A note on unitarily invariant norm inequalities for accretive-dissipative operator matrices

Junjian Yang School of Mathematical Sciences Guizhou Normal University Guiyang P. R. China and Hainan Key Laboratory for Computational Science and Application P. R. China junjianyang1981@163.com

Abstract. In this paper, we present a unitarily invariant norm inequality for accretivedissipative operator matrices, which is similar to an inequality obtained by Zhang in [J. Math. Anal. Appl. 412 (2014) 564-569]. Examples are provided to show that neither Zhang's inequality nor our inequality is uniformly better than the other.

Keywords: unitarily invariant norms, accretive-dissipative operators, inequalities.

1. Introduction

In this note, we use the same notation as in [11, 14]. For convenience, recall that, as usual, let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . For $\mathbf{H} := \mathcal{H} \oplus \mathcal{H}$ and $T \in \mathcal{B}(\mathbf{H})$, the operator T can be represented as a 2×2 operator matrix $T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$ with $T_{jk} \in \mathcal{B}(\mathcal{H})$, j, k = 1, 2.

For any $T \in \mathcal{B}(\mathbf{H})$, we can write

$$(1.1) T = A + iB,$$

in which $A = \frac{T+T^*}{2}$ and $B = \frac{T-T^*}{2i}$ are Hermitian operators. This is the Cartesian decomposition of T. In this paper, we always represent the decomposition of (1.1) as follows,

(1.2)
$$\begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{12}^* & B_{22} \end{pmatrix} + i \begin{pmatrix} C_{11} & C_{12} \\ C_{12}^* & C_{22} \end{pmatrix},$$

where $T_{jk}, A_{jk}, B_{jk} \in \mathcal{B}(\mathcal{H}), j, k = 1, 2$. Then $A_{12} = A_{21}^*, B_{12} = B_{21}^*$.

If T is a compact operator, we denote by $s_1(T) \ge s_2(T) \ge \cdots$ the eigenvalues of $(T^*T)^{\frac{1}{2}}$, which are called the singular values of T. Thus, whenever we talk about singular values, the operators are necessarily compact. We denote by W(A) the numerical range of A. A norm $\|\cdot\|_u$ on $\mathcal{B}(\mathcal{H})$ is unitarily invariant if $\|T\|_u = \|UTV\|_u$ for all unitaries $U, V \in \mathcal{B}(\mathcal{H})$. Every unitarily invariant norm is defined on an ideal in $\mathcal{B}(\mathcal{H})$. It will be implicity understood that the operator T is in this ideal when we talk of $\|T\|_u$. Recall that T with T = A + iB is accretive-dissipative if both A and B are positive. For the study of accretive-dissipative matrices in matrix theory and numerical linear algebra, the readers can refer to [2, 3, 7, 8]. Recent works devoted to studying the accretive-dissipative operators or matrices are in [6, 9, 10].

Zhang [14, Theorem 2] obtained the following unitarily invariant norm inequality.

Theorem 1. Let $T \in \mathcal{B}(\mathbf{H})$ be accretive-dissipative and partitioned as in (1.2). Then

(1.3)
$$||T||_u \leq 2||T_{11} + T_{22}||_u$$

for any unitarily invariant norm $\|\cdot\|_u$.

However, there is a gap in the proof of Zhang [14, Theorem 2]. Since in the proof of Theorem 2 in [14] the author proves that the last equality

$$2\|A_{11} + B_{11} + i(A_{22} + B_{22})\|_{u} = 2\|T_{11} + T_{22}\|_{u}$$

holds, actually it is as follows:

$$2\|A_{11} + B_{11} + i(A_{22} + B_{22})\|_{u} \leq 2\|A_{11} + B_{11} + A_{22} + B_{22}\|_{u}$$
$$\leq 2\sqrt{2}\|A_{11} + A_{22} + i(B_{11} + B_{22})\|_{u}$$
$$= 2\sqrt{2}\|A_{11} + iB_{11} + A_{22} + iB_{22}\|_{u}$$
$$= 2\sqrt{2}\|T_{11} + T_{22}\|_{u}.$$

The purpose of this paper is to discuss unitarily invariant norm inequalities for the accretive-dissipative operator matrix (1.1), which are similar to the inequality (1.3). Our main result is the following theorem.

Theorem 2. Let $T \in \mathcal{B}(\mathbf{H})$ be accretive-dissipative and partitioned as in (1.2). Then

(1.4)
$$||T||_{u} \leq \sqrt{2} [||T_{11} + T_{22}||_{u} + 2||T_{11}||_{u}^{\frac{1}{2}} ||T_{22}||_{u}^{\frac{1}{2}}]$$

for any unitarily invariant norm $\|\cdot\|_u$. Furthermore, if $0 \notin W(B_{12} + C_{12})$, then

(1.5)
$$\|T\|_{u} \leq \sqrt{2} [\|T_{11} + T_{22}\|_{u} + \|T_{11}\|_{u}^{\frac{1}{2}} \|T_{22}\|_{u}^{\frac{1}{2}}].$$

2. Main results

Before proving the main theorem of this paper, we need a few auxiliary results. Lemma 3 ([12]). Let $A, B \in \mathcal{B}(\mathcal{H})$ be positive. Then for any complex number z,

$$\prod_{j=1}^k s_j(A+zB) \leq \prod_{j=1}^k s_j(A+|z|B)$$

for all $k = 1, 2, \ldots$ As a consequence,

$$\sum_{j=1}^k s_j(A+zB) \leq \sum_{j=1}^k s_j(A+|z|B)$$

for all k = 1, 2, ...

Lemma 4 ([4, Corollary 2.1]). If $A, B, X \in \mathcal{B}(\mathcal{H})$ and $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix}$ is positive, then we have the following decomposition

$$\begin{pmatrix} A & X \\ X^* & B \end{pmatrix} = U \begin{pmatrix} \frac{A+B}{2} + \operatorname{Re}X & 0 \\ 0 & 0 \end{pmatrix} U^* + V \begin{pmatrix} 0 & 0 \\ 0 & \frac{A+B}{2} - \operatorname{Re}X \end{pmatrix} V^*$$

for some unitary operator matrices $U, V \in \mathcal{B}(\mathbf{H})$.

Lemma 5 ([13, p. 42]). The operator matrix $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$ is positive if and only if both A and C are positive and there exists a contraction W such that $B = A^{\frac{1}{2}}WC^{\frac{1}{2}}$.

Lemma 6 ([14, Lemma 2]). Let $P_i, Q_i \in \mathcal{B}(\mathcal{H})$ be positive and let $C_i \in \mathcal{B}(\mathcal{H})$ be contractive, i = 1, 2, ..., m. Then

$$\sum_{j=1}^{k} s_j \left(\sum_{i=1}^{m} P_i C_i Q_i \right) \le \sum_{j=1}^{k} s_j \left((\sum_{i=1}^{m} P_i^2)^{\frac{1}{2}} \right) s_j \left((\sum_{i=1}^{m} Q_i^2)^{\frac{1}{2}} \right),$$

for all k = 1, 2, ...

Lemma 7 ([1, Theorem 1.1]). Let $A, B \in \mathcal{B}(\mathcal{H})$ be positive. Then

$$s_j(A+B) \leq \sqrt{2}s_j(A+iB) for all j = 1, 2, \dots$$

Remark 8. Reverse inequality of Lemma 7 was given in [5].

Lemma 9. Let $T \in \mathcal{B}(\mathbf{H})$ be accretive-dissipative and partitioned as in (1.2). Then

$$||B_{12} + C_{12}||_u \le \sqrt{2} ||T_{11}||_u^{\frac{1}{2}} ||T_{22}||_u^{\frac{1}{2}}.$$

Proof. Compute

$$\begin{split} \|B_{12} + C_{12}\|_{u} &= \sum_{j=1}^{k} \alpha_{j} s_{j} (B_{12} + C_{12}) \\ &= \sum_{j=1}^{\infty} \alpha_{j} s_{j} (B_{11}^{\frac{1}{2}} W_{1} B_{22}^{\frac{1}{2}} + C_{11}^{\frac{1}{2}} W_{2} C_{22}^{\frac{1}{2}}) \qquad \text{(by Lemma 5)} \\ &\leq \sum_{j=1}^{\infty} \alpha_{j} s_{j} ((B_{11} + C_{11})^{\frac{1}{2}}) s_{j} ((A_{22} + B_{22})^{\frac{1}{2}}) \qquad \text{(by Lemma 6)} \\ &= \sum_{j=1}^{\infty} \alpha_{j} (s_{j} (B_{11} + C_{11}))^{\frac{1}{2}} (s_{j} (A_{22} + B_{22}))^{\frac{1}{2}} \\ &\leq \sum_{j=1}^{\infty} \alpha_{j} [\sqrt{2} s_{j} (B_{11} + iC_{11})]^{\frac{1}{2}} [\sqrt{2} s_{j} (B_{22} + iC_{22})]^{\frac{1}{2}} \qquad \text{(by Lemma 7)} \\ &\leq \sqrt{2} \sum_{j=1}^{\infty} \alpha_{j} [s_{j} (T_{11})]^{\frac{1}{2}} [s_{j} (T_{22})]^{\frac{1}{2}} \\ &\leq \sqrt{2} (\sum_{j=1}^{\infty} \alpha_{j} s_{j} (T_{11}))^{\frac{1}{2}} (\sum_{j=1}^{\infty} \alpha_{j} s_{j} (T_{22}))^{\frac{1}{2}} \qquad \text{(by Cauchy-Schwarz inequality)} \\ &= \sqrt{2} \|T_{11}\|_{u}^{\frac{1}{2}} \|T_{22}\|_{u}^{\frac{1}{2}}. \end{split}$$

Thus,

$$||B_{12} + C_{12}||_u \le \sqrt{2} ||T_{11}||_u^{\frac{1}{2}} ||T_{22}||_u^{\frac{1}{2}}.$$

This completes the proof.

Lemma 10 ([4, Corollary 2.6]). If $A, B, X \in \mathcal{B}(\mathcal{H})$ and $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix}$ is positive, then for $0 \notin W(X)$ we have

$$\left\| \begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \right\|_{u} \leq \|A + B\|_{u} + \|X\|_{u}$$

for any unitarily invariant norm.

Proof of Theorem 2. Compute

$$\begin{split} \|B + iC\|_{u} &\leq \|B + C\|_{u} \qquad \text{(by Lemma 3)} \\ &\leq \left\|\frac{B_{11} + C_{11} + B_{22} + C_{22}}{2} + \operatorname{Re}(B_{12} + C_{12})\right\|_{u} \\ &+ \left\|\frac{B_{11} + C_{11} + B_{22} + C_{22}}{2} - \operatorname{Re}(B_{12} + C_{12})\right\|_{u} \end{split}$$

(by Lemma 4 and triangle inequality)

$$\leq 2 \left\| \frac{B_{11} + C_{11} + B_{22} + C_{22}}{2} \right\|_{u} + 2 \left\| \operatorname{Re}(B_{12} + C_{12}) \right\|_{u} \text{ (by triangle inequality)} \\ \leq \sqrt{2} \left\| B_{11} + B_{22} + i(C_{11} + C_{22}) \right\|_{u} + 2 \left\| \operatorname{Re}(B_{12} + C_{12}) \right\|_{u} \qquad \text{(by Lemma 7)} \\ \leq \sqrt{2} \left\| T_{11} + T_{22} \right\|_{u} + 2\sqrt{2} \left\| T_{11} \right\|_{u}^{\frac{1}{2}} \left\| T_{22} \right\|_{u}^{\frac{1}{2}} \qquad \text{(by Lemma 9)} \\ \leq \sqrt{2} \left[\left\| T_{11} + T_{22} \right\|_{u} + 2 \left\| T_{11} \right\|_{u}^{\frac{1}{2}} \left\| T_{22} \right\|_{u}^{\frac{1}{2}} \right].$$

Thus,

$$||B + iC|| \le \sqrt{2} \left[||T_{11} + T_{22}||_u + 2 ||T_{11}||_u^{\frac{1}{2}} ||T_{22}||_u^{\frac{1}{2}} \right].$$

Furthermore, if $0 \notin W(B_{12} + C_{12})$, then we have

$$\begin{split} \|B + iC\|_{u} &\leq \|B + C\|_{u} & \text{(by Lemma 3)} \\ &\leq \|B_{11} + C_{11} + B_{22} + C_{22}\|_{u} + \|B_{12} + C_{12}\|_{u} & \text{(by Lemma 10)} \\ &\leq \sqrt{2}\|B_{11} + B_{22} + i(C_{11} + C_{22})\|_{u} + \|B_{12} + C_{12}\|_{u} & \text{(by Lemma 7)} \\ &= \sqrt{2}\|T_{11} + T_{22}\|_{u} + \|B_{12} + C_{12}\|_{u} \\ &\leq \sqrt{2}\|T_{11} + T_{22}\|_{u} + \sqrt{2}\|T_{11}\|_{u}^{\frac{1}{2}}\|T_{22}\|_{u}^{\frac{1}{2}} & \text{(by Lemma 9)} \\ &= \sqrt{2}[\|T_{11} + T_{22}\|_{u} + \|T_{11}\|_{u}^{\frac{1}{2}}\|T_{22}\|_{u}^{\frac{1}{2}}]. \end{split}$$

This completes the proof.

The following examples show that neither (1.3) nor (1.4) is uniformly better than the other.

Example 1. Let

$$T = B + iC$$

= $\begin{pmatrix} 0.001 & 0 \\ 0 & 2 \end{pmatrix} + i \begin{pmatrix} 0.001 & 0 \\ 0 & 1 \end{pmatrix}$
= $\begin{pmatrix} 0.001 + 0.001i & 0 \\ 0 & 2 + 1i \end{pmatrix}$,

then $T_{11} = 0.001 + 0.001i$, $T_{22} = 2 + i$.

For the right side of (1.3), $2\|T_{11} + T_{22}\|_u = 6.3283$. For the right side of (1.4), $\sqrt{2}[\|T_{11} + T_{22}\|_u + 2\|T_{11}\|_u^{\frac{1}{2}}\|T_{22}\|_u^{\frac{1}{2}}] = 3.3232$. This shows that (1.4) is better than (1.3) in some cases.

Example 2. If

$$T = B + iC$$

$$= \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} + i \begin{pmatrix} 0.001 & 0 & 0 & 0 \\ 0 & 0.001 & 0 & 0 \\ 0 & 0 & 0.001 \end{pmatrix}$$

$$= \begin{pmatrix} 1 + i * 0.001 & -1 & 0 & 0 \\ -1 & 1 + i * 0.001 & 0 & 0 \\ 0 & 0 & 1 + i * 0.001 & 1 \\ 0 & 0 & 1 & 1 + i * 0.001 \end{pmatrix},$$

then

$$T_{11} = \begin{pmatrix} 1 + 0.001i & -1 \\ -1 & 1 + 0.001i \end{pmatrix}$$

and

$$T_{22} = \begin{pmatrix} 1 + 0.001i & 1\\ 1 & 1 + 0.001i \end{pmatrix}.$$

For the right side of (1.3), $2\sqrt{2}||T_{11} + T_{22}||_2 = 5.6583$. For the right side of (1.4), $\sqrt{2}[||T_{11} + T_{22}||_u + 2||T_{11}||_2^{\frac{1}{2}}||T_{22}||_u^{\frac{1}{2}}] = 8.4860$. This implies that (1.4) is weaker than (1.3) in some cases.

Acknowledgments

We are grateful to Dr. Limin Zou for fruitful discussions. The work is supported by Hainan Provincial Natural Science Foundation for High-level Talents grant no. 2019RC171 and the Ministry of Education of Hainan grant no. Hnky2019ZD-13.

References

- R. Bhatia, F. Kittaneh, The singular values of A+B and A+iB, Linear Algebra Appl., 431 (2009), 1502-1508.
- [2] R. Bhatia, X. Zhan, Compact operators whose real and imaginary parts are positive, Proc. Amer. Math. Soc., 129 (2001), 2277-2281.
- [3] R. Bhatia, X. Zhan, Norm inequalities for operators with positive real part, J. Operator Theory, 50 (2003), 67-76.
- [4] J.-C. Bourin, E.-Y Lee, M. Lin, On a decomposition lemma for positive semi-definite block-matrices, Linear Algebra Appl., 437 (2012), 1906-1912.
- [5] S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. and Matrices, In press.

- [6] A. George, Kh.D. Ikramov, On the growth factor in Gaussian elimination for generalized Higham matrices, Numer, Linear Algebra Appl., 9 (2002), 107-114.
- [7] A. George, Kh.D. Ikramov, On the properties of accretive-dissipative matrices, Math. Notes, 77 (2005), 767-776.
- [8] N. J. Higham, Factorizing complex symmetric matrices with positive real and imaginary parts, Math. Comp., 67 (1998), 1591-1599.
- M. Lin, Reversed determinant inequalities for accretive-dissipative matrices, Math. Inequal. Appl., 12 (2012), 955-958.
- [10] M. Lin, Fischer type determinant inequalities for accretive-dissipative matrices, Linear Algebra Appl., 438 (2013), 2808-2812.
- [11] M. Lin, D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl., 407 (2013), 436-442.
- [12] X. Zhan, Singular values of difference of positive semidefinite matrices, SIAM J. Matrix Anal. Appl., 22 (2000), 819-823.
- [13] X. Zhan, *Matrix theory*, Beijing: Higher Education Press, 2008. (In Chinese)
- [14] Y. Zhang, Unitarily invariant norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl., 412 (2014), 564-569.

Accepted: 25.01.2018