Generalization of T-small submodules

Sahira M. Yaseen
Mathematics Department
College of Science
University of Baghdad
Iraq
Sahira.mahmood@gmail.com

Abstract. Let R be an associative ring with identity and let M be a unitary left R-module. A submodule N of M is called, T-small in M denoted by $N \ll_T M$, in case for any submodule $X \subseteq M$, $T \subseteq N + X$ implies that $T \subseteq X$. In this paper, we introduce the concept of GT-small submodule in M. A submodule N of an R-module M is called GT-small submodule, denoted by $N \ll_{GT} M$, in case for every essential submodule X of M, $T \subseteq N + X$ implies that $T \subseteq X$. We introduce and study the concepts GT-hollow module, GT-lifting modules and GT-supplement submodules as a generalization of T-hollow module, T-lifting modules and T-supplement submodules respectively we supply some examples and properties of these modules.

Keywords: GT-hollow module, GT-lifting module, T-small submodule, GT-supplement submodules.

1. Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules. Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If $L = M$ for every submodule L of M such that $M = N + L$, then N is called a small submodule of M and denoted by $N \ll M$ [1]. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that $M = N + K$ and $N \cap K = 0$, N is called a direct summand of M and it denoted by $N \ll M$. A submodule N of an R-module M is called an essential submodule and denoted by $N \leq_e M$ in case $K \cap N \neq 0$ for every submodule $K \neq 0$. Let M be an R-module and K be a submodule of M. K is called a G-small submodule of $M(K \leq_G M)$ if for every essential submodule T of M with the property $M = K + T$ implies that $T = M$. There are some important properties of G-small submodules in [6], [8]. The concept of small submodule has been generalized by some researchers, for this see [7, 2, 8].

In [3] the authors introduced the concept of small submodule with respect to an arbitrary submodule. Recall that a submodule N of M is called, T-small in M denoted by $N \ll_T M$, in case for any submodule $X \leq M$, $T \subseteq N + X$ implies that $T \subseteq X$.
In this paper, we introduce the concept of \(GT \)-small submodule in \(M \) as generalization of \(T \)-small submodule. A submodule \(N \) of an \(R \)-module \(M \) is called \(GT \)-small submodule in \(M \), denoted by \(N \ll_{GT} M \), in case for essential submodule \(X \) of \(M \), \(T \subseteq N + X \) implies that \(T \subseteq X \). It is clear that every \(T \)-small submodule is \(GT \)-small. We show by example that \(GT \)-small submodule of \(M \) need not be \(T \)-small submodule see(1.2). Let \(M \) be a non-zero module and \(T \) be a submodule of \(M \). \(M \) is a \(T \)-hollow module if every submodule \(K \) of \(M \) such that \(T \not\subseteq K \) is a \(T \)-small submodule of \(M \) [3]. We introduce and study the concept of \(GT \)-hollow module as a generalization of \(T \)-hollow module.

\begin{definition}
Let \(T \) be a submodule of an \(R \)-module \(M \). A submodule \(N \) of an \(R \)-module \(M \) is called \(GT \)-small submodule in \(M \), denoted by \(N \ll_{GT} M \), in case for essential submodule \(X \) of \(M \), \(T \subseteq N + X \) implies that \(T \subseteq X \).
\end{definition}

\begin{examples}
1. If \(T = 0 \), then every submodule of \(M \) is \(GT \)-small in \(M \). And if \(T = M \), then \(N \ll_{GM} M \) if and only if \(N \ll_G M \).

2. It is clear that if \(N \) is \(T \)-small submodule of \(M \) then \(N \) is \(GT \)-small submodule in \(M \), but the converse is not true in general. For example, in the \(Z \)-module \(Z_{24} \), let \(T = \{0, 8, 16\} \) and the only essential submodules in \(Z_{24} \) are \(Z_{24}, 2Z_{24} \) and \(4Z_{24} \), let \(N = 6Z_{24} \) then \(T \subseteq 6Z_{24} + 2Z_{24} \) and \(T \subseteq 2Z_{24} \) also \(T \subseteq 6Z_{24} + 4Z_{24} \) and \(T \subseteq 4Z_{24} \). Then the submodule \(6Z_{24} \) is \(GT \)-small submodule. But is not \(T \)-small, since if \(X = 3Z_{24}, T \subseteq 6Z_{24} + 3Z_{24} \) but \(T \) is not submodule of \(3Z_{24} \).

3. Let \(Z \) be the ring of integers. It is easy to see that \((0) \) is the only small submodule of \(Z \) and also for any nonzero integer \(m \), the submodule \((0) \) is the only \(GmZ \)-small submodule of \(Z \).
\end{examples}

\begin{proposition}
Let \(M \) be an \(R \)-module, \(K \leq L \leq M \) and \(L \leq_e M \) if \(K \ll_{GT} M \), then \(K \ll_{GT} L \).
\end{proposition}

\begin{proof}
Let \(T \subseteq K + X, X \leq_e L \) and \(L \leq_e M \) then \(X \leq_e M \) [9], \(K \ll_{GT} M \), then \(T \subseteq X \) so \(K \ll_{GT} L \).
\end{proof}
Proposition 2.4. Let M be an R-module with submodules $N \leq K \leq M$ and $T \leq K$. If $N \ll_{GT} K$, then $N \ll_{GT} M$.

Proof. Suppose that $T \subseteq N + X$, for some $X \leq_e M$. Then $T \subseteq (N + X) \cap K = N + (X \cap K)$. Since $N \ll_{GT} K$, $X \leq_e M$ and $K \leq_e K$, we have $T \subseteq X \cap K \subseteq X$ so $N \ll_{GT} M$. □

Proposition 2.5. Let M be an R-module with submodules N_1 , N_2 and T. Then $N_1 \ll_{GT} M$ and $N_2 \ll_{GT} M$ if and only if $N_1 + N_2 \ll_{GT} M$.

Proof. Clear. □

Proposition 2.6. Let M be an R-module with submodules $K \leq N \leq M$ and $K \subseteq T$. If $N \ll_{GT} M$, then $K \ll_{GT} M$ and $\frac{N}{K}$ is $G_{T/K}$ - small in $\frac{M}{K}$.

Proof. Suppose that $N \ll_{GT} M$ and $T \subseteq K + X$ for some $X \leq_e M$. Then $T \subseteq N + X$ and by our assumption $T \subseteq X$. Thus $K \ll_{GT} M$. Now assume that $\frac{T}{K} \subseteq \frac{N}{K} + \frac{X}{K} = \frac{N + X}{K}$ for some $K \subseteq X \subseteq M$ and $\frac{X}{K} \leq \frac{M}{K}$. Then $T \subseteq N + X$ and $X \leq_e M$ [9], so $T \subseteq X$ and $\frac{T}{K} \subseteq \frac{X}{K}$. □

Proposition 2.7. Let M be an R-module with $K_1 \leq M_1 \leq M$ and $K_2 \leq M_2 \leq M$ such that $T \subseteq M_1 \cap M_2$. Then $K_1 \ll_{GT} M_1$ and $K_2 \ll_{GT} M_2$ if and only if $K_1 + K_2 \ll_{GT} M_1 + M_2$.

Proof. Assume that $K_1 \ll_{GT} M_1$ and $K_2 \ll_{GT} M_2$. Then By Proposition 2.4 $K_1 \ll_{GT} M_1 + M_2$ and $K_2 \ll_{GT} M_1 + M_2$. And by Proposition 2.5, $K_1 + K_2 \ll_{GT} M_1 + M_2$. The other direction is clear. □

Proposition 2.8. Let M and N be an R-modules and $f : M \rightarrow N$ be an R-homomorphism. If K and T are submodules of M such that, $K \ll_{GT} M$, then $f(K) \ll_{GF(T)} N$. In particular, if $K \ll_{GT} M$, $M \subseteq N$, then $K \ll_{GT} N$.

Proof. Let $f(T) \neq 0$ and $f(T) \subseteq f(K) + X$, for some $X \leq_e N$. It is clear that $T \subseteq K + f^{-1}(X)$ and $f^{-1}(X) \leq_e M$. But Since $K \ll_{GT} M$, then $T \subseteq f^{-1}(X)$ and hence $f(T) \subseteq X$. □

Proposition 2.9. Let T_1 and T_2 be submodules of an R-module M and K be a submodule of M. If $K \ll_{GT_1} M$, and $K \ll_{GT_2} M$, then $K \ll_{G(T_1 + T_2)} M$.

Proof. Since $K \ll_{GT_1} M$, then if $T_1 \subseteq N + X$ for some $X \leq_e M$, then $T_1 \subseteq X$ and $K \ll_{GT_2} M$, then if $T_2 \subseteq N + X$ for some $X \leq_e M$, then $T_2 \subseteq X$. Thus $T_1 + T_2 \subseteq N + X$ and $T_1 + T_2 \subseteq X$ So $K \ll_{G(T_1 + T_2)} M$. □

Proposition 2.10. Let $M = H_1 \oplus H_2$ be a module with $R = ann(H_1) + ann(H_2)$. If $H_1 \ll_{GT_1} M$, and $H_2 \ll_{GT_2} M$, then $H_1 \oplus H_2 \ll_{G(T_1 \oplus T_2)} M$.

Proof. Let $T_1 \oplus T_2 \subseteq H_1 \oplus H_2 + X$, for some $X \leq_e M$ Since $R = \text{ann}(H_1) + \text{ann}(H_2)$ then $X = X_1 \oplus X_2$. By [10] $X_1 \leq_e H_1$ and $X_2 \leq_e H_2$ and $T_1 \oplus T_2 \subseteq H_1 \oplus H_2 + X_1 \oplus X_2 = (H_1 + X_1) \oplus (H_2 + X_2)$ it is clear that $T_1 \subseteq H_1 + X_1$ and $T_2 \subseteq H_2 + X_2$. Since $H_1 \ll_{GT_1} M$ and $H_2 \ll_{GT_2} M$, then $T_1 \subseteq X_1$ and $T_2 \subseteq X_2$. Thus $T_1 \oplus T_2 \subseteq X_1 \oplus X_2 \subseteq X$ and $H_1 \oplus H_2 \ll_{G(T_1 \oplus T_2)} M$. \hfill \square

Proposition 2.11. Let M be finitely generated, faithful and multiplication module, and let I, J be ideals in R. Then $I \ll_{GJ} R$ if and only if $IM \ll_{GJ} M$.

Proof. Assume; that $I \ll_{GJ} R$. Let I be an ideal of R. Then IM; is a submodule of M, Let $JM \subseteq IM + X$ for some essential submodule X of M, M is multiplication module then $X = KM$ for some ideal K of R by. Then $JM \subseteq IM + KM = (I + K)M$. Since M is finitely generated, faithful and multiplication module then by [4], $J \subseteq (I + K)$, since $KM \leq_e M$ then by [4, th.2.13] $K \leq_e R$. Since $I \ll_{GJ} R$ then $J \subseteq K$ thus $JM \subseteq KM = X$. Then $IM \ll_{GJ} M$.

Conversely, assume; that $IM \ll_{GJM} M$. Let J be an ideal of R such that $J \subseteq I + K$, $K \leq_e R$, M is multiplication module then $JM \subseteq IM + KM$ and by [4, th.2.13] $KM \leq_e M$, $IM \ll_{GJM} M$ thus $JM \subseteq KM$ so $J \subseteq K$. Then $I \ll_{GJ} R$. \hfill \square

3. The GT-hollow module

Let M be a non-zero module and T be a submodule of M. M is a T-hollow module if every submodule K of M such that $T \nsubseteq K$ is a T-small submodule of M. And that M is a G-hollow module if every submodule of M a G-small submodule of M.

Definition 3.1. Let M be a non-zero module and T be a submodule of M. We say that M is a GT-hollow module if every submodule K of M such that $T \nsubseteq K$ is a GT-small submodule of M.

Remark 3.2. (a) Let M be a non-zero module. Then M is GM-hollow module if and only if M is G-hollow module. Z as Z-module is not Z-hollow module and not GZ-hollow module.

(b) A GT-hollow module need not to be hollow module as the following example shows : Consider the module Z_6 as Z-module. If $T = \{0, 3\}$, then one can easily show Z_6 is GT-hollow module. But Z_6 is not hollow module.

(c) If M is uniform R-module. Then M is GM-hollow module if and only if M is hollow module.

(d) Every T-hollow module is GT-hollow module.

(e) The Z-module Z_{24} is not GT-hollow module.
Proposition 3.3. Let M be a GT-hollow module then every essential submodule N of M such that $T \subseteq N$ is a GT-hollow module.

Proof. Let M be a GT-hollow module and N any essential submodule of M, $T \subseteq N$. To show that N is GT-hollow module, let L be a proper submodule of N such that $T \not\subseteq L$. Since M is a GT-hollow module, then $L \ll_{GT} M$. By proposition 2.3, then $L \ll_{GT} N$. Thus N is GT-hollow module.

Proposition 3.4. Let M be a GT-hollow module and let $f : M \rightarrow N$ be an epimorphism, where N is a non-zero module. Then N is $Gf(T)$-hollow module.

Proof. Suppose that M is a GT-hollow module and let $f : M \rightarrow N$ be an epimorphism. To show that N is $Gf(T)$-hollow. Let $K \not\subseteq N$ such that $f(T) \not\subseteq K$. To show that $K \ll f(T)N$. Let $f(T) \subseteq K + X$, for some $X \leq_e N$. Then $f^{-1}(f(T)) \subseteq f^{-1}(K + X)$. Therefore $\ker f \subseteq f^{-1}(K) + f^{-1}(X)$. Thus $T \subseteq f^{-1}(K) + f^{-1}(X)$. To show that $T \not\subseteq f^{-1}(K)$. Assume $T \subseteq f^{-1}(K)$. Then $f(T) \subseteq K$ which is a contradiction. Thus $T \not\subseteq f^{-1}(K)$. Since M is GT-hollow module, then $f^{-1}(K) \ll_{GT} M$ and hence $T \not\subseteq f^{-1}(X)$. Therefore $f(T) \subseteq X$. Thus N is $f(T)$-hollow module.

Proposition 3.5. Let T and K be submodules of a module M such that $K \subseteq T$. If K is GT-small submodule of M and $\frac{M}{K}$ is $\frac{GT}{K}$-hollow module, then M is GT-hollow.

Proof. Assume that $K \ll_{GT} M$ and $\frac{M}{K}$ is $\frac{GT}{K}$-hollow module. Let $N \leq M$ such that $T \not\subseteq N$ and let $T \subseteq N + X$ for some $X \leq_e M$. Then $\frac{T}{K} \subseteq \frac{N + X}{K}$ and hence $\frac{T}{K} \subseteq \frac{(N + X)}{K}$. To show that $\frac{T}{K} \not\subseteq \frac{(N + K)}{K}$. Assume that $T/K = (N + K)/K$. Then $T = N + K$ and hence $T \subseteq N + K$. Since $K \ll_{GT} M$, then $T \subseteq N$ which is a contradiction. Thus $T/K \not\subseteq (N + K)/K$. Since M/K is a GT/K-hollow module, then $(N + K)/K \ll_{GT/K} M/K$. Therefore $T/K \subseteq (X + K)/K$. Thus $T \subseteq X + K$. Since $K \ll_{GT} M$, then $T \subseteq X$. Thus M is GT-hollow module.

Proposition 3.6. Let T be a non-zero submodule of a module M. If M is GT-hollow module. Then T is indecomposable.

Proof. Suppose that there are proper submodules K and L of T such that $T = K \oplus L$. Therefore $T \not\subseteq K$. Since M is GT-hollow module, then $K \ll_{GT} M$. But $T \subseteq K \oplus L$, therefore $T \subseteq L$ and hence $T = L$. This is a contradiction. Thus T is indecomposable.

4. GT-lifting module

M is G-lifting; module if for any submodule N of M there exist; submodules L, K of M such that $N = L \oplus K$ with $L \leq N$ where L is direct summand of M; and $K \ll_G N$ [5]. M is called; T-lifting module if for; any submodule N of M
there exists a direct summand D of M and $H \ll_T M$ such that $N = D + H$.

In this section we introduce the notion of GT-lifting modules and discuss some properties of this kind of modules.

Definition 4.1. Let T be a submodule of a module M. M is called GT-lifting module if for any submodule N of M there exists a direct summand D of M and $H \ll_{GT} M$ such that $N = D + H$.

Examples and remarks 4.2.

1. Let M be a module. M is GM-lifting module if and only if M is G-lifting module.

 Proof. Let M be GM-lifting module. Let N submodule of a module M. Then there exists a direct summand D of M and $H \ll_{GT} M$ such that $N = D + H$. Thus $N = N \cap (D \oplus L) = D \oplus (N \cap L)$. Let $H = N \cap L$ then $H \ll_G M$ by (2.2) thus M is G-lifting module. Other direction is clear.

2. Let M be a module. If M is T-lifting module then M is GT-lifting module.

3. Let Z_8 as Z-module, $T = \{0, 4\}$ and, $N = \{0, 4\}$ then Z_8 is not GT-lifting module.

4. If M is indecomposable module. then M is not GT-lifting module for every non trivial submodule T of M.

 Proof. Let T be non trivial submodule of M. If M is GT-lifting module then $T = D + H$ where D is direct summand D of M and $H \ll_{GT} M$ but M is indecomposable module, then $D = 0$. Thus $T = H \ll_{GT} M$ which is a contradiction then M is not GT-lifting module.

5. Le M be a GT-lifting module then every essential submodule N of M such that $T \subseteq N$ is also GT-lifting.

 Proof. Let M be GT-lifting module and N a essential submodule of M such that $T \subseteq N$ and $X \subseteq N$ then $X = D + H$ where D is direct summand D of M and $H \ll_{GT} M$. It is clear that D is direct summand D of N, $T \subseteq N$ and $N \leq_e M$ then $H \ll_{GT} N$ by (prop 2.3). Thus N is GT-lifting.

 Let H_1 be GT_1-lifting and H_2 is GT_2-lifting modules, then $M = H_1 \oplus H_2$ need not be $GT_1 \oplus GT_2$-lifting module as the following example:

 Let $H_1 = Z_8$, $H_2 = Z_2$, each of H_1, H_2 is GH_i-lifting module but $M = Z_8 \oplus Z_2$ as Z-module, M is not GM-lifting module by (Ex.4.2 (1)).

 Now we give a sufficient condition under which $M = H_1 \oplus H_2$ is $GT_1 \oplus GT_2$-lifting module.
Proposition 4.3. Let $M = H_1 \oplus H_2$ be a module with $R = \text{ann}(H_1) + \text{ann}(H_2)$. If H_1 is GT_1-lifting and H_2 is GT_2-lifting modules, then M is $GT_1 \oplus GT_2$-lifting module.

Proof. Let N submodule of M. Since $R = \text{ann}(H_1) + \text{ann}(H_2)$, then $N = N_1 \oplus N_2$ where $N_1 \subseteq H_1$ and $N_2 \subseteq H_2$. H_1 is GT_1-lifting and H_2 is GT_2-lifting modules, then for each $i \in \{1, 2\}$, there exists a direct summand D_i of H_i, such that $N_i = D_i \oplus L_i$ with $D_i \leq N_i$ and $L_i \ll_{GT} H_i$ then, $N = N_1 \oplus N_2 = (D_1 \oplus L_1) \oplus (D_2 \oplus L_2) = (D_1 \oplus D_2) \oplus (L_1 \oplus L_2)$, we have $(D_1 \oplus D_2) \leq N$, then $(D_1 \oplus D_2)$ is direct summand of M by (Prop:2.10) then $(L_1 \oplus L_2) \ll_{G(T_1+T_2)} M$. Thus M is $GT_1 \oplus GT_2$-lifting module. \hfill \Box

Proposition 4.4. Let M be finitely generated, faithful and multiplication module. Then M is GT-lifting module if and only if R is $[GT : M]$-lifting.

Proof. Assume that M is GT-lifting module. Let I be an ideal of R. M is GT-lifting hence there exist submodules $D \leq \oplus M$ and $H \ll_{GT} M$ such that $N = D + H$. But M is a multiplication R-module, so there are ideals J and K of R such that $D = JM$ and $H = KM$. Then $JM = JM + KM = (J + K)M$. But M is finitely generated, faithful and multiplication module then by [4] $I = J + K,$ Let $M = D + L$ and $L = J'M$ for some J' of R. Then $RM = M = JM \oplus J'M = (J + J')M$ Then $R = J + J'$. Since M is finitely generated, faithful and multiplication module then $0 = JM \cap J'M = (J \cap J')M$ thus $JJ' = 0$, and $J \leq \oplus R$ by (prop. 2.11) $K \ll_{G(T;M)} R$. Thus R is $[GT : M]$-lifting. Conversely, let R be $[GT : M]$-lifting and N submodule of M. Since M is finitely generated, faithful and multiplication module there exist I an ideal of R such that $N = IM$ and exist $J \leq \oplus R$ and $K \ll_{G(T;M)} R$ with $I = J + K$. Then $IM = JM + KM = (J + K)M$. Thus $N = JM + KM$, let $R = J \oplus J'$ for some J' of R then $M = RM = (J + J')M = JM \oplus J'M$. Since M is finitely generated, faithful and multiplication module then $JM \cap J'M = (J \cap J')M = 0 = 0$. Then $JM \leq \oplus M$ by (prop.2.11), $k \ll_{GT} M$. Then M is GT-lifting module. \hfill \Box

5. GT-supplemente submodule

Definition 5.1. Let M be an R-module and $T, X, Y \leq M$. Y is called a GT-supplement of X in M, if $T \subset X + Y$ and $X \cap Y \ll_{GT} Y$. If every submodule of M has a GT-supplement in M, then M is called a GT-supplemented module.

Examples and remarks 5.2.

1. If $T = 0$, then every submodule of M is GT-supplement in M.

2. and If $T = M$, then M is GM-supplement in M if and only if M is G-supplement in M.

3. Let Z be the ring of integers. It is easy to see that (0) is the only GmZ-small submodule of Z. Now let $T = 0$, $X = 2Z$ and $Y = 3Z$ then
Proposition 5.3. Let M be an R-module, T, X and $Y \leq M$ such that Y is GT-supplement of X in M if $T \subseteq K + Y$, for some submodule K of M. Then Y is a GT-supplement of K in M.

Proof. Let Y be is GT-supplement of X in M, K submodule of M such that $T \subseteq K + Y$. Since $K \cap Y \subseteq X \cap Y \leq_{GT} Y$ by (Prop:2.8). Then Y is a GT-supplement of K in M. \hfill \Box

Proposition 5.4. Let M be an R-module, T, X and $Y \leq M$ and Y be a GT-supplement of X in M, $L \leq Y$ and $L \leq_{GT} Y$. Then Y is a GT-supplement of $X + L$ in M.

Proof. Let Y be a GT-supplement of X in M and $L \leq Y$ and $L \leq_{GT} Y$. Then $T \subseteq T + Y \subseteq T + Y + L$, $X \cap Y \leq_{GT} Y$. Then $T \subseteq T \cap Y \subseteq X \cap (X + L) + K$. Then $T \subseteq (X \cap Y) + L + K$, $K \subseteq L + K$ is essential submodule in M hence $T \subseteq L + K$. Since $L \leq_{GT} Y$ thus $T \subseteq K$. Then Y is a GT-supplement of $X + L$ in M. \hfill \Box

Proposition 5.5. Let M and N be R-modules, and let $f : M \rightarrow N$ be an epimorphism. If M is GT-supplemented module. Then N is $Gf(T)$-supplemented module.

Proof. Suppose that M is a GT-supplemented module and let $f : M \rightarrow N$ be an epimorphism. Let K be submodule of N, M is a GT-supplemented module then $T \subseteq L + f^{-1}(K)$ and $f^{-1}(K) \cap L \leq_{GT} Y$. Then $f(T) \subseteq f(L + f^{-1}(K))$. Then $f(T) \subseteq f(L) + K$. Since $f^{-1}(K) \cap L \leq_{GT} Y$ then $K \cap f(L) = f(f^{-1}(K)) \cap L \leq_{Gf(T)} f(Y)$. Therefore by (Prop:2.8) $f(L)$ is $Gf(T)$-supplement submodule of K in M. \hfill \Box

Proposition 5.6. Let M be GT-lifting module and Y be a GT-supplement of X in M. Then Y contains a GT-supplement of X which is direct summand of M.

Proof. Suppose that M is GT-lifting module and Y be a GT-supplement of X in M. Then $T \subseteq T + X = X \cap Y \leq_{GT} Y$. M is GT-lifting then $Y = D + H$, where $D \leq \oplus M$ and $H \leq_{GT} M$. Since $T \subseteq T + X$, then $T \subseteq X + D + H$ thus $T \subseteq T + X$, now $X \cap D \subseteq X \cap Y \leq_{GT} Y$ by (Prop:2.6) $X \cap D \leq_{GT} Y$ then D is a GT-supplement of X in M. \hfill \Box
References

Accepted: 14.04.2018