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Abstract. In this paper, we present a unitarily invariant norm inequality for accretive-
dissipative operator matrices, which is similar to an inequality obtained by Zhang in [J.
Math. Anal. Appl. 412 (2014) 564-569]. Examples are provided to show that neither
Zhang’s inequality nor our inequality is uniformly better than the other.
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1. Introduction

In this note, we use the same notation as in [11, 14]. For convenience, recall
that, as usual, let B(H) be the C∗ -algebra of all bounded linear operators on a
complex Hilbert space H. For H := H⊕H and T ∈ B(H), the operator T can

be represented as a 2 × 2 operator matrix T =

(
T11 T12

T21 T22

)
with Tjk ∈ B(H),

j, k = 1, 2.

For any T ∈ B(H), we can write

T = A+ iB,(1.1)

in which A = T+T ∗

2 and B = T−T ∗

2i are Hermitian operators. This is the Carte-
sian decomposition of T . In this paper, we always represent the decomposition
of (1.1) as follows,(

T11 T12

T21 T22

)
=

(
B11 B12

B∗
12 B22

)
+ i

(
C11 C12

C∗
12 C22

)
,(1.2)

where Tjk, Ajk, Bjk ∈ B(H), j, k = 1, 2. Then A12 = A∗
21, B12 = B∗

21.

If T is a compact operator, we denote by s1(T ) ≥ s2(T ) ≥ · · · the eigenvalues
of (T ∗T )

1
2 , which are called the singular values of T . Thus, whenever we talk

about singular values, the operators are necessarily compact. We denote by



A NOTE ON UNITARILY INVARIANT NORM INEQUALITIES FOR ... 207

W (A) the numerical range of A. A norm ∥ · ∥u on B(H) is unitarily invariant if
∥T∥u = ∥UTV ∥u for all unitaries U, V ∈ B(H). Every unitarily invariant norm is
defined on an ideal in B(H). It will be implicity understood that the operator T
is in this ideal when we talk of ∥T∥u. Recall that T with T = A+iB is accretive-
dissipative if both A and B are positive. For the study of accretive-dissipative
matrices in matrix theory and numerical linear algebra, the readers can refer to
[2, 3, 7, 8]. Recent works devoted to studying the accretive-dissipative operators
or matrices are in [6, 9, 10].

Zhang [14, Theorem 2] obtained the following unitarily invariant norm in-
equality.

Theorem 1. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥T∥u ≤ 2∥T11 + T22∥u(1.3)

for any unitarily invariant norm ∥ · ∥u.

However, there is a gap in the proof of Zhang [14, Theorem 2]. Since in the
proof of Theorem 2 in [14] the author proves that the last equality

2∥A11 +B11 + i(A22 +B22)∥u = 2∥T11 + T22∥u

holds, actually it is as follows:

2∥A11 +B11 + i(A22 +B22)∥u ≤ 2∥A11 +B11 +A22 +B22∥u
≤ 2

√
2∥A11 +A22 + i(B11 +B22)∥u

= 2
√
2∥A11 + iB11 +A22 + iB22∥u

= 2
√
2∥T11 + T22∥u.

The purpose of this paper is to discuss unitarily invariant norm inequali-
ties for the accretive-dissipative operator matrix (1.1), which are similar to the
inequality (1.3) . Our main result is the following theorem.

Theorem 2. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥T∥u ≤
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
u ∥T22∥

1
2
u ](1.4)

for any unitarily invariant norm ∥ · ∥u. Furthermore, if 0 /∈ W (B12 +C12), then

∥T∥u ≤
√
2[∥T11 + T22∥u + ∥T11∥

1
2
u ∥T22∥

1
2
u ].(1.5)
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2. Main results

Before proving the main theorem of this paper, we need a few auxiliary results.

Lemma 3 ([12]). Let A,B ∈ B(H) be positive. Then for any complex number z,

k∏
j=1

sj(A+ zB) ≤
k∏

j=1

sj(A+ |z|B)

for all k = 1, 2, . . . . As a consequence,

k∑
j=1

sj(A+ zB) ≤
k∑

j=1

sj(A+ |z|B)

for all k = 1, 2, . . ..

Lemma 4 ([4, Corollary 2.1]). If A,B,X ∈ B(H) and

(
A X
X∗ B

)
is positive,

then we have the following decomposition(
A X
X∗ B

)
= U

(A+B

2
+ ReX 0

0 0

)
U∗ + V

(
0 0

0
A+B

2
− ReX

)
V ∗

for some unitary operator matrices U, V ∈ B(H).

Lemma 5 ([13, p. 42]). The operator matrix

(
A B
B∗ C

)
is positive if and only

if both A and C are positive and there exists a contraction W such that B =
A

1
2WC

1
2 .

Lemma 6 ([14, Lemma 2]). Let Pi, Qi ∈ B(H) be positive and let Ci ∈ B(H) be
contractive, i = 1, 2, . . . ,m. Then

k∑
j=1

sj

(
m∑
i=1

PiCiQi

)
≤

k∑
j=1

sj

(
(

m∑
i=1

P 2
i )

1
2

)
sj

(
(

m∑
i=1

Q2
i )

1
2

)
,

for all k = 1, 2, . . . .

Lemma 7 ([1, Theorem 1.1]). Let A,B ∈ B(H) be positive. Then

sj(A+B) ≤
√
2sj(A+ iB)forallj = 1, 2, . . . .

Remark 8. Reverse inequality of Lemma 7 was given in [5].

Lemma 9. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥B12 + C12∥u ≤
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .
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Proof. Compute

∥B12 + C12∥u =
k∑

j=1

αjsj(B12 + C12)

=

∞∑
j=1

αjsj(B
1
2
11W1B

1
2
22 + C

1
2
11W2C

1
2
22) (by Lemma 5)

≤
∞∑
j=1

αjsj((B11 + C11)
1
2 )sj((A22 +B22)

1
2 ) (by Lemma 6)

=

∞∑
j=1

αj(sj(B11 + C11))
1
2 (sj(A22 +B22))

1
2

≤
∞∑
j=1

αj [
√
2sj(B11 + iC11)]

1
2 [
√
2sj(B22 + iC22)]

1
2 (by Lemma 7)

≤
√
2

∞∑
j=1

αj [sj(T11)]
1
2 [sj(T22)]

1
2

≤
√
2(

∞∑
j=1

αjsj(T11))
1
2 (

∞∑
j=1

αjsj(T22))
1
2 (by Cauchy-Schwarz inequality)

=
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .

Thus,

∥B12 + C12∥u ≤
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .

This completes the proof. �

Lemma 10 ([4, Corollary 2.6]). If A,B,X ∈ B(H) and

(
A X
X∗ B

)
is positive,

then for 0 /∈ W (X) we have∥∥∥∥( A X
X∗ B

)∥∥∥∥
u

≤ ∥A+B∥u + ∥X∥u

for any unitarily invariant norm.

Proof of Theorem 2. Compute

∥B + iC∥u ≤ ∥B + C∥u (by Lemma 3)

≤
∥∥∥∥B11 + C11 +B22 + C22

2
+ Re(B12 + C12)

∥∥∥∥
u

+

∥∥∥∥B11 + C11 +B22 + C22

2
− Re(B12 + C12)

∥∥∥∥
u
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(by Lemma 4 and triangle inequality)

≤ 2

∥∥∥∥B11 + C11 +B22 + C22

2

∥∥∥∥
u

+ 2 ∥Re(B12 + C12)∥u (by triangle inequality)

≤
√
2∥B11 +B22 + i(C11 + C22)∥u + 2∥Re(B12 + C12)∥u (by Lemma 7)

≤
√
2∥T11 + T22∥u + 2

√
2∥T11∥

1
2
u ∥T22∥

1
2
u (by Lemma 9)

≤
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
u ∥T22∥

1
2
u ].

Thus,

∥B + iC∥ ≤
√
2

[
∥T11 + T22∥u + 2 ∥T11∥

1
2
u ∥T22∥

1
2
u

]
.

Furthermore, if 0 /∈ W (B12 + C12), then we have

∥B + iC∥u ≤ ∥B + C∥u (by Lemma 3)

≤ ∥B11 + C11 +B22 + C22∥u + ∥B12 + C12∥u (by Lemma 10)

≤
√
2∥B11 +B22 + i(C11 + C22)∥u + ∥B12 + C12∥u (by Lemma 7)

=
√
2∥T11 + T22∥u + ∥B12 + C12∥u

≤
√
2∥T11 + T22∥u +

√
2∥T11∥

1
2
u ∥T22∥

1
2
u (by Lemma 9)

=
√
2[∥T11 + T22∥u + ∥T11∥

1
2
u ∥T22∥

1
2
u ].

This completes the proof. �
The following examples show that neither (1.3) nor (1.4) is uniformly better

than the other.

Example 1. Let

T = B + iC

=

(
0.001 0
0 2

)
+ i

(
0.001 0
0 1

)
=

(
0.001 + 0.001i 0

0 2 + 1i

)
,

then T11 = 0.001 + 0.001i, T22 = 2 + i.

For the right side of (1.3), 2∥T11+T22∥u = 6.3283. For the right side of (1.4),
√
2[∥T11+T22∥u+2∥T11∥

1
2
u ∥T22∥

1
2
u ] = 3.3232. This shows that (1.4) is better than

(1.3) in some cases.



A NOTE ON UNITARILY INVARIANT NORM INEQUALITIES FOR ... 211

Example 2. If

T = B + iC

=


1 −1 0 0
−1 1 0 0
0 0 1 1
0 0 1 1

+ i


0.001 0 0 0
0 0.001 0 0
0 0 0.001 0
0 0 0 0.001



=


1 + i ∗ 0.001 −1 0 0

−1 1 + i ∗ 0.001 0 0
0 0 1 + i ∗ 0.001 1
0 0 1 1 + i ∗ 0.001

 ,

then

T11 =

(
1 + 0.001i −1

−1 1 + 0.001i

)
and

T22 =

(
1 + 0.001i 1

1 1 + 0.001i

)
.

For the right side of (1.3), 2
√
2∥T11 + T22∥2 = 5.6583. For the right side of

(1.4),
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
2 ∥T22∥

1
2
u ] = 8.4860. This implies that (1.4) is

weaker than (1.3) in some cases.
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