On coefficient inequalities for certain subclasses of meromorphic bi-univalent functions

Amol B. Patil
Department of First Year Engineering
AISSMS’s, College of Engineering
Pune-411001
India
amol223patil@yahoo.co.in

Uday H. Naik
Department of Mathematics
Willingdon College
Sangli-416415
India
naikpawan@yahoo.com

Abstract. In the present paper, we investigate and define two subclasses of meromorphic bi-univalent function class Σ' which are defined on the domain $U^{*} = \{ z \in \mathbb{C} : 1 < |z| < \infty \}$. Further, by using the well-known coefficients estimates of the Carathéodory functions (i.e functions with positive real part) we obtain the estimates on the coefficients $|b_0|$, $|b_1|$ and $|b_2 + b_3|$ for functions in these subclasses.

Keywords: analytic function, meromorphic function, univalent function, bi-univalent function, meromorphic bi-univalent function.

1. Introduction

Let the class $A = \{ f : U \to \mathbb{C} : f \text{ is analytic in } U \text{ and } f(0) = f'(0) - 1 = 0 \}$ and its subclass $S = \{ f : U \to \mathbb{C} : f \in A \text{ and also univalent in } U \}$ where $U = \{ z \in \mathbb{C} : |z| < 1 \}$ be the open unit disk and such functions $f \in A$ have the form:

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k.
\]

(1.1)

In 1972, Ozaki and Nunokawa [14] proved the following Lemma (univalence criterion). In fact, this result is appeared in the paper by Aksentev [1] (also see the paper by Aksentëv and Avhadiev [2]).

Lemma 1.1. If for $f(z) \in A$

\[
\frac{z^2 f'(z)}{(f(z))^2} - 1 < 1 \quad (z \in U),
\]

* Corresponding author
then \(f(z) \) is univalent in \(U \) and hence \(f(z) \in \mathcal{S} \).

Also, a function \(f(z) \in \mathcal{A} \) is said to be in the class \(\mathcal{T}(\mu) \), \((0 < \mu \leq 1) \) if

\[
\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| < \mu \quad (z \in U)
\]

and \(\mathcal{T}(1) = \mathcal{T} \). Clearly, \(\mathcal{T}(\mu) \subset \mathcal{T} \subset \mathcal{S} \). Further (see Kuroki et al. [10]), for \(f(z) \in \mathcal{T}(\mu) \) see that:

\[
\Re \left(\frac{z^2 f'(z)}{(f(z))^2} \right) > 1 - \mu \quad (z \in U).
\]

In particular, for initial coefficient estimates of bi-univalent function classes \(\mathcal{T}_\Sigma(\mu) \) and \(\mathcal{T}_E^\Sigma \), see the paper by Naik and Patil [12].

In 1967, Lewin [11] introduced and studied the bi-univalent function class \(\Sigma \). After which some researchers (viz. \[3, 13\]) found the initial coefficient estimates for the functions in \(\Sigma \). Later, Srivastava et al. [17] revived it for the subclasses of \(\Sigma \). Recently, the concept of bi-univalent functions is extend to meromorphic bi-univalent functions.

Let \(\mathcal{S}' \) denote the class of meromorphic univalent functions \(g \) of the form:

\[
g(z) = z + \sum_{n=0}^{\infty} \frac{b_n}{z^n},
\]

defined on the domain \(U^* = \{ z : z \in \mathbb{C}, 1 < |z| < \infty \} \). Clearly, \(g \in \mathcal{S}' \) has an inverse say \(g^{-1} \), defined by:

\[
g^{-1}(g(z)) = z, \quad (z \in U^*)
\]

and

\[
g(g^{-1}(w)) = w, \quad (0 < M < |w| < \infty),
\]

which has a series expansion of the form:

\[
g^{-1}(w) = h(w) = w + \sum_{n=0}^{\infty} \frac{c_n}{w^n}, \quad (0 < M < |w| < \infty).
\]

Some simple computations using equation (1.2) shows that:

\[
(1.3) \quad g^{-1}(w) = h(w) = w - b_0 - \frac{b_1}{w} - \frac{b_2 + b_0b_1}{w^2} - \frac{b_3 + 2b_0b_2 + b_0^2b_1 + b_1^2}{w^3} + \cdots.
\]

Let \(\Sigma' = \{ g \in \mathcal{S}' : \text{both } g \text{ and } g^{-1} \text{ are meromorphic univalent in } U^* \} \) denote the class of all meromorphic bi-univalent functions in \(U^* \). Recently the coefficient estimate on functions of various subclasses of \(\Sigma' \) were obtained by some researchers viz. Halim et al. [6], Hamidi et al. [7, 8], Panigrahi [15], Janani
and Murugusundaramoorthy [9], Bulut [4], etc. In the present investigation, we define two new subclasses of the function class \(\Sigma' \) and obtain the estimate on \(|b_0|, |b_1| \) and \(|b_2 + b_3^2| \) for the functions in these new subclasses.

We need to recall the Carathéodory lemma in the following form to prove our main results (see [5], [16]).

Lemma 1.2. If \(p(z) \in \mathcal{P} \), the class of all functions analytic in \(\mathbb{U}^* \), for which

\[
\Re(p(z)) > 0,
\]

then \(|p_n| \leq 2 \) for each \(n \in \mathbb{N} := \{1, 2, 3, \ldots\} \), where

\[
p(z) = 1 + \frac{p_1}{z} + \frac{p_2}{z^2} + \frac{p_3}{z^3} + \cdots, \quad (z \in \mathbb{U}^*).
\]

2. Coefficient estimates

Definition 2.1. A function \(g(z) \in \Sigma' \) given by (1.2) is said to be in the class \(\mathcal{T}_{\Sigma'}(\mu) \) if the following conditions are satisfied:

\[
\Re \left(\frac{z^2 g'(z)}{(g(z))^2} \right) > 1 - \mu, \quad (z \in \mathbb{U}^*; \ 0 < \mu \leq 1)
\]

and

\[
\Re \left(\frac{w^2 h'(w)}{(h(w))^2} \right) > 1 - \mu, \quad (w \in \mathbb{U}^*; \ 0 < \mu \leq 1),
\]

where the function \(h \) is an inverse of \(g \) given by (1.3).

Theorem 2.2. Let the function \(g(z) \in \Sigma' \) given by (1.2) be in the class \(\mathcal{T}_{\Sigma'}(\mu) \), where \(0 < \mu \leq 1 \). Then,

\[
|b_0| \leq \begin{cases}
\mu; & (0 < \mu \leq \frac{3}{2}) \\
\frac{\mu}{3}; & (\frac{3}{2} \leq \mu \leq 1)
\end{cases}
\]

(2.1)

\[
|b_1| \leq \frac{2\mu}{3},
\]

(2.2)

\[
|b_2 + b_3^2| \leq \frac{\mu}{2}.
\]

(2.3)

Proof. Let the function \(g(z) \in \mathcal{T}_{\Sigma'}(\mu) \). See that clearly, the conditions given in the definition of meromorphic bi-univalent function class \(\mathcal{T}_{\Sigma'}(\mu) \) can be written as:

\[
\frac{z^2 g'(z)}{(g(z))^2} = (1 - \mu) + \mu s(z)
\]

(2.4)
\[w^2 \frac{h'(w)}{(h(w))^2} = (1 - \mu) + \mu t(w), \]

where \(s(z), t(w) \in \mathbb{P} \) have the form:

\[s(z) = 1 + \frac{s_1}{z} + \frac{s_2}{z^2} + \frac{s_3}{z^3} + \cdots, \quad (z \in \mathbb{U}^{*}) \]

and

\[t(w) = 1 + \frac{t_1}{w} + \frac{t_2}{w^2} + \frac{t_3}{w^3} + \cdots, \quad (w \in \mathbb{U}^{*}). \]

Hence we have:

\[(1 - \mu) + \mu s(z) = 1 + \frac{\mu s_1}{z} + \frac{\mu s_2}{z^2} + \frac{\mu s_3}{z^3} + \cdots \]

and

\[(1 - \mu) + \mu t(w) = 1 + \frac{\mu t_1}{w} + \frac{\mu t_2}{w^2} + \frac{\mu t_3}{w^3} + \cdots. \]

Also, using (1.2) and (1.3) we obtain:

\[\frac{z^2 g'(z)}{(g(z))^2} = 1 - \frac{2b_0}{z} + \frac{3 \left(b_0^2 - b_1\right)}{z^2} + \frac{8b_0b_1 - 4b_2 - 4b_0^3}{z^3} + \cdots \]

and

\[\frac{w^2 h'(w)}{(h(w))^2} = 1 + \frac{2b_0}{w} + \frac{3 \left(b_0^2 + b_1\right)}{w^2} + \frac{12b_0b_1 + 4b_2 + 4b_0^3}{w^3} + \cdots. \]

Now, equating the coefficients in (2.4) and (2.5) we get:

\[-2b_0 = \mu s_1, \]

\[3 \left(b_0^2 - b_1\right) = \mu s_2, \]

\[8b_0b_1 - 4b_2 - 4b_0^3 = \mu s_3, \]

\[2b_0 = \mu t_1, \]

\[3 \left(b_0^2 + b_1\right) = \mu t_2, \]

\[12b_0b_1 + 4b_2 + 4b_0^3 = \mu t_3. \]

Clearly, equation (2.8) and (2.11) in light of Lemma 1.2 gives:

\[|b_0| \leq \mu. \]
Also by adding (2.9) in (2.12), we obtain:

\[6b_0^2 = \mu (s_2 + t_2) \]

which, by using Lemma 1.2 gives:

\[|b_0^2| \leq \frac{2\mu}{3}. \]

Equation (2.14) and (2.15) together yields:

\[|b_0| \leq \min \left\{ \mu, \sqrt{\frac{2\mu}{3}} \right\}, \]

which, for \(0 < \mu \leq 1 \) gives the desired result (2.1).

Now, by subtracting (2.9) from (2.12), we get:

\[6b_1 = \mu (t_2 - s_2) \]

which, by using Lemma 1.2 gives:

\[|b_1| \leq \frac{2\mu}{3}. \]

This is the desired result (2.2).

Finally, for the last inequality subtracting (2.10) from (2.13), we get:

\[4b_0b_1 + 8b_2 + 8b_0^3 = \mu (t_3 - s_3). \]

Also, by adding (2.10) in (2.13), we get:

\[20b_0b_1 = \mu (s_3 + t_3). \]

Eliminating \(b_0b_1 \) from (2.17) and (2.18), we obtain:

\[40 \left(b_2 + b_0^3 \right) = \mu (4t_3 - 6s_3) \]

which, in light of Lemma 1.2, yields the desired inequality (2.3).

This completes the proof of Theorem 2.2.

Definition 2.3. A function \(g(z) \in \Sigma' \) given by (1.2) is said to be in the class \(\mathcal{T}_g' \) if the following conditions are satisfied:

\[\left| \arg \left(\frac{z^2g'(z)}{(g(z))^2} \right) \right| < \frac{\alpha \pi}{2} \quad (z \in \mathbb{U}^*; 0 < \alpha \leq 1) \]

and

\[\left| \arg \left(\frac{w^2h'(w)}{(h(w))^2} \right) \right| < \frac{\alpha \pi}{2} \quad (w \in \mathbb{U}^*; 0 < \alpha \leq 1), \]

where the function \(h \) is an inverse of \(g \) given by (1.3).
Theorem 2.4. Let the function \(g(z) \in \Sigma' \) given by (1.2) be in the class \(T_{\Sigma'}^0 \), where \(0 < \alpha \leq 1 \). Then,

\[
|b_0| \leq \sqrt{\frac{2}{3}} \alpha, \\
|b_1| \leq \frac{2}{3} \alpha^2, \\
|b_2 + b_0^3| \leq \frac{\alpha (2\alpha^2 + 1)}{6}.
\]

Proof. Since \(g(z) \in T_{\Sigma'}^0 \); for \(s(z), t(w) \in \mathcal{P} \) the conditions given in the definition of the function class \(T_{\Sigma'}^0 \) can be written as:

\[
\frac{z^2 g'(z)}{(g(z))^2} = [s(z)]^\alpha
\]
and
\[
\frac{w^2 h'(w)}{(h(w))^2} = [t(w)]^\alpha,
\]
where \(s(z) \) and \(t(w) \) have the form as given in (2.6) and (2.7), respectively.

Clearly, we have:

\[
[s(z)]^\alpha = 1 + \frac{\alpha s_1}{z} + \frac{\frac{1}{2} \alpha (\alpha - 1) s_1^2 + \alpha s_2}{z^2} + \frac{\frac{1}{6} \alpha (\alpha - 1)(\alpha - 2) s_1^3 + \alpha (\alpha - 1) s_1 s_2 + \alpha s_3}{z^3} + \ldots
\]
and

\[
[t(w)]^\alpha = 1 + \frac{\alpha t_1}{w} + \frac{\frac{1}{2} \alpha (\alpha - 1) t_1^2 + \alpha t_2}{w^2} + \frac{\frac{1}{6} \alpha (\alpha - 1)(\alpha - 2) t_1^3 + \alpha (\alpha - 1) t_1 t_2 + \alpha t_3}{w^3} + \ldots.
\]

Also, just as in proof of Theorem 2.2 we have:

\[
\frac{z^2 g'(z)}{(g(z))^2} = 1 - \frac{2b_0}{z} + \frac{3 \left(b_0^2 - b_1 \right)}{z^2} + \frac{8b_0b_1 - 4b_2 - 4b_0^3}{z^3} + \ldots
\]
and
\[
\frac{w^2 h'(w)}{(h(w))^2} = 1 + \frac{2b_0}{w} + \frac{3 \left(b_0^2 + b_1 \right)}{w^2} + \frac{12b_0b_1 + 4b_2 + 4b_0^3}{w^3} + \ldots.
\]

Now, equating the coefficients in (2.22) and (2.23) we get:

\[
-2b_0 = \alpha s_1,
\]
\begin{align*}
(2.25) \quad 3 \left(b_0^2 - b_1 \right) &= \frac{1}{2} \alpha (\alpha - 1) s_1^2 + \alpha s_2, \\
(2.26) \quad 8b_0b_1 - 4b_2 - 4b_0^3 &= \frac{1}{6} \alpha (\alpha - 1) (\alpha - 2) s_1^3 + \alpha (\alpha - 1) s_1 s_2 + \alpha s_3, \\
(2.27) \quad 2b_0 &= \alpha t_1, \\
(2.28) \quad 3 \left(b_0^2 + b_1 \right) &= \frac{1}{2} \alpha (\alpha - 1) t_1^2 + \alpha t_2, \\
(2.29) \quad 12b_0b_1 + 4b_2 + 4b_0^3 &= \frac{1}{6} \alpha (\alpha - 1) (\alpha - 2) t_1^3 + \alpha (\alpha - 1) t_1 t_2 + \alpha t_3.
\end{align*}

Clearly, equation (2.24) and (2.27) in light of Lemma 1.2 gives:
\begin{equation}
(2.30) \quad |b_0| \leq \alpha.
\end{equation}

Also by adding (2.25) in (2.28), we obtain:
\begin{equation*}
6b_0^2 = \frac{1}{2} \alpha (\alpha - 1) (s_1^2 + t_1^2) + \alpha (s_2 + t_2)
\end{equation*}
which, by using Lemma 1.2 gives:
\begin{equation}
(2.31) \quad |b_0^2| \leq \frac{2}{3} \alpha^2.
\end{equation}

Obviously, from (2.30) and (2.31) we can write:
\begin{equation*}
|b_0| \leq \sqrt{\frac{2}{3}} \alpha \leq \alpha; \quad (0 < \alpha \leq 1).
\end{equation*}

This gives the desired result (2.19).

Now, by subtracting (2.25) from (2.28), we get:
\begin{equation*}
6b_1 = \frac{1}{2} \alpha (\alpha - 1) (t_1^2 - s_1^2) + \alpha (t_2 - s_2)
\end{equation*}
which, by using Lemma 1.2 gives:
\begin{equation*}
|b_1| \leq \frac{2}{3} \alpha^2.
\end{equation*}

This is the desired result (2.20).

Finally, subtracting (2.26) from (2.29), we get:
\begin{equation}
(2.32) \quad 24 \left(b_0b_1 + 2b_2 + 2b_0^3 \right) = \alpha (\alpha - 1) (\alpha - 2) (t_1^3 - s_1^3) + 6\alpha (\alpha - 1) (t_1 t_2 - s_1 s_2) + 6\alpha (t_3 - s_3).
\end{equation}
Also, by adding (2.26) in (2.29), we get:

\[(2.33) \quad 120 b_0 b_1 = \alpha (\alpha - 1)(\alpha - 2)(s_1^3 + t_1^3) + 6\alpha (\alpha - 1)(s_1 s_2 + t_1 t_2) + 6\alpha (s_3 + t_3).\]

Eliminating \(b_0 b_1\) from (2.32) and (2.33), we obtain:

\[
240 \left(b_2 + b_0^3 \right) = \alpha (\alpha - 1)(\alpha - 2)(4t_1^3 - 6s_1^3) + 6\alpha (\alpha - 1)(4t_1 t_2 - 6s_1 s_2) + 6\alpha (4t_3 - 6s_3)
\]

which, in light of Lemma 1.2, yields the desired inequality (2.21).

This completes the proof of Theorem 2.4.

\[\square\]

3. Conclusion

It is interesting that, for functions in both the subclasses \(T_{\Sigma}^{\prime}(\mu)\) and \(T_{\Sigma}^{\prime}\), \((0 < \mu, \alpha \leq 1)\); all the coefficient inequalities are similar in the following sense:

\[
\max_{g \in \Sigma} \left| b_0 \right| \leq \sqrt{\frac{2}{3}},
\]

\[
\max_{g \in \Sigma} \left| b_1 \right| \leq \frac{2}{3},
\]

\[
\max_{g \in \Sigma} \left| b_2 + b_0^3 \right| \leq \frac{1}{2}.
\]

References

Accepted: 20.01.2018