A new view of closed-CS-module

Majid Mohammed Abed
Department of Mathematics
Faculty of Education For Pure Sciences
Universiti of Anbar
Al-anbar, Iraq
m_m_ukm@gmail.com

Abstract. This paper give a new fact about the extending module. A module M is called extending if every closed submodule N of M is a direct summand. Study of the concepts complement closed submodule (Closed-N)c is achieved. Also we expose to a new way to obtain generalization of extending module by complement closed submodule.

Keywords: extending module, essential submodule, closed submodule, exact sequence.

1. Introduction

In (1976), Goodearl introduced the definition of complement closed submodule and Dungh, Huynh, Smith and Wisbauer [1], studied the extending modules. Wang [5] studied closed-CS-module. A submodule A of M is called essential submodule if A∩K≠0 for every non-zero submodule K of M, equivalently A is a essential in M if and only if every non-zero element of M has a non-zero multiple in A. Therefore if every submodule is essential in a direct summand of M, then M is called extending module. A module M is called extending if every closed submodule N of M is a direct summand of M. Extending modules has been studied in [1] and [2]. Let Z(M)= {IₓM:Iₓ=0, for some ideal I₆ess R}. If Z(M)=M, then M is a singular. Thus we can define another set: Let M/N be a quotient module and let Z(M/N)= {a+IₓM/N:Iₓ=0, for some ideal I₆ess R}. If Z(M/N)=M/N, then M/N is singular. Therefore if Z(M/N)≠M/N, this means the quotient module M/N is non singular.

Remark 1.1. (a) We denote (Closed-N)c to complement closed submodule N of M.
(b) Every semisimple R-module is an extending module. For example Z6 as Z-module.
(c) Not every module M has closed submodule is extending; for example; the module M=Z8⊕Z2 as a Z-module. Let A=(2,1) be the submodule generated by (2,1). Clear that A is closed in M but not a summand. Hence M is not extending.
(d) Let us take (Closed-B)c belong to A; where A and B are submodules in an R-Module M. Then (2,1) is essential in M.
(e) Every (Closed-N)c is closed.
Theorem 1.2. Any module K is singular if and only if there exists a short exact sequence

$$0 \rightarrow N \rightarrow L \rightarrow K \rightarrow 0$$

such that f is an essential monomorphism between N and L.

Definition 1.3. (see [4]) Let M be a module. Then M is called closed-CS-module (generalization of extending module) if for every submodule N of M; the quotient module $\frac{M}{N}$ is non singular and is direct summand of M. (i.e. M has $(\text{Closed-}N)^c$ and direct summand of M).

This paper, contain two main sections. In the first section we give some properties of $(\text{Closed-}N)^c$ and in the second section the closed-CS-module is investigated. We prove if K is maximal $(\text{Closed-}K)^c$ of M, then $\frac{M}{K}$ is a projective and K is a direct summand of M. (see Proposition 2.13). On the other hand, we prove that an R-module M is closed-CS-module iff for every $(\text{Closed-}N)^c$ of M, there is a decomposition $M=M_1 \oplus M_2$ such that A is a subset of M_1 and $A^c = M_2 \subseteq M$. (see Theorem 3.5).

2. Complement closed submodule

Let N be a submodule of an R-module $M (N \subseteq M)$. Then we can denote $(\text{Closed-}N)^c$ of M to the complement closed submodule N and (closed-CS-module) means M has $(\text{Closed-}N)^c$. If every $(\text{Closed-}N)^c$ of M is a direct summand, then we obtain a generalization of extending module M (closed-CS-module).

Remark 2.1. If the quotient module $\frac{M}{N}$ is non singular, then N is a $(\text{Closed-}N)^c$.

Definition 2.2. For $N \subseteq M$ and $L \subseteq N$ such that $L \lhd N$, then $M = \frac{N}{L}$. So, if we have N as a module, then N is called generalization of extending module if the quotient module $\frac{N}{L}$ is non singular and is a direct summand in M.

Note that, if $(\text{Closed-}N)^c$ is a subset of M, then N subset of $(\text{Closed-}K)^c$ and from the second isomorphism theorem, we have; N subset of $(\text{Closed-}N)^c + K \iff (N \cap K)$ is a subset of $(\text{Closed-}K)^c$. Also, by the third isomorphism theorem we can say: N is a subset of K and K is a subset of $M \implies K$ is a subset of $(\text{Closed-}N)^c$ of $M \iff K$ is a subset of $(\text{Closed-}K)^c$.

Lemma 2.3. Let M be an R-module and let $B\alpha$ in Λ, be an independent family of submodules of M and $A\alpha$ is a subset of $B\alpha$, for all α in Λ. Then $\prod A\alpha$ is a subset of $(\text{Closed-}N)^c$ of $B\alpha$ if and only if $A\alpha$ is a subset of $(\text{Closed-}N)^c$ of $B\alpha$, for all α in Λ.

Proof. Suppose that $\prod A\alpha$ is a subset of $\prod B\alpha$. We have, $\frac{B\alpha}{A\alpha} \cong \frac{B\alpha}{A\alpha}$. Then $A\alpha$ subset of $(\text{Closed-}N)^c$ of $B\alpha$, for all α in Λ. Conversely, $A\alpha$ is a subset of $(\text{Closed-}N)^c$ of $B\alpha$, for all α in Λ. Then $\frac{B\alpha}{A\alpha}$ is non-singular, for all $\alpha \in \Lambda$ and hence $\frac{B\alpha}{A\alpha}$ is non-singular. But $\frac{B\alpha}{A\alpha} \cong \frac{B\alpha}{A\alpha}$. So $A\alpha$ is a subset of $(\text{Closed-}N)^c$ of $\prod B\alpha$. □
Theorem 2.4. Let M be an R-module and let N and K are submodules of M. Then $(N \cap K)$ is a subset of $(\text{Closed}(N))^c$ in M.

Proof. Let N be a subset of $(\text{closed-CS-module})$ and let K be a subset of (closed-CS-M). We must prove that $(N \cap K)$ is a subset of $(\text{Closed}(N))^c$ in M. Let us take an element $m \in M$ such that $m+N \cap K$ belong to $Z(M/N \cap K)$. Thus Annihilator of $(m+N \cap K)$ is a subset of (eR). Since Annihilator of $(m+N \cap K)$ is a subset of Annihilator of $(m+N)$, then Annihilator of $(m+N)$ is a subset of (eR). We have $Z(M/N)=0$, therefore $m+N=N$. Similar, we get $m+K=K$. Thus m belong to $N \cap K$ and then $Z(M/N \cap K)=0$.

Lemma 2.5. Let L and K be a submodules of an R-module M. If L is a subset of $(\text{Closed}(K))^c$ and K is a subset of $(\text{closed-CS-module})$, then L is a subset of $(\text{closed-CS-module})$.

Proof. Let L be a subset of $(\text{Closed}(K))^c$ and let K be a subset of $(\text{closed-CS-module})$. Let us take short exact sequence:

$$0 \rightarrow \left(\frac{K}{L} \right) \rightarrow \left(\frac{M}{L} \right) \rightarrow \left(\frac{M}{L}/\left(\frac{K}{L} \right) \right) \rightarrow 0.$$

Such that i is the inclusion map from $(\frac{K}{L})$ into $(\frac{M}{L})$ and π is the natural epimorphism from $(\frac{M}{L})$ into $(\frac{M}{L}/\left(\frac{K}{L} \right))$. Since L is a subset of K and K is a subset of $(\text{closed-CS-module})$, then $(\frac{K}{L})$ is a subset of $(\text{Closed}(N))^c$ of $(\frac{M}{L})$, (see Theorem 2.4). Since $(\frac{K}{L})$ and $(\frac{M}{L}/\left(\frac{K}{L} \right))$ are non-singular, then $(\frac{M}{L})$ is non-singular.

Let M be an R-module such that L subset of K and K subset of M. If K subset of $(\text{Closed}(N))^c$ of M, then L need not be $(\text{Closed}(N))^c$. See the following example:

Example 2.6. Consider Z as Z-module, it is clear that Z subset of $(\text{Closed}(N))^c$ of Z. But $Z(2Z \leq Z)=Z(Z_2)=Z_2$ is singular. On the other hand, if L subset of $(\text{Closed}(N))^c$ of M, then K need not be $(\text{Closed}(K))^c$.

Example 2.7. Let 0 subset of $2Z$ and $2Z$ subset of Z. Clearly 0 subset of (closed-CS-Z). But $Z(\frac{Z}{2Z})=Z(Z_2)=Z_2$ is singular. Also, an epimorphic image of an (Closed-N)c need not be (closed-CS-module). We have the natural epimorphism $\pi:Z \rightarrow \frac{Z}{2Z}$. That is means 0 subset of (Closed-N)c of Z. On the other hand, since $\frac{Z}{2Z} \cong Z_4$ is a singular imply the image of zero always equal zero and moreover it is not (closed-CS-$\frac{Z}{2Z}$).

Proposition 2.8. Let $\lambda: M \rightarrow N$ be an epimorphism and L subset of (closed-CS-module). If ker(f) subset of L, then $f(L)$ subset of $(\text{Closed}(N))^c$.

Proof. Assume that L subset of (closed-CS-module). To show that $f(L)$ subset of (Closed-N)c. Let n belong to N such that Annihilator($n+f(L)$) subset of eR. Since f is an epimorphism, then $n=f(m)$, for some $m \in M$. Since ker(f) subset of L, then Annihilator($n+f(L)$) subset of Annihilator($m+L$) and hence Annihilator($n+f(L)$) subset of eR. But L subset of (Closed-N)c of M, so $m \in L$. Thus $n=f(m) \in f(L)$.
Theorem 2.9. Let \(\lambda : M \rightarrow N \) be an \(R \)-homomorphism and \(K \) \((\text{Closed-N})^c\), then for every singular submodule \(L \) of \(M \), \(f(L) \) subset of \(K \).

Proof. Let \(\mu : N \rightarrow \frac{N}{K} \) be the natural epimorphism. Let \(\mu \circ \lambda : M \rightarrow \frac{N}{K} \). Now \(\mu \circ \lambda|_{L} : L \rightarrow \frac{N}{K} \). But \(N \) is a singular and \(\frac{N}{K} \) is non-singular. Thus \(\mu \circ \lambda|_{L} = 0 \). So \(\mu(\lambda(L)) = 0 \) and hence \(\lambda(L) \) subset of \(\ker(\mu) = K \).

As a result from Theorem 2.9, we introduce the following good corollary.

Corollary 2.10. If \(N \) is a module and \(K \) subset of \((\text{Closed-N})^c\). Then \(\frac{\text{Hom}(M,N)}{M} \) subset of \(K \), such that \(Z(M) = M \).

Example 2.11. Suppose that \(M \) is an \(R \)-module. Let \(L \) subset of \((\text{closed-CS-module})\). Then \(Z(M) = Z(L) \).

Proof. We must prove that \(Z(M) \) is a subset of \(Z(L) \). Let \(i: Z(M) \rightarrow M \) be the inclusion map and \(\mu : M \rightarrow \frac{M}{L} \) be the natural epimorphism from \(M \) into \(\frac{M}{L} \). We take the map \(\mu \circ i : Z(M) \rightarrow \frac{M}{L} \). Since \(Z(M) \) is a singular and \(\frac{M}{L} \) is non-singular, then \(\mu \circ i = 0 \). So \(\mu \circ i (Z(M)) = 0 \). Thus \(Z(M) \) is a subset of \(\ker(\mu) = L \).

We know that \(Z(L) = Z(M) \backslash A \). So \(Z(L) = Z(M) \).

Theorem 2.12. Let \(M \) be an \(R \)-module and let \(L \subseteq K \subseteq M \) and \(N \subseteq (\text{closed-CS-module}) \), then \(\frac{M}{K} \) is a singular if and only \(K \) subset of \((\text{closed-CS-module})\).

Proof. Let \(L \) subset of \((\text{Closed-N})^c \) of \(M \) and \(\frac{M}{K} \) is singular. By the third isomorphism theorem \(\frac{M}{K} \cong \frac{\frac{M}{L}}{\frac{K}{L}} \). Since \(\frac{M}{K} \) is non-singular, then \(\frac{\frac{M}{L}}{\frac{K}{L}} \) subset of \((\text{closed-CS-module}) \). Let \(\mu : M \rightarrow \frac{M}{K} \) be the natural epimorphism. We have \(K = \mu^{-1}(\frac{K}{L}) \) is a subset of \(\mu^{-1}(\frac{M}{L}) = M \). The converse is clear by [3].

Proposition 2.13. Let \(M \) be an \(R \)-module and \(K \) is maximal \((\text{Closed-K})^c \) of \(M \). Then \(\frac{M}{K} \) is projective and \(K \) is a direct summand of \(M \).

Proof. Since \(K \) is maximal submodule of \(M \), then \(\frac{M}{K} \) is simple and hence semisimple. But \(\frac{M}{K} \) is non-singular, therefore \(\frac{M}{K} \) is projective. Now consider the following short exact sequence \(0 \rightarrow K \rightarrow M \rightarrow \frac{M}{K} \rightarrow 0 \): where \(i \) is the inclusion map and \(\pi \) is the natural epimorphism from \(M \) into \(\frac{M}{K} \). Since \(\frac{M}{K} \) is projective, then the sequence is splits, (see [6]). Thus \(K \) is a direct summand of \(M \). Let \(M \) be an \(R \)-module and \(N \) subset of \(M \). Recall that the residual of \(M \) in \(N \) (denoted by \([N:M]\)) is defined as follows: \([N:M] = r \in R, rM \subseteq N\), (see [7]).

3. Closed-CS-module

In this section, we introduce main theorems which explain the new ways to obtain a generalization of extending module.

Proposition 3.1. Let \(M \) be a \((\text{Closed-N})^c \) and \(N \leq M \), then the quotient module is a \((\text{Closed-N})^c \) of \(M \).
Proof. Let $\frac{K}{N}$ subset of $(\text{Closed-N})^c$ of $\frac{M}{N}$. Then by Theorem 2.4 and Lemma 2.5, K is a subset of $(\text{Closed-N})^c$ in M. But M is a closed-CS-module. (i.e. has $(\text{Closed-N})^c$) of M, therefore $M=N \oplus K$, K is a subset of M. Since N is a subset of K, then one can easily show that $\frac{M}{N}=(\frac{K}{N}) \oplus (\frac{K+N}{N})$. Thus $\frac{M}{N}$ is a closed-CS-module.

Recall that a module M is called closed-CS-module if for any submodule N of M, there is a direct summand K of M such that N is a subset of K and $\frac{K}{N}$ is singular.

Let N subset of $(\text{Closed-N})^c$. Since M is $(\text{Closed-N})^c$, then there exists a direct summand K of M such that N is a subset of K and $Z(\frac{K}{N})=(\frac{K}{N})$; $(\frac{K}{N}$ is a singular). But $\frac{K}{N}$ is a subset of $\frac{M}{N}$, so is non-singular. Thus $K=N$. So any $(\text{Closed-M})^c$ is closed-CS-module.

Theorem 3.2. An R-module M is a closed-CS-module if and only if for every N submodule of M, $(\text{Closed-N})^c$, there is a decomposition $M=M_1 \oplus M_2$ such that N is a subset of M_1 and M_2 is a complement of N in M.

Proof. \implies Clear.

\leftarrow Let N be a subset of $(\text{Closed-N})^c$, then by our assumption, there exists decomposition $M=M_1 \oplus M_2$ such that N is a subset of M_1 and M_2 is a complement of N in M. So $N \oplus M_2$ is a subset of $(\text{Closed-N})^c$ of M. Thus N is a subset of $(\text{Closed-N})^c$ of M_1 and hence $Z(\frac{N}{M_1})=(\frac{N}{M_1})$; $(\frac{N}{M_1}$ is singular). But N is a subset of M_1 and N is a subset of $(\text{Closed-N})^c$ of M, therefore N is a subset of $(\text{Closed-N})^c$ of M_1, (see Theorem 2.4). Thus $N=M_1$.

Corollary 3.3. Every $(\text{Closed-L})^c$ of closed-CS-module M is closed-CS-module.

Proof. Let M be a closed-CS-module and let N be a subset of M. We must prove that N is a closed-CS-module. Let K subset of $(\text{Closed-N})^c$, then by Theorem 2.4, L is a subset of $(\text{Closed-N})^c$ of M. But M is a closed-CS-module, therefore L is a direct summand of M and hence K is a direct summand of A.

Lemma 3.4. An R-module M is closed-CS-module if and only if every $(\text{Closed-N})^c$ of M is essential in a direct summand.

Proof. \implies Clear.

\leftarrow let N subset of $(\text{Closed-N})^c$, we need to show that N is a direct summand of M. Since N subset of $(\text{Closed-N})^c$ of M, then by our assumption N is a subset of $(\text{Closed-N})^c$ of M, where D is a direct summand of M. Thus $Z(\frac{N}{M})=(\frac{N}{M})$; $(\frac{N}{M}$ is singular). But $\frac{N}{M}$ subset of $\frac{M}{N}$, therefore $\frac{N}{M}$ is non-singular. Thus $N=D$ and hence M is closed-CS-module.

Theorem 3.5. An R-module M is closed-CS-module if and only if for every $(\text{Closed-N})^c$ of M, there exists a decomposition $M=M_1 \oplus M_2$ such that N is a subset of M_1 and $N \oplus M_2$ is a subset of $(\text{Closed-N})^c$ of M.

Proof. \(\implies\) Clear.

\(\Leftarrow\) Let \(N\) be a subset of \((\text{Closed-}N)^c\) of \(M\), we need to show that \(N\) is a direct summand of \(M\). Since \(N\) is a subset of \((\text{Closed-}N)^c\) of \(M\), then by assumption there exists a decomposition \(M = M_1 \oplus M_2\) such that \(N \subseteq M_1\) and \((N \subseteq M_2)\) is a subset of \((\text{Closed-}N)^c\) of \(M\). So \(\frac{M}{(N \oplus M_2)}\) is a singular. But \(N \oplus M_1\) and \(A\) are subset of \((\text{Closed-}N)^c\) of \(M\), therefore by Theorem 2.4, \(N\) is a subset of \((\text{Closed-}N)^c\) of \(M_1\). Since \(M_2\) is a subset of \((\text{Closed-}N)^c\) of \(M_2\), then by Lemma 2.3, \((N \oplus M_2)\) is a subset of \((\text{Closed-}N)^c\) of \(M_1 \oplus M_2 = M\). So \(\frac{M}{(N \oplus M_2)}\) is non-singular. Thus \(M = N \oplus M_2\).

Proposition 3.6. An \(R\)-module \(M\) is a closed-CS-module if and only if for every direct summand \(A\) of the injective hull \(E(M)\) of \(M\) such that \((A \cap M)^c\) is a subset of \((\text{closed-CS-module})\), then \((A \cap M)\) is a direct summand of \(M\).

Proof. \(\implies\) Clear.

\(\Leftarrow\) Let \(N\) be a subset of \((\text{Closed-}N)^c\) of \(M\) and let \(K\) be a relative complement of \(N\), then \((N \setminus K)\) is a subset of \((\text{Closed-}N)^c\) of \(M\). Since \(M\) is a subset of \((\text{Closed-}N)^c\) of \(E(M)\), then \((N \setminus K)\) is a subset of \((\text{Closed-}N)^c\) of \(E(M)\). Thus \(E(N) \oplus E(K) = E(N \setminus K) = E(M)\). Since \(E(N)\) is a summand of \(E(M)\), then by our assumption \(E(N) \setminus M\) is a summand of \(M\). Now \(N\) is a subset of \((\text{Closed-}N)^c\) of \(E(N)\) and \(M\) is a subset of \((\text{Closed-}N)^c\) of \(M\), thus \(N = (N \setminus M)\) is a subset of \((\text{Closed-}N)^c\) of \(E(M) \setminus M\). Hence by Lemma 3.5, \(M\) is closed-CS-module.

Theorem 3.7. Let \(R\) be a ring, then \(R\) is a closed-CS-module if and only if every cyclic non-singular \(R\)-module is projective.

Proof. Let \(R\) be a closed-CS-ring and \(M = Ra, a \in M\) be a nonsingular \(R\)-module. Let the following be a short exact sequence.

\[
0 \to \text{Annihilator}(a) \to R \to Ra \to 0,
\]

where \(i\) is the inclusion homomorphism and \(f\) is a map defined by \(f(r) = ra, r \in R\). So \(f\) is an epimorphism and \(\ker(f)\) equal Annihilator of \((a)\). Hence from the first isomorphism theorem, Annihilator of \((a)R \cong Ra\). But \(Ra\) is non-singular, therefore Annihilator of \((a)\) subset of \((\text{Closed-}N)^c\) of \(R\). Since \(R\) is closed-CS-ring, then Annihilator of \((a)\) is a direct summand of \(R\), so the sequence is split. Thus \(R\) is equivalent to Annihilator of \((a)\) \(Ra\). Since \(R\) is projective, then \(Ra\) is projective. Conversely, let \(A\) be a \((\text{Closed-}N)^c\) of \(I\), \(I\) an ideal in \(R\), then \(\frac{R}{A}\) is non-singular. Since \(R\) is cyclic, then \(\frac{R}{A}\) is cyclic. By our assumption \(\frac{R}{A}\) is a projective. Now consider the following short exact sequence:

\[
0 \to A \to R \to AR \to 0,
\]

where \(i\) is the inclusion homomorphism and \(\pi\) is the natural epimorphism from \(R\) into \(Ra\). Since \(\frac{R}{A}\) is projective, then the sequence is split. Thus \(A\) is a summand of \(R\). Also a direct sum of closed-CS-module need not to be closed-CS-modules (see [4]).
Proposition 3.8. Let M and N be closed-CS-modules such that Annihilator of $M+\text{Annihilator of } N$ equal R. Then $M \oplus N$ is closed-CS-module.

Proof. Let A be a $(\text{Closed-N})_c$ submodule of $M \oplus N$.

Since Annihilator of $M+\text{Annihilator of } N=R$, then by the same way of the prove [9, Proposition 4.2, CH.1], $A=C \oplus D$, where C is a submodule of M and D is a submodule of N. Since $A=(C \oplus D)$ is a subset of $(\text{Closed-N})_c$ of $M \oplus N$, then C and D are $(\text{Closed-N})_c$ of M and N respectively by Lemma 2.3. But M and N are closed-CS-modules, therefore C is a summand of M and D is a summand of N. So $A=C \oplus D$ is a summand of $M \oplus N$. Thus $M \oplus N$ is a closed-CS-module. Recall that a submodule N of R-module M is called a fully invariant submodule of M, if for every endomorphism $f: M \rightarrow M$, $f(N)$ subset of N, $(N$ is fully invariant) (see [8]).

Corollary 3.9. Let $M=\bigoplus_{i \in I} M_i$ be an R-module, such that every $(\text{Closed-N})_c$ of M is fully invariant, then M is closed-CS-module if and only if M_i is closed-CS-module; $i \in I$.

Proof. \implies Clear.

\Leftarrow let S be a $(\text{Closed-N})_c$ of M. For each $i \in I$, let $\pi_i: M \rightarrow M_i$ be the projection map. Let $x \in S$, then $x=\sum m_i$, $m_i \in M_i$ and $m_i=0$ for all but finite many element of $i \in I$, $\pi_i(x)=m_i$. Since we have $(\text{Closed-S})_c$, then by our assumption, S is fully invariant and hence $\pi_i(x)=m_i \cap M_i$. So $x \in \bigotimes_i (S \cap M_i)$. Thus S subset of $\bigoplus (S \cap M_i)$. But $\bigoplus (S \cap M_i)$ subset of S, therefore $S=\bigoplus (S \cap M_i)$. Since S is a subset of $(\text{Closed-M})_c$, then by Theorem 2.4, $(S \cap M_i)$ is a subset of $(\text{Closed-N})_c$ of $M_i \forall i \in I$. But M_i closed-CS-modules for all $i \in I$, therefore $(S \cap M_i)$ is a direct summand of M_i. Thus S is a direct summand on M.

An R-module M is called a distributive module if $A \cap (B+C)=(A \cap B)+(A \cap C)$, for all submodules A, B and C of M, (see [9]).

Corollary 3.10. Let $M=M_1 \oplus M_2$ be distributive R-module. Then M is closed-CS-module if and only if M_1 and M_2 are closed-CS-module.

Proof. \implies Clear.

\iff Let K be a subset of $(\text{closed-N})_c$ in M. Since $M=M_1 \oplus M_2$, then $K=K \cap (M_1 \oplus M_2)$. But M is a distributive, therefore $K=(K \cap M_1) \oplus (K \cap M_2)$. By Lemma 2.3, $(K \cap M_1)$ is a subset of $(\text{Closed-N})_c$ of M_1 and $(K \cap M_2)$ is a subset of $(\text{Closed-N})_c$. Since M_1 and M_2 are closed-CS-modules, then $(K \cap M_1)$ is a direct summand of M_1 and $(K \cap M_2)$ is a direct summand of M_2. Clearly that $K=(K \cap M_1) \oplus (K \cap M_2)$ is a direct summand of M.

Corollary 3.11. Let M be an R-module and let N be a subset of $(\text{closed-CS}-M$. Then $[N:M]$ is a subset of $(\text{closed-CS}-R)$.
Proof. Let N be a subset of closed-CS-module. Assume that $[N:M]$ is not closed-CS-module in R. So there exists $r \in R$ such that $[N:M] \neq r+[N:M] \in Z(N \uparrow M)$. Thus rM not subset of N and hence there exists $m_0 \in M$ such that $rm_0 \notin N$. One can easily show that Annihilator of $(r+[N:M])$ is a subset of Annihilator of (rm_0+N). Since Annihilator of $(r+[N:M])$ is a subset of eR, then Annihilator of (rm_0+N) is a subset of eR. But $\frac{M}{N}$ is non-singular, therefore $rm_0+N=N$ which is contradiction.

Acknowledgments

The author would like to thank the referee, whose careful reading and thoughtful comments have helped improve the paper.

References

Accepted: 21.10.2017