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1. Introduction

All groups considered in this paper are finite and simple groups are nonabelian.
Let G be a group. For x ∈ G we denote by xG the conjugacy class of x, and by
|xG| the size of xG. Then set N(G) = {|xG|

∣∣ x ∈ G}. It is a well-established
topic to investigate the relationship between the arithmetical properties of N(G)
and the structural properties of group G. More recently, there have appeared a
number of papers addressing this research field. This paper is also a contribution
along this line, which is related to an open conjecture of John G. Thompson (ref.
to [15, Problem 12.38]):

Thompson’s conjecture. If S is a simple group and G is a group satisfying
that Z(G) = 1 and N(G) = N(S), then G ∼= S.

The prime graph of a group G is a simple graph whose vertices are the prime
divisors of |G| and where two distinct primes p and q are joined by an edge if and
only if G contains an element of order pq. Using the prime graph of simple group,
the second author proved that Thompson’s conjecture holds for all simple groups
with disconnected prime graph in 1994 (see [1], also ref. to [2, 3, 4]). For the
simple groups with connected prime graph, the conjecture has made considerable
progress in recent years. Several mathematicians had proved the conjecture is
true for the following simple groups: A10, A16, A22, U4(4), U4(5), An(q), Bn(q),
Cn(q), Dn(q),

2Dn(q), and E7(q)(see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).
A group M is said to be an almost simple related to S if and only if

S ≤ M ≤Aut(S) for some simple group S. Naturally, one can put forward the
following question: what are almost simple groups we can generalize Thomp-
son’s conjecture to? Some authors have generalized the conjecture to almost
sporadic simple groups except Aut(J2) and Aut(McL), symmetric groups Sn,
where n = p, p+1, and p is an odd prime number, projective general linear groups
PGL(2, q), the automorphism groups of Suzuki-Ree groups (see[15, 16, 17, 18]).
But they still used the second author’s method, which is only valid for the groups
with the disconnected prime graph.

In this paper, using Vasil’ev and Gorshkov’s methods, we generalized Thomp-
son’s conjecture to projective general linear groups PGL(3, q), where q ∈
{2, 3, 4, 5, 7, 8, 9, 11}. Note that PGL(3, 4) and PGL(3, 7) have the connected
prime graphs.

Our main result is the following theorem:

Main Theorem. Let G be a group with Z(G) = 1 and M one of groups
PGL(3, q), where q ∈ {2, 3, 4, 5, 7, 8, 9, 11}. If N(G) = N(M), then G ∼= M .

By [19], we get PGL(3, q) = L3(q).d, d = gcd(3, q − 1). Hence

M = PGL(3, q) =

{
L3(q), q = 2, 3, 5, 8, 9, 11,

L3(q).3, q = 4, 7.

Since simple groups L3(2), L3(3), L3(5), L3(8), L3(9), L3(11) have discon-
nected prime graphs, the second author in [1] has proved that Thompson’s
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conjecture is right for these groups. Therefore, it is enough to prove Main The-
orem for PGL(3, 4) and PGL(3, 7). We shall give the proofs on PGL(3, 4) in
Section 3 and PGL(3, 7) in Section 4.

For convenience, we denote by π(n) the set of all primes dividing n where
n is a positive integer, and then nπ to denote π-part of n for π ⊆ π(n). In
addition, for a group G, we also denote by π(G) = π(|G|), and Soc(G) the socle
of G which is a subgroup generated by all minimal normal subgroups of G. The
other notation and terminologies in this paper are standard and the reader is
referred to [19] and [21] if necessary.

2. Preliminaries

First, we cite here some known results which are useful in the sequel.

Lemma 2.1. Let K be a normal subgroup of G and G = G/K. Then
(a) If x is the image of an element x of G in the group G, then |xK |

∣∣|xG|
and |xG|

∣∣|xG|.
(b) If x ∈ G and (|x|, |K|) = 1, then CG(x) = CG(x)K/K.
(c) If x, y ∈ G, (|x|, |y|) = 1, and xy = yx, then CG(xy) = CG(x)∩CG(y).

Lemma 2.2 ([5, Lemma 4]). Let G be a group with trivial center, p ∈ π(G) and
p2 not divide n for any n ∈ N(G). Then a Sylow p-subgroup of G is elementary
abelian.

Lemma 2.3 ([9, Lemma 1.10]). Let a Sylow p-subgroup of G be of order p, x
be an element of order p, and |xG| be a number that is maximal with respect to
divisibility in N(G). Then CG(x) is abelian.

Lemma 2.4 ([9, Lemma 1.9]). Let G be a group, and p and q be two numbers
in π(G). If G satisfies the following conditions:

(a)N(G) contains no number divisible by p2 or q2;
(b)N(G) contains no number except 1 co-prime to pq;
(c)N(G) contains a number hq such that any n in N(G) not divisible by q

does not divide hq and N(G) contains no number divisible by hq and n;
(d)N(G) contains a number hp such that any l in N(G) not divisible by p

does not divide hp and N(G) contains no number divisible by hp and l.
Then Sylow p-subgroups and q-subgroups of G are cyclic groups of prime order.
In addition, G has no element of order pq.

Lemma 2.5 ([9, Lemma 1.12]). Let G be a group, K the soluble radical of
G, and G/K = S a simple group. Suppose that there exists a prime p such
that p ∈ π(G) \ π(K). Assume that an element g of order p of G satisfies the
following conditions:

(a) |gG| = |gS |, where g is the image of an element g in the group S ;
(b) the number |gG| is maximal with respect to divisibility in N(G);
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(c) the subgroup CG(g) is abelian.

Then K ≤ Z(G).

Let M be one of PGL(3, 4) and PGL(3, 7). Information on the set N(M)
and the order of M given in the next two lemmas is obtained via [19] or GAP
[22].

Lemma 2.6. Let M ∼= PGL(3, 4). Then:

(1) |M | = 26 · 33 · 5 · 7;
(2) N(M) = {n1 = 1, n2 = 32 · 5 · 7, n3 = 24 · 3 · 7, n4 = 26 · 3 · 5, n5 =

26 · 5 · 7, n6 = 26 · 32 · 5,
n7 = 22 · 33 · 5 · 7, n8 = 26 · 32 · 7, n9 = 24 · 32 · 5 · 7}.
Especially,

(3) N(M) contains no number other than n1, n4 and n6 not divisible by 7;

(4) N(M) contains no number other than n1, n3 and n8 not divisible by 5;

(5) For any n ∈ N(M) and p ∈ {5, 7}, it follows that p2 ̸ |n;
(6) |xM | = n1, x ∈ M if and only if x = 1.

Lemma 2.7. Let M ∼= PGL(3, 7). Then:

(1) |M | = 25 · 33 · 73 · 19;
(2) N(M) = {n1 = 1, n2 = 24 · 32 · 19, n3 = 3 · 72 · 19, n4 = 25 · 3 · 73, n5 =

23 · 73 · 19,
n6 = 25 ·32 ·73, n7 = 25 ·33 ·7 ·19, n8 = 2 ·32 ·73 ·19, n9 = 24 ·32 ·72 ·19, n10 =
23 · 3 · 73 · 19}.
In particular,

(3) N(M) contains no number other than n1, n4 and n6 not divisible by 19;

(4) N(M) contains no number divided by 192;

(5) |xM | = n1, x ∈ M if and only if x = 1.

Lemma 2.8. If M is one of PGL(3, 4) and PGL(3, 7), and G is a group with
Z(G) = 1 and N(G) = N(M), then |M |

∣∣|G| and π(G) = π(M).

Proof. Since the number in N(G) divides |G|, under the hypothesis we see that
|M |

∣∣|G| by Lemma 2.6 and Lemma 2.7. π(M) = π(G) is the result of Lemma
1.2.1 in [1] or Lemma 3 in [5].

Lemma 2.9. Let S be a simple group.

(i) If π(S) ⊆ {2, 3, 5, 7}, then S is isomorphic to one of simple groups of
Table 1.

(ii) If π(S) ⊆ {2, 3, 7, 19}, then S is isomorphic to one of simple groups
of Table 2.

Proof. This is an immediate consequence of Theorem 2 in [23].

For convenience, we list all the cases of S in Lemma 2.9 as well as the orders
of S, the orders of the outer automorphism of S in Table 1 and Table 2.
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Table 1. Non-abeian simple groups S with π(S) ⊆ {2, 3, 5, 7}

S Order of S |Out(S)| S Order of S |Out(S)|
A5 22 · 3 · 5 2 A9 26 · 34 · 5 · 7 2

L2(7) 23 · 3 · 7 2 J2 27 · 33 · 52 · 7 2
A6 23 · 32 · 5 22 U3(5) 24 · 32 · 53 · 7 |S3|

L2(8) 23 · 32 · 7 3 S6(2) 29 · 34 · 5 · 7 1
A7 23 · 32 · 5 · 7 2 U4(3) 27 · 36 · 5 · 7 |D8|

U3(3) 25 · 33 · 7 2 S4(7) 28 · 32 · 52 · 74 2
A8 26 · 32 · 5 · 7 2 A10 27 · 34 · 52 · 7 2

L3(4) 26 · 32 · 5 · 7 |D12| O+
8 (2) 212 · 35 · 52 · 7 |S3|

U4(2) 26 · 34 · 5 2 L2(49) 24 · 3 · 52 · 72 22

Table 2. Non-abeian simple groups S with π(S) ⊆ {2, 3, 7, 19}

S Order of S |Out(S)| S Order of S |Out(S)|
L2(7) 23 · 3 · 7 2 L2(8) 23 · 32 · 7 3
U3(3) 25 · 33 · 7 2 L3(7) 25 · 32 · 73 · 19 |S3|
U3(8) 27 · 34 · 7 · 19 |3× S3|

3. Proof of the main theorem for PGL(3, 4)

Theorem 3.1. Let G be a group with trivial center. If N(G) = N(PGL(3, 4)),
then G ∼= PGL(3, 4).

Proof. We divide the proof of this theorem into six steps.

Step 1. Sylow 5-subgroups and Sylow 7-subgroups of G are cyclic groups of
prime order and there are no elements of order 35 in G.

In view of N(G) = N(PGL(3, 4)) and Lemma 2.8, we can choose p = 5 and
q = 7, and take h5 = n6 and h7 = n8 such that G satisfies the hypotheses of
Lemma 2.4. Hence Sylow 5-subgroups and Sylow 7-subgroups of G are cyclic
groups of prime order and there are no elements of order 5 · 7 in G.

Step 2. Let g, h ∈ G be elements of orders 5 and 7, respectively. Then |gG| =
n8 = 26 · 32 · 7 and |hG| = n6 = 26 · 32 · 5, and CG(g) and CG(h) are abelian.

Since the Sylow 5-subgroup of G is order of 5 by Step 1, one has that 5 ̸
∣∣ |xG|

for any 1 ̸= x ∈ CG(g). Hence |xG| = n3 or n8 by (4) and (6) of Lemma 2.6.
Assume that |gG| = n3 = 24 · 3 · 7. Let H be a Sylow 3-subgroup of CG(g).
Then H is a nontrivial group of order |G|3/3 by Lemma 2.8. It follows that
Z(H) ̸= 1 and let 1 ̸= y ∈ Z(H). Then H ≤ CG(y), and so |yG|3 ≤ 3.
Thus |yG| = n3. Since H ≤ CG(gy), we have that |(gy)G| = n3. In view
of CG(gy) = CG(g)

∩
CG(y), we see that CG(g) = CG(y). The group CG(y)
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contains an element w from the center of a Sylow 3-subgroup of G, then |wG|
is not divisible by 3, and so |wG| = n5 = 26 · 5 · 7 by (2) of Lemma 2.6. Thus
w ̸∈ CG(g), a contradiction. It follows that |gG| = n8 = 26 · 32 · 7. Since n8 is
maximal with respect to divisibility in N(G), Lemma 2.3 implies that the group
CG(g) is abelian.

In a similar way, we can show that |hG| = n6 = 26 · 32 · 5 and CG(h) is
abelian.

In the following discussion, we assume that K is the soluble radical of a
group G, and G = G/K.

Step 3. G is non-soluble and has a unique composition factor S such that
5 · 7

∣∣|S| and S E G ≤Aut(S). Moreover, S may be isomorphic to one of the
following groups:

A7, A8, A9, L4(3), S6(2), U4(3).

Assume that 5
∣∣|K|. Then K/O{5,7}′(K) has a normal subgroup T of order 5.

Hence an element of G/O{5,7}′(K) of order 7 can act trivially on T , which implies
that G/O{5,7}′(K) contains an element of order 35, so does G, contradicting with
Step 1. Thus 5 does not divide |K| and similarly we can prove that 7 does not
divide |K|, and so G is not soluble.

Let L = S1 × S2 × · · · × Sk be the socle of G, where S1, S2, . . . , and Sk are
simple groups. Let g be an element of order 5 of G and suppose that 5 ̸∈ π(L).
Then g is of order 5 in G and induces a nontrivial outer automorphism of the
group L. Suppose that there exists i such that Sg

i ̸= Si. Without loss of

generality, we assume that i = 1. Let H = ⟨s |s = s1s
g
1s

g2

1 sg
3

1 sg
4

1 , s1 ∈ S1⟩.
Then H lies in the centralizer of the element g and is isomorphic to S1, but
the centralizer of g is abelian by Step 2, a contradiction. Hence g induces a
nontrivial outer automorphism of the group Si such that 5

∣∣|Out(Si)|. In view of
π(Si) ⊆ π(G) = {2, 3, 5, 7} and by Table 1, the prime divisors of |Out(Si)| are
less than 5, a contradiction. Therefore 5

∣∣|L| and similarly we can get 7
∣∣|L|.

If k > 1 and g ∈ Si, then Sj < CG(g) for any 1 ≤ j ≤ k, j ̸= i, but CG(g)
is abelian by Step 2, a contradiction. Thus k = 1. Let S = S1 = L, and we get
that G has a unique composition factor S such that 5 ·7

∣∣|S| and SEG ≤Aut(S).
Since {5, 7} ⊆ π(S) ⊆ {2, 3, 5, 7}, 5 ∥ |S|, and 7 ∥ |S|, we can easily get that
S can be isomorphic to one of the groups: A7, A8, A9, L3(4), S6(2), U4(3) by
Table 1.

Step 4. S ∼= L3(4).
By Step 3, S may be isomorphic to one of groups A7, A8, A9, L3(4), S6(2),

U4(3). Recall that S EG ≤Aut(S).
If S ∼= A7, then A7 E G ≤Aut(A7) = S7 by Table 1. Since 26 · 33

∣∣|G|,
24 ∥ |S7|, and 32 ∥ |S7|, we have π(K) = {2, 3}. Let g, h ∈ G be elements of
orders 5 and 7, and g, h ∈ G be the image of the element g and h, respectively.
If G ∼= A7, then

|gG| = 26 · 32 · 7, |hG| = 26 · 32 · 5,
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|gG| = 23 · 32 · 7, |hG| = 23 · 32 · 5.

Set x = g, h. Then |xG| = |xG||xK |, and so |K : CK(x)| = 23. It follows that
g, h centralize every 3−element of K, and thus there exists a 3−element y in K
such that 35

∣∣|CG(y)|. By Lemma 2.6, one has that |yG| = n1 = 1, and so y = 1,
a contradiction. If G ∼= S7, then we also can get a contradiction in a similar
way. Hence S is not isomorphic to A7.

If S ∼= A8, then A8 E G ≤Aut(A8) = S8. By [19], S has an element x of
order 6 satisfying with |xS | = 25 · 3 · 5 · 7 which does not divide any element of
N(G). Thus it is impossible that S is isomorphic to A8.

Let x be an element of order 7 in G and x be its image in G. If S is one of
A9, S6(2) and U4(3), then by [19], |xS | is a multiple of 34, so are |xG| and |xG|.
This contradicts with (2) of Lemma 2.6, and so S ∼= L3(4).

Step 5. G = G/K ∼= PGL(3, 4).
By virtue of L3(4) ≤ G/K ≤Aut(L3(4)), G may be isomorphic to one of

the following groups: L3(4), L3(4).21, L3(4).22, L3(4).23, L3(4).3 = PGL(3, 4),
L3(4).22.23, L3(4).3.21, L3(4).3.22, L3(4).D12. Let g, h ∈ G be elements of orders
5 and 7, and g, h ∈ G be the image of the element g and h, respectively.

If G ∼= L3(4), then 3
∣∣|K|, and so K ̸= 1. By Lemma 2.6 (2), Step 2 and [19],

we have that n8 is maximal in N(G), CG(g) is abelian, and |gG| = |gS | = n8.
Thus by Lemma 2.5, K ≤ Z(G) = 1, a contradiction.

If G is one of L3(4).22, L3(4).22.23, L3(4).3.21, L3(4).3.22 and L3(4).D12,
then by [22], there exists an element g of order 5 in G such that |gS |
= 8064 ̸

∣∣ |gG| = 4032, a contradiction with Lemma 2.1.
If G is one of L3(4).21 and L3(4).23, also by [22], we can find an element h of

order 7 in G such that |hS | = 5760 ̸
∣∣ |hG| = 2880, a contradiction again. Hence

G = G/K ∼= PGL(3, 4).

Step 6. K is a trivial group such that G ∼= PGL(3, 4).
Let h ∈ G, |h| = 7, and h ∈ G/K = G be the image of the element h. In

view of Lemma 2.6 (2), Step 2 and [19], we see that n6 is maximal in N(G),

CG(h) is abelian and |hG| = |hS | = |hG| = n6. Thus K ≤ CG(h). If K ̸= 1,
then h centralizes an element from the center of a Sylow p-subgroup of G for
some prime p ∈ π(K), which is impossible by Lemma 2.6. Hence K is a trivial
group, and so G ∼= PGL(3, 4).

4. Proof of the main theorem for PGL(3, 7)

Theorem 4.1. Let G be a group with trivial center. If N(G) = N(PGL(3, 7)),
then G ∼= PGL(3, 7).

Proof. We divide the proof of this theorem into eight steps.

Step 1. The Sylow 19-subgroup P of G is order of 19.
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Using Lemma 2.2 and (2) of Lemma 2.7, we derive that P is elementary
abelian. Assume that 192 divides G. Since N(G) = N(PGL(3, 7)), the cen-
tralizer of every element of G contains an element of order 19 by (4) of Lemma
2.7. Considering an element y of G such that |yG| = n2 = 24 · 32 · 19.

Suppose that 19 does not divide |y|. Let x be an element of order 19 in CG(y).
Then by (3) of Lemma 2.1, CG(xy) = CG(x)

∩
CG(y), and so lcm(|xG|, |yG|)

divides |(xy)G|. Since P is abelian, CG(x) includes P up to conjugacy. Hence
19 does not divide |xG|. It follows that |xG| is equal to n4 = 25 · 3 · 73 or
n6 = 25 ·32 ·73 by (3) and (5) of Lemma 2.7. In both cases, 25 ·32 ·73 ·19 divides
|(xy)G|, which is impossible by (2) of Lemma 2.7.

Suppose that 19 divides |y|. Let |y| = 19t. Since P is elementary abelian,
one has that gcd(19, t) = 1. Put u = y19 and v = yt. Then y = uv, and so
CG(uv) = CG(u)

∩
CG(v) by Lemma 2.1. Therefore, |vG| divides |yG| = n2 =

24 · 32 · 19. On the other hand, the element v is order of 19, and thus |vG| is
equal to n4 = 25 · 3 · 73 or n6 = 25 · 32 · 73 by Lemma 2.7, a contradiction. Hence
P has order of 19.

Step 2. For an element x ∈ G of order 19, it follows that |xG| = n6 = 25 ·32 ·73
and CG(x) is abelian.

By Step 1, for any 1 ̸= y ∈ CG(x) one has that 19 ̸
∣∣ |yG|, and hence |yG| = n4

or n6 by (3) and (5) of Lemma 2.7. Assume that |xG| = n4 = 25 · 3 · 73 and
let H be a Sylow 3-subgroup of CG(x). Then H is a nontrivial group of order
|G|3/3 by Lemma 2.8. Hence there exists a 3-subgroup K of G such that H is a
normal subgroup of K and |K/H| = 3. Then 1 ̸= H

∩
Z(K) ≤ CG(x). Taking

1 ̸= h ∈ H
∩
Z(K), we have that K ≤ CG(h), and so |hG|3 = 1. But |hG| = n4

or n6, one has that 3
∣∣|hG|, a contradiction. It follows that |xG| = n6 = 25 ·32 ·73.

Since n6 is maximal with respect to divisibility in N(G), Lemma 2.3 implies
that the group CG(x) is abelian.

Step 3. Suppose that q ∈ {2, 3, 7}, Q is a Sylow q-subgroup of G. Then
19 ̸

∣∣ |CG(x)|, x ∈ Z(Q).
Let 1 ̸= x ∈ Z(Q). Then q does not divide |xG|, and by Lemma 2.7,

|xG| = n3 = 3 · 72 · 19 while q = 2, |xG| = n5 = 23 · 72 · 19 while q = 3, and |xG|
is equal to n2 = 24 · 32 · 19 while q = 7. The Step 3 follows.

Step 4. G is non-soluble and O2, 2′(G) = O2(G).
Let K = O2(G), G = G/K, and denote by x the images of an element x

of G in G. If the statement is false, then there exists r ∈ {3, 7, 19} such that
Or(G) ̸= 1.

If O19(G) ̸= 1, then |O19(G)| = 19 by Step 1. Let Q be a Sylow 7-subgroup
of G and y ∈ Z(Q) be an element of order 7. Obviously, the subgroup O19(G)⟨y⟩
is cyclic. Hence 19 divides |CG(y)|. Since (7, |K|) = 1, Lemma 2.1(2) implies
that 19 divides |CG(y)|, which is impossible by Step 3. Thus, O19(G) = 1.

If O7(G) ̸= 1, then V = Z(O7(G)) is a nontrivial normal subgroup of G. If
x is an element of order 19 in G, then V = CV (x) × [V, x] such that x acts
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fixed-point freely on [x, V ], and then |[x, V ]| − 1 is divisible by 19. Lemma 2.1

(1) implies that |xG| is a divisor of 25 · 32 · 73, and hence |[V, x]| = |V : CV (x)|
divides 73, which implies [V, x] = 1 and V = CV (x). Let Q be a Sylow 7-
subgroup of G. Then Z(Q) has a nontrivial intersection with V and let z be of
order 7 from this intersection. Since (|K|, 7) = 1, there exists a pre-image z
of z in G such that z lies in the center of a Sylow 7-subgroup of G by Lemma
2.1 (2). Further, the centralizer of z also contains an element of order 19, which
contradicts Step 3. Therefore, O7(G) = 1.

Similarly, we can prove O3(G) = 1. The Step 4 holds.

Step 5. Let K = O2(G), G = G/K. Then every minimal normal subgroup of
G is non-soluble. Especially, Soc(G)EG .Aut(Soc(G)).

Let N be any minimal normal subgroup of G and assume that N is soluble.
Then N is an elementary ablelian p-group for some p ∈ {3, 7, 19}, and so
N ≤ Op(G). It follows that Op(G) is nontrivial, contradicts Step 4. Hence every
minimal normal subgroup of G is non-soluble. Let N1, N2, . . . , Ns be all minimal
normal subgroups of G, where s is a positive integer. Then Soc(G) = N1×N2×
· · · × Ns. We assert that CG(Soc(G)) = 1. Otherwise, 1 ̸= CG(Soc(G)) E G.
But CG(Soc(G))

∩
Soc(G)=1 because Ni(1 ≤ i ≤ s) are a direct product of

some isomorphic simple groups. Hence CG(Soc(G)) is soluble, a contradiction.
By N/C theorem, we have Soc(G)EG = G/CG(Soc(G)) .Aut(Soc(G)).

Step 6. Let L = Soc(G). Then L is a non-ableian simple group and 19
∣∣|L|.

By Step 5, we have that L is a direct product of non-ableian simple groups
of S1, S2, . . . , and Sk. Let g be an element of order 19 of G and suppose that
19 ̸∈ π(L). Then g is of order 19 in G and induces a nontrivial outer au-
tomorphism of the group L. Suppose that there exists a positive integer i
satisfying Sg

i ̸= Si. Without loss of generality, we assume that i = 1. Let

H = ⟨s |s = s1s
g
1s

g2

1 · · · sg
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1 , s1 ∈ S1⟩. Then H lies in the centralizer of the
element g and is isomorphic to S1, but the centralizer of g is abelian by Step 2,
a contradiction. Hence g induces a nontrivial outer automorphism of the group
Si such that 19

∣∣|Out(Si)|. In view of π(Si) ⊆ π(G) = {2, 3, 7, 19} and Table 2,
the prime divisors of |Out(Si)| are not greater than 5, a contradiction. Therefore
19

∣∣|L|.
If k > 1 and g ∈ Sj , then Si ≤ CG(g) for any 1 ≤ i ≤ k, i ̸= j. On the other

hand, CG(g) is abelian by Step 2, a contradiction. Therefore k = 1, and so L is
a non-ableian simple group and 19

∣∣|L|.
Step 7. L ∼= L3(7).

By Step 6 and Step 1, we have that L is a non-ableian simple group satisfying
19 ∥ |M |. Then by Table 2, L may be isomorphic to one of U3(8) and L3(7).

By Table 2 and Step 5, we see that π(Out(L)) ⊆ {2, 3} and LEG .Aut(L).
In view of K = O2(G) and 73

∣∣|G|, we have that 73 divides |L|. Hence L must
be isomorphic to L3(7).
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Step 8. G ∼= PGL(3, 7).

Let x be an element of order 19 in G and x be its image in G. It is clear that
x ∈ L. By Lemma 2.1 and [19], we have that |xL| = |xG| = |xG| = 25 · 32 · 73
such that K ≤ CG(x). If K ̸= 1, then x centralizes an element from the center
of a Sylow 2-subgroup of G, which is impossible by Step 3. Hence G = G and
L3(7)EG .Aut(L3(7)). By [22], we see that |N(G)| ̸= |N(T )| for any group T
except PGL(3, 7), where T satisfies with L3(7) ≤ T ≤Aut(L3(7)). Therefore
G ∼= PGL(3, 7).

Proof of Main Theorem. It follows directly from Theorem 3.1 and Theo-
rem 4.1.
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