−κ(T−t)

κ .
Let St be the value of the asset at time t. Let τ denote the default time

of the writer of the option with default intensity process λt. Suppose that the
dynamics of the stock price St and default intensity λt follow

dSt

St−
= (rt − (ρ1 + ρ2)ξ)dt+ σ2dW2(t) + d

(N1(t)+N2(t)∑
i=1

(eYi − 1)

)
,(2.3)
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and

dλt = a(b− λt)dt+ σ3dW3(t) + d

N1(t)+N3(t)∑
i=1

Zi,(2.4)

where a, b, σ2, σ3 are all positive constants; {W2(t), t ≥ 0} and {W3(t), t ≥ 0} are
two standard Brownian motions; {N1(t), t ≥ 0}, {N2(t), t ≥ 0} and {N3(t), t ≥
0} are three mutually independent Poisson processes with arrival rates ρ1, ρ2 and
ρ3, respectively; {Yi, i ≥ 1} is a sequence of independent identically distributed
random variables with common density function given by fy and ξ = E(eY1);
{Zi, i ≥ 1} is also a sequence of independent identically distributed random
variables with common density function given by fz. Moreover, we suppose
that {N1(t), t ≥ 0},{N2(t), t ≥ 0},{N3(t), t ≥ 0},{Zi, i ≥ 1} and {Yi, i ≥ 1} are
mutually independent. Finally, we assume that the covariance matrix of the
Brownian motion (W1(t),W2(t),W3(t)) is 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

 t

This model assumes that the firm value and the default intensity have common
jumps, which describe the sudden changes in stock prices and default intensity
due to the revealing of important new information which has a large effect on
them. Note that, the default intensity λt can take negative values with positive
probability. However, in practical applications, due to the low volatility, the
probability λt takes negative values can be considered negligible.

We now specify the information structure of our model. Let ℑt = Gt ∨ Ht,
where Gt = ℑs

t ∨ ℑr
t ∨ ℑλ

t with ℑs
t = σ(Ss, s ≤ t),ℑr

t = σ(rs, s ≤ t),ℑλ
t =

σ(λs, s ≤ t) and Ht = σ(1{τ≤s}, s ≤ t).

Let J(t) =
∑N1(t)+N3(t)

i=1 Zi. Then from (2.3) and (2.4), we can obtain

ST = Ste
∫ T
t (rs−(ρ1+ρ2)ξ− 1

2
σ2
2)ds+

∫ T
t σ2dW2(s)+

∑N1(T )+N2(T )

i=N1(t)+N2(t)
Yi ,(2.5)

and ∫ T

t
λsds = b(T − t) + (λt − b)D1(t, T ) +

∫ T

t
σ3D1(s, T )dW3(s)(2.6)

+

∫ T

t
D1(s, T )dJ(s),

where D1(t, T ) =
1−e−a(T−t)

a .

3. Pricing options with credit risk

In this section we consider the pricing of the European style option with credit
risk. Assume that the recovery rate is a constant ω. When the writer of the
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European option defaults, the payoff is given by ω times the payoff of the default-
free option at maturity. By risk-neutral pricing theorem, the valuation of the
vulnerable European call option at time t,with strike price K and maturity T
is given by

C(t, T,K) = E

[
e−

∫ T
t rsds

(
ω(ST −K)+1{τ≤T} + (ST −K)+1{τ>T}

)∣∣∣∣ℑt

]
Then from Corollary 5.1.1 of Bielecki and Rutkowski (2004), we obtain the

following expression:

C(t, T,K) = ωE

[
e−

∫ T
t rsds(ST −K)+

∣∣∣∣Gt

]
+(1− ω)1{τ>t}E

[
e−

∫ T
t (rs+λs)ds(ST −K)+

∣∣∣∣Gt

]
.
= ωC1(t, T,K) + 1{τ>t}(1− ω)C2(t, T,K)

where

C1(t, T,K) = E

[
e−

∫ T
t rsds(ST −K)+|Gt

]
,

C2(t, T,K) = E

[
e−

∫ T
t (rs+λs)ds(ST −K)+|Gt

]
.

Since it is difficult to compute C1(t, T,K) and C2(t, T,K), we will investigate
the Fourier transform of the option price. We adopt the Fourier methods, in-
troduced in Carr and Madan (1999), to investigate the option price. Following
the notation in Carr and Madan (1999), we write k = ln(K). For a > 0, define

c(t, T, k) = eakC(t, T,K)
.
= ωc1(t, T, k) + 1{τ>t}(1− ω)c2(t, T, k),

where
c1(t, T, k) = eakC1(t, T,K), c2(t, T, k) = eakC2(t, T,K).

Define

ζ(u, t, T ) =

∫ +∞

−∞
eiukc(t, T, k)dk

.
= ωζ1(u, t, T ) + 1{τ>t}(1− ω)ζ2(u, t, T ),

where

ζ1(u, t, T ) =

∫ +∞

−∞
eiukc1(t, T, k)dk, ζ2(u, t, T ) =

∫ +∞

−∞
eiukc2(t, T, k)dk.

Proposition 3.1. For a > 0, we have

ζ1(u, t, T ) =
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,
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where

P (t, T ) = E

[
e−

∫ T
t rsds

∣∣∣∣ℑt

]
= exp(−rtD(t, T ) +A(t, T )),

with A(t, T ) = (θ − σ2
1

2κ2 )(D(t, T )− (T − t))− σ2
1

4κD
2(t, T ) , and

ηT (v, t, T ) = eiv(st+∧(t,T )−
∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×e−
∫ T
t (

σ2
2v

2

2
+

σ2
1D

2(u,T )

2
+ivρ12σ1σ2D(u,T ))due(ρ1+ρ2)(T−t)(E[eivY1 ]−1),

with st = lnSt and ∧(t, T ) = θ(T − t)+(rt−θ)D(t, T )− (
σ2
2
2 +(ρ1+ρ2)ξ)(T − t).

Proof. In the presence of a stochastic interest rate, we will define the forward-
neutral measure QT equivalent to the risk-neutral measure Q by

dQT

dQ
=

P (T, T )

P (0, T )BT
=

e−
∫ T
0 rsds

P (0, T )
.

where P (t, T ) denotes the value at time t of a T -maturity zero coupon bond
whose face value is 1. It is well known that

P (t, T ) = exp(−rtD(t, T ) +A(t, T ))

and P (t, T ) satisfies

dP (t, T ) = rtP (t, T )dt− σ1D(t, T )P (t, T )dW1(t).

So, the Radon-Nikodym derivative is given by

dQT

dQ
= e−

∫ T
0 σ1D(t,T )dW1(t)− 1

2

∫ T
0 σ2

1D
2(t,T )dt.

Girsanov’s theorem implies that

W T
1 (t) = W1(t) +

∫ t

0
σ1D(u, T )du; W T

2 (t) = W2(t) +

∫ t

0
ρ12σ1D(u, T )du

are two standard Brownian motions under QT with the correlation coefficient
ρ12.

Therefore,

ST = St exp(∧(t, T ) +
∫ T

t
σ2dW

T
2 (u) +

∫ T

t
σ1D(u, T )dW T

1 (u)

−
∫ T

t
ρ12σ1σ2D(u, T )du−

∫ T

t
σ2
1D

2(u, T )du+

N1(T )+N2(T )∑
i=N1(t)+N2(t)

Yi).
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Moving to the forward measure yields

C1(t, T,K) = P (t, T )ET

[
(ST −K)+|Gt

]
.

In order to derive the formula for ζ1(u, t, T ), we first derive the expression for
the characteristic function of sT conditional on Gt. Let fT (s) be the density
function conditional on st under Q

T , then we have

ηT (v, t, T ) = ET

[
eivsT

∣∣∣∣Gt

]
= eiv(st+∧(t,T )−

∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×ET

[
e
iv(

∫ T
t σ2dWT

2 (u)+
∫ T
t σ1D(u,T )dWT

1 (u)+
∑N1(T )+N2(T )

j=N1(t)+N2(t)
Yj)

∣∣∣∣Gt

]
= eiv(st+∧(t,T )−

∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×e−
∫ T
t (

σ2
2v

2

2
+

σ2
1D

2(u,T )

2
+ivρ12σ1σ2D(u,T ))du × e(ρ1+ρ2)(T−t)(E[eivY1 ]−1)

Hence,

ζ1(u, t, T ) =

∫ +∞

−∞
eiukc1(t, T,K)dk

=

∫ +∞

−∞

∫ +∞

k
e(iu+a)kP (t, T )(es − ek)fT (s)dsdk

=
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
.

Proposition 3.2. For a > 0, we have

ζ2(u, t, T ) =
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,

where

P λ(t, T ) = e−(θ+b)(T−t)−(r(t)−θ)D(t,T )−(λ(t)−b)D1(t,T )

×e(ρ1+ρ3)
∫ T
t

∫+∞
−∞ (e−D1(u,T )−1)fz(z)dzdu

×e−
1
2

∫ T
t (σ2

1D
2(u,T )+2ρ13σ1σ3D(u,T )D1(u,T )+σ2

3D
2
1(u,T ))du

and

ηλ(v, t, T ) = eiv(st+∧(t,T )−
∫ T
t (ρ12σ2M1(u)+ρ13σ2M2(u)+σ1D(u,T )M1(u))du)

×e−
v2

2
σ2
2(T−t)−

∫ T
t

σ2
1
2
v2D(u,T )du+

∫ T
t ivσ1σ2D(u,T )du

×e
∫ T
t (ρλ1 (s)+ρ2)(E[eivY1 ]−1)ds
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with

M1(t) = σ1D(t, T ) + ρ13σ3D1(t, T ), M2(t) = σ3D1(t, T ) + ρ23σ1D(t, T ).

Proof. Define

dQλ

dQ
=

e−
∫ T
0 (λs+rs)ds

E[e−
∫ T
0 (λs+rs)ds]

From Eqs. (2.5)-(2.6) and some calculations, we can have

P λ(t, T ) = E

[
e−

∫ T
t (rs+λs)ds

∣∣∣∣Gt

]
= e−(θ+b)(T−t)−(r(t)−θ)D(t,T )−(λ(t)−b)D1(t,T )

×e(ρ1+ρ3)
∫ T
t

∫+∞
−∞ (e−D1(u,T )−1)fz(z)dzdu

×e−
1
2

∫ T
t (σ2

1D
2(u,T )+2ρ13σ1σ3D(u,T )D1(u,T )+σ2

3D
2
1(u,T ))du.

Then

dQλ

dQ
= e−

∫ T
0 σ1D(u,T )dW1(u)−

∫ T
0 σ3D1(u,T )dW3(u)− 1

2

∫ T
0 σ2

1D
2(u,T )du

×e−
1
2

∫ T
0 σ2

3D
2
1(u,T )du−ρ13

∫ T
0 σ1σ3D(u,T )D1(u,T )du

×e−
∫ T
0 D1(u,T )dJ(u)−(ρ1+ρ3)

∫ T
0

∫+∞
−∞ (e−D1(u,T )−1)fZ(z)dzdu

and Girsanov’s theorem implies that

W λ
1 (t) = W1(t) +

∫ t

0
σ1D(u, T )du+

∫ t

0
ρ13σ3D1(u, T )du

and

W λ
3 (t) = W3(t) +

∫ t

0
σ3D1(u, T )du+

∫ t

0
ρ13σ1D(u, T )du

are standard Brownian motions under Qλ, and the intensity of the jump pro-
cess Nλ

1 (t) is given by ρλ1(t) = ρ1
∫ +∞
−∞ e−zD1(t,T )fZ(z)dz. Therefore, under the

measure Qλ,

ST = Ste
∧(t,T )+

∫ T
t σ2D(u,T )dWλ

2 (u)+
∫ T
t σ1D(u,T )dWλ

1 (u)−
∫ T
t ρ12σ2M1(u)du

×e
−

∫ T
t ρ23σ2M2(u)du−

∫ T
t σ1D(u,T )M1(u)du+

∑Nλ
1 (T )+N2(T )

j=Nλ
1 (t)+N2(t)

Yj

.

Similar to deriving ηT (v, t, T ), we have that the characteristic function of sT
under Qλ is given by

ηλ(v, t, T ) = eiv(st+∧(t,T )−
∫ T
t ρ12σ2M1(u)du−

∫ T
t ρ23σ2M2(u)du−

∫ T
t σ1D(u,T )M1(u)du)

×e−
v2

2
σ2
2(T−t)−

∫ T
t

σ2
1
2
v2D(u,T )du+

∫ T
t ivσ1σ2D(u,T )du

×e
∫ T
t (ρλ1 (s)+ρ2)(E[eivY1 ]−1)ds.
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Therefore,

ζ2(u, t, T ) =

∫ +∞

−∞
eiukc2(t, T,K)dk

= P λ(t, T )

∫ +∞

−∞

∫ s

−∞
e(iu+a)k(es − ek)fλ(s)dkds

=
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,

where fλ(s) is the density function conditional of st under Q
λ.

From Propositions 3.1, 3.2, we can directly obtain the following result.

Corollary 3.1. For a > 0, we have

ζ(u, t, T ) = ωζ1(u, t, T ) + 1{τ>t}(1− ω)ζ2(u, t, T )

= ω
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u

+1{τ>t}(1− ω)
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
.

4. FFT for vulnerable European option pricing

In this section, we shall carry out some numerical calculations for the pricing
of options. An approach based on the fast Fourier transform (FFT) is widely
used to numerically evaluate a price of a European-style call option. The main
advantage of the FFT approach is that it computes the discrete Fourier trans-
form (DFT) faster than other approaches. For the details of the fast Fourier
transform, we refer to Carr and Madan (1999).

Let uj = η(j − 1). Following Carr and Madan (1999), an approximation for
C(0, T, k) is

C(0, T, k) ≈ e−ak

π

(
ω

N∑
j=1

e−iujkζ1(uj)ηP (0, T )

+(1− ω)

N∑
j=1

e−iujkζ2(uj)ηP
λ(0, T )

)
.

The FFT returns N values of modified logarithmic strike k given as follows:
kv = −b+ h(v − 1), v = 1, · · · , N, where b = 1

2Nh.

In order to apply FFT, we let ηh = 2π
N . To obtain an accurate integration

with larger values of η, we incorporate Simpson’s rule weightings into our sum-
mation. From Simpson’s rule weightings , we obtain European call option prices
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as

C(0, T, kv) ≈ e−akv

π

(
ω

N∑
j=1

e−
2πi(j−1)(i−1)

N eibuj
η

3
[3 + (−1)j − wj−1]P (0, T )

+ (1− ω)

N∑
j=1

e−
2πi(j−1)(i−1)

N eibuj
η

3
[3 + (−1)j − wj−1]P

λ(0, T )

)
,

where wn is the Kronecker delta function that is unity for n = 0 and zero
otherwise. The above summation is an exact application of the FFT.

In what follows, we give a numerical example. Assume the parameters are
as follows: ω = 0.4, κ = 0.3, θ = 0.05, r0 = 0.02, a = 0.2, b = 0.02, λ0 = 0.5, σ1 =
0.2, σ2 = 0.15, σ3 = 0.25, ρ1 = ρ2 = ρ3 = 0.25, ρ12 = 0.7, ρ13 = 0.5, ρ23 =
0.6, S0 = 100, T = 1, the densities fy and fz are given by fy(y) = 10e−20y1{y>0}+
10e−20y1{y<0}, fz(z) = 5e−5z, z > 0. The numerical results for the option prices
are presented in Tables 1, 2. From them we can see that the convergence rate
of the FFT is comparatively fast.

Table 1 presents the relationship between the option price and K. From it
we can see that the option price decreases with the strike K. This is because a
high value of K leads to a decreasing probability that ST is larger than K.

Table 1: Prices calculated by FFT

K N = 512 N = 1024 N = 2048 N = 4096

90 8.2413 8.2415 8.2415 8.2415

95 6.5219 6.5221 6.5222 6.5223

100 5.2344 5.2346 5.2346 5.2346

105 4.4651 4.4652 4.4652 4.4652

110 3.5442 3.5343 3.5343 3.5343

Table 2 represents the impact of the jump intensity of the common jumps
on the option price. From it we can observe that the price increases with λ0.
This is because a high value of λ0 leads to an increasing volatility of St and λt,
and St is more sensitive to λ0.

Table 2: Impact of jump intensity of option prices for K = 100

λ0 N = 512 N = 1024 N = 2048 N = 4096

0.4 4.4154 4.4155 4.4156 4.4156

0.5 4.8732 4.8733 4.8733 4.8733

0.6 5.2344 5.2346 5.2346 5.2346

0.7 5.7612 5.7613 5.7613 5.7613

0.8 6.1507 6.1508 6.1509 6.1509
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5. Conclusions

In this paper, we consider a jump-diffusion model to analyze a vulnerable Eu-
ropean call option within the reduced-form framework. We assume the default
intensity and the stock price are modelled by two jump-diffusion processes with
common jumps. The jump components describe the impact of macro-economy
on the asset price and the default intensity. We adopt the measure of change and
the fast Fourier transform (FFT) method to value options. Numerical examples
illustrate the practicality of the method.
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