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Abstract. In topology Urysohn Lemma is widely applicable, where it is commonly
used to construct continuous functions with various properties on normal space. In this
paper we shall present Urysohn Lemma in semi linear uniform spaces, besides we shall
give a characterization of the closure in semi-linear uniform space, then we shall use
this characterization to answer the question which given in [12], by A.Tallafha and R.
Khalil namely (If ρ(x,A) = ∆, must x ∈ Al).
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1. Introduction

One of the most important generalizations of a metric spaces is uniform space.
Uniform spaces is a concept lies between metric spaces and topological struc-
ture, that is used to define uniform properties such as completeness, uniform
continuity and uniform convergence. The uniform spaces have been studied
extensively through years. The notion of uniformity has been investigated by
several mathematician such as Weil [18] ,[19] , and [20] . L.W. Cohen [4] , and
[5] . Graves [7]. The theory of uniform spaces was given by Burbaki in [3] . Also
Wiel’s in his booklet [20] , defined the notion of uniformly continuous mapping.

In 2009, the notion of a uniform space led A. Tallafha and R. Khalil to define
a beautiful space which is a mixture of analysis and topology, namely semi-
linear uniform space [12], also they studied some cases of best approximation
in such spaces, besides they defined a set valued map ρ, called metric type,
on semi-linear uniform spaces that enables one to study analytical concepts on
semi-linear uniform space.

∗. Corresponding author
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Semi-linear uniform space is weaker than metric space and stronger than
topological space since in [12], [13] , [14] and [15] , A. Tallafha answered the
question”Is there a semi-linear uniform space which is not metrizable?”. Also
he defined another set valued map called δ onX×X, which is used with ρ to give
more properties of semi-linear uniform spaces. Finally he studied the relation
between ρ and δ, he showed that ρ(x, y) = ρ(s, t) if and only if δ(x, y) = δ(s, t),
then he defined Lipschitz condition and contraction mapping on semi-linear
uniform spaces, which enables one to study fixed point for such functions. In
[16] and [17], A. Tallafha and S. Alhihi established another properties of semi-
linear uniform spaces.

In [11], A. Rawshdeh and A. Tallafha answered the question (If f is a con-
traction from a complete semi-linear uniform space (X,Γ) to it self, is f has a
unique fixed point) negatively, they gave an example of a complete semi-linear
uniform space (X,Γ) and a contraction f : (X,Γ) → (X,Γ) which has infinitely
many fixed points.

Other nice result was given in [2], by S. Alhihi and M. Fayyad, where they
showed that every semi-linear uniform space induced a Tychonoff space (X,TΓ).

2. Semi-linear uniform spaces

Let X be a none empty set and DX be a collection of all relations on X such
that each element V of DX is reflexive and symmetric. DX is called the family
of all entourages of the diagonal.

Now the above discussion allow us to define the uniform space.

Definition 2.1 ([6]). Let X be a set. A uniform space is the pair (X,F) where
F is a subfamily of DX which satisfies the following conditions:

1) If U ∈ F and U ⊆ W ∈ DX , then W ∈ F .
2) If U1, U2 ∈ F , then U1 ∩ U2 ∈ F .
3) There exists a W ∈ F such that W ◦W ⊆ U, for every U ∈ F ,
4)

∩
U∈F U = ∆.

The notion of a uniform space led A. Tallafha and R. Khalil in 2009 to define
the semi-linear uniform space:

Definition 2.2 ([12]). Let Γ be a subcollection of DX such that:
(i) If V1and V2 are in Γ, then V ∩ V2 ∈ Γ.
(ii) For every V ∈ Γ, there exists U ∈ Γ such that U ◦ U ⊂ V.
(iii)

∩
V ∈Γ V = ∆.

(vi)
∪

V ∈Γ V = X ×X.
(v) Γ is a chain (a chain in X × X we mean a totally or linearly) ordered

collection of subsets of X ×X, ordered by set inclusion.
Then the pair (X,Γ) is called a semi-linear uniform space.

In [12] and [13] , the authors defined the set valued map ρ and δ which played
an important rule in the theory of fixed point on semi-linear uniform spaces.
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Definition 2.3 ([12]). Let (X,Γ) be a semi-linear uniform space. For (x, y) ∈
X ×X, let Γ(x,y) = {V ∈ Γ : (x, y) ∈ V }. Then, the set valued map ρ on X ×X,
is defined by ρ(x, y) =

∩
{V : V ∈ Γ(x,y)}.

Clearly for all (x, y) ∈ X ×X, we have ρ(x, y) = ρ(y, x), and ∆ ⊆ ρ(x, y).
The following definition given in [13] , the authors defined δ (x, x) = ϕ, now

if we define δ(x, x) = ρ(x, x) = ∆, then all the results in the literature still valid
and the new definition of δ(x, x) seems to be more convenient.

Definition 2.4 ([13]). Let (X,Γ) be a semi-linear uniform space. For (x, y) ∈
X × X, define Γc

(x,y) = {V ∈ Γ : (x, y) /∈ V }. Then the set valued map δ on
X ×X, is defined by

δ(x, y) =

{
∪{V : V ∈ ΓC

(x,y)} : x ̸= y

∆ : x = y

}
.

By using the set valued map ρ and δ, A.Tallafha gave some important prop-
erties of semi-linear uniform spaces, some of these properties are given in the
following proposition.

Proposition 2.5 ([13]). Let (X,Γ) be a semi-linear uniform space. Then:
i) If V ∈ Γc

(x,y), then V $ ρ(x, y) .

ii) δ(x, y) ⊆ ρ(x, y) for all (x, y) ∈ X ×X.
iii) If V ∈ Γ(x,y), then δ(x, y) ⊆ V.
iv) If (x, y) ∈ ρ(s, t), then ρ(x, y) ⊆ ρ(s, t).
v) If (x, y) ∈ δ(s, t), then δ(x, y) ⊆ δ(s, t).

In [1] Alhihi gave more properties of semi-linear uniform spaces as:

Theorem 2.6. Let A ∈ Λ, and σ a sub collection of Λ. For n ∈ N, we have:
(i) n

(
1
nA

)
⊆ A.

(ii) If B ∈ Γ satisfies nB ⊆ A, then B ⊆ 1
nA.

(iii) 1
n+1A ⊆ 1

nA.

(iv) 1
nA ⊆ A.

(v) 1
n

∩
A∈σ A =

∩
A∈σ

1
nA.

(vi)
∪

A∈σ
1
nA ⊆ 1

n

∪
A∈σ A.

It is known that every metric space endues a semi-linear uniform space, the
following define the semi-linear uniform space which induced by a metric space
(X, d).

Definition 2.7. [13]. Let (X, d) be a metric space. Define Vϵ = {(x, y) :
d(x, y) < ϵ}.Then (X,Γ) is a semi-linear uniform space induced by (X, d) where
Γ = {Vϵ : ϵ > 0}.This semi-linear uniform space will be denoted by (X,Γd).

In [13], A. Tallafha gave the following example, which is a semi-linear uniform
space but not metrizable.
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Example 2.8. (R,Γ) is a semi-linear uniform space, where Γ = {Vϵ, ϵ > 0}, Vϵ =
{(x, y) : x2 + y2 < ϵ} ∪ {∆}.

In [11], A. Rawshdeh and A. Tallafha, give the following lemma:

Lemma 2.9. Let (X,Γd) be a semi-linear uniform space induced by the metric
space (X, d).Then:

(1) ρ(x, y) = {(s, t) ∈ X ×X : d(s, t) ≤ d(x, y)}.
(2) δ(x, y) = {(s, t) ∈ X ×X : d(s, t) < d(x, y)}.

Definition 2.10 ([9]). Let (X, d) be a metric space. For x ∈ X, r > 0, let
B [x, r] = {t : d (x, t) ≤ r} .A metric space (X, d) is convex, if for all x, y ∈ X,
B [x, r1] ∩B [y, r2] ̸= ϕ whenever r1 + r2 ≥ d (x, y) .

In [10] and [11], A. Rawshdeh and A. Tallafha gave the following results.

Lemma 2.11. Let (X,Γd) be a semi-linear uniform space induced by convex
metric space (X, d), then:

1) nρ(x, y) = {(s, t) ∈ X ×X : d(s, t) ≤ nd(x, y)}.
2) nδ(x, y) ⊆ {(s, t) ∈ X ×X : d(s, t) < nd(x, y)}.

Also in [12], A. Tallafha and R. Khalil, give the definition of continuos func-
tion, uniformly continuous function, converges of sequences in semi-linear uni-
form spaces and complete semi-linear space.

Definition 2.12. [12]. Let f : (X,ΓX) → (Y,ΓY ), then:
1- f is continuous at x◦ if for all U ∈ ΓY , there exists V ∈ ΓX , such that if

(x, x◦) ∈ V, then (f(x), f(x◦)) ∈ U.
2- f is uniformly continuous if for all U ∈ ΓY , there exists V ∈ ΓX , such

that if (x, y) ∈ V, then (f(x), f(y)) ∈ U.

Definition 2.13. [12]. Let (X,Γ) be a semi-linear uniform space and (xn) be
a sequence in X. Then:

1- (xn) converges to x in X and denoted by xn → x, if for every V ∈ Γ there
exists k such that (xn, x) ∈ V for every n ≥ k.

2- (xn) is called Cauchy if for every V ∈ Γ there exists k such that (xn, xm) ∈
V for every n,m ≥ k.

Definition 2.14. [12]. Let (X,Γ) be a semi-linear uniform space. Then (X,Γ)
is called complete, if every Cauchy sequence is convergent.

3. Some topological properties of semi-linear uniform spaces

In this section, we will shed more light on the topology induced by a semi-linear
uniform space,we shall state and discuss some important topological properties
of semi-linear uniform spaces.

After A. Tallafha and R. Khalil in [12], gave the definition of semi-linear
uniform space, they gave the the following definition:
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Definition 3.1 ([12]). Let (X,Γ) be a semi-linear uniform space. For x ∈ X and
V ∈ Γ, the open ball of center x and radius V to be B(x, V ) = {y : (x, y) ∈ V }.
Equivalently B(x, V ) = {y : ρ(x, y) ⊆ V }.

Also, they showed the following:

Theorem 3.2 ([12]). Let (X,Γ)be a semi-linear uniform space. The family
τ = {G ⊆ X : for every x ∈ G there exists a U ∈ Γ such that B(x,U) ⊆ G} is
topology on the set X.The topology which induced by (X,Γ) is denoted by τΓ.

In [2], S. Alhihi and M. Fayyad, discussed the interior of a set and a neigh-
borhood of x ∈ X with respect to the topology induced by a semi-linear uniform
space on the set X, they gave the following proposition and corollaries:

Proposition 3.3 ([2]). Let (X,Γ)be a semi-linear uniform space and A ⊆ X.
Then int(A) = {x ∈ X : there exists a U ∈ Γ such that B(x,U) ⊆ A} with
respect to τΓ.

Corollary 3.4 ([2]). If the topology of a space X is induced by a semi-linear
uniform Γ, then for every x ∈ X and any U ∈ Γ the set int B(x,U) is a
neighborhood of x.

Corollary 3.5 ([2]). If the topology of a space X is induced by a semi-linear
uniform Γ, then for every x ∈ X and any A ⊆ X we have x ∈ Ā if and only if
A ∩B(x,U) ̸= ϕ for every U ∈ Γ.

Also, they gave the following definition:

Definition 3.6 ([2]). A family B ⊂ Γ is called a base for the semi-linear uniform
Γ if for every U ∈ Γ there exists a W ∈ B such that W ⊂ U.

Now we can conclude from above definitions the following remark and The-
orem.

Remark 3.1. Any base B for a semi-linear uniform space on a set X has the
following properties:

1) If U1, U2 ∈ B there exists a U ∈ B such that U ⊆ U1 ∩ U2.
2) For every U ∈ B there exists a W ∈ B such that 2W ⊆ U.
3)

∩
B = ∆.

Theorem 3.7. Let (X,Γ)be a semi-linear uniform space. If B ⊂ Γ is a base for
Γ then βx = {B(x,W ) : W ∈ β} is a neighborhood base at x.

Proof. Let (X,Γ)be a semi-linear uniform space and B ⊂ Γ is a base for Γ. To
show βx = {B(x,W ) : W ∈ β} is a neighborhood base at x we want to show
the following:

1) x ∈ B(x,W ) for each W ∈ β as (x, x) ∈ ∆ ⊆ W.
2) If B(x,U), B(x, V ) ∈ βx, then there exists W ∈ β such that W ⊆ U ∩ V.

Hence B(x,W ) ⊆ B(x,U) ∩B(x, V ).
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3) If B(x,U) ∈ βx, then U ∈ β.So there exists V ∈ β such that V ◦ V ⊆ U .
Thus if y ∈ B(x, V ) and z ∈ B(y, V ) then (x, z) ∈ V ◦ V ⊆ U, so z ∈ B(x, U).
Hence B(y, V ) ⊆ B(x, U),that is there exists B(y, V ) ∈ βy and B(y, V ) ⊆
B(x, U).

Proposition 3.8 ([2]). If the topology of a space X is induced by a semi-linear
uniform Γ and B ⊂ Γ is a base for Γ, then for every x ∈ X and any A ⊆ X we
have x ∈ Ā if and only if A ∩B(x,U) ̸= ϕ for every U ∈ β.

In [12], A. Tallafha and R. Khalil, proved that the topology induced by
semi-linear uniform space is T2−space.Therefore the topology (R, τlef ) where
τlef = {(−∞, α) : α ∈ R} ∪ {R, ϕ} is not induced by semi-linear uniform space.
Moreover in [2], S. Alhihi and M. Fayyad, showed that every semi-linear uniform
space induced a Tychonoff space (X, τΓ), where τΓ is the topology on X induced
by local base Bx. For more topological properties of τΓ we refer the reader to
[2].

Definition 3.9. Let Γ1,Γ2 be two semi-linear uniform spaces on a set X. We
say Γ1 is weaker than Γ2 if and only if for all U ∈ Γ1 there exists V ∈ Γ2 such
that V ⊆ U.

Definition3.9, lead us to give the following definition:

Definition 3.10. Let Γ1,Γ2 be two semi-linear uniform spaces on a set X. We
say Γ1 is equivalent to Γ2 if Γ1 is weaker than Γ2 and Γ2 is weaker than Γ1.

In metric space any two equivalent metric spaces induce two equivalent
topologies, but we can find two equivalent metric spaces give two different
semi-linear uniform spaces, for example if d1is Euclidean metric on R and de-

fine d2(x, y) =
∣∣∣ x
1+|x| −

y
1+|y|

∣∣∣ for x, y ∈ R.Then Γ
d1

= {Uϵ : ϵ > 0}, where

Uϵ = {(s, t) : d1(s, t) < ϵ} is the induced semi-linear uniform space by d1. Also
Γ

d2
= {Vϵ : ϵ > 0}, where Vϵ = {(s, t) : d2(s, t) < ϵ} is the induced semi-

linear uniform space by d2. To show that Γ
d1

and Γ
d2

are different, if ϵ ≥ 2

thenVϵ = R2 and R2 /∈ Γ
d1
.Thus Γ

d1
̸= Γ

d2
. Now the topology which induce by

d1 is the same as the topology which induce by d2, since f : R → (−1, 1) which
defined by f(x) = x

1+|x| is homeomorphism and d1(f(x), f(y)) = d2(x, y). But
if we have two equivalent semi-linear uniform spaces we can get two equivalent
topologies. For more details we have the following proposition:

Proposition 3.11. Two equivalent semi-linear uniform spaces induce two equiv-
alent topologies.

Proof. Let Γ1,Γ2 be two equivalent semi-linear uniform spaces on a setX induce
two topologies τΓ1 , τΓ2 respectively. To show τΓ1and τΓ2are equivalent, we want
to show τΓ1 ⊆ τΓ2 and τΓ2 ⊆ τΓ1 . Now let x ∈ G ∈ τΓ1 , then there exists U ∈ Γ1

such that B(x,U) ⊆ G, as Γ1is weaker than Γ2, so there exists V ∈ Γ2 such that
V ⊆ U, which means B(x, V ) ⊆ B(x,U) ⊆ G. Hence G ∈ τΓ2 . The same proof
for τΓ2 ⊆ τΓ1 .
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The following example is an example of two equivalent semi-linear uniform
spaces:

Example 3.12. Let X = R. Define Γ1 = {Vt : 0 < t < ∞} where Vt = {(x, y) :
y − t < x < y + t, and −∞ < y < ∞} and define Γ2 = {Vt : 0 < t < ∞} where
Vt = {(x, y) : y − t ≤ x ≤ y + t, and −∞ < y < ∞}.Then Γ1 ̸= Γ2, but Γ1and
Γ2 are two equivalent semi-linear uniform spaces induce two topologies τΓ1 , τΓ2

respectively. Clearly τΓ1and τΓ2are the usual topology R.

Now we shall give some interesting facts about semi-linear uniform space:

Lemma 3.13. Let (X,Γ)be a semi-linear uniform space. For V ∈ Γ, U ⊆ X×X
we have V ◦ U ◦ V =

∪
{B(x, V )×B(y, V ) : (x, y) ∈ U}.

Proof. Let (X,Γ)be a semi-linear uniform space. If (s, t) ∈ V ◦ U ◦ V , then
there exists x, y ∈ X such that (s, x) ∈ V, (x, y) ∈ U and (y, t) ∈ V , which means
s ∈ B(x, V ) and t ∈ B(y, V ). Hence (s, t) ∈ B(x, V ) × B(y, V ) for (x, y) ∈ U.
Now if (s, t) ∈ B(x, V ) × B(y, V ) for (x, y) ∈ U, then (s, x), (t, y) ∈ V. Thus
(s, t) ∈ V ◦ U ◦ V.

The proof of the following proposition is clear from above discussion:

Proposition 3.14. If the topology of a space X is induced by a semi-linear
uniform Γ, and M ⊆ X ×X, then for (x, y) ∈ X ×Xwe have (x, y) ∈ M if and
only if M ∩B(x,U)×B(y, U) ̸= ϕ for every U ∈ Γ.

The closure of a subset M ⊆ X ×X is defined as the smallest closed subset
of X × X that is contain M . The following theorem gives a useful and a new
characterization of closure in term of member of semi-linear uniform space:

Theorem 3.15. Let (X,Γ)be a semi-linear uniform space. If M ⊆ X ×X then
M = ∩{V ◦M ◦ V : V ∈ Γ}.

Proof. Let (X,Γ)be a semi-linear uniform space. Let (x, y) ∈ M and V ∈
Γ,then B(x, V )×B(y, V )∩M ̸= ϕ, so there exists (s, t) ∈ B(x, V )×B(y, V )∩M,
which means (x, y) ∈ B(s, V )×B(t, V ) for (s, t) ∈ M, by Lemma 3.13, (x, y) ∈
V ◦ M ◦ V . Hence M ⊆ ∩{V ◦ M ◦ V : V ∈ Γ}. The converse is clear by
Proposition 3.14.

Corollary 3.16. Let (X,Γ)be a semi-linear uniform space. {V : V ∈ Γ} is a
base for Γ.

Proof. Let U ∈ Γ. Then there exists V ∈ Γ such that V ◦ V ◦ V ⊆ U, by
Theorem 3.15, V ⊆ V ◦ V ◦ V ⊆ U.

Now we will give the following definition:

Definition 3.17. Let (X,Γ)be a semi-linear uniform space and A ⊆ X. For
U ∈ Γ define B(A,U) =

∪
x∈AB(x,U).
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Proposition 3.18. Let (X,Γ)be a semi-linear uniform space with a base β and
A ⊆ X. Then Ā =

∩
{B(A, V ) : V ∈ β}.

Proof. Let (X,Γ)be a semi-linear uniform space and A ⊆ X. Let x ∈ Ā. For
V ∈ β there exists W ∈ Γsuch that W ◦W ⊆ V, so by Corollary 3.5, there exists
y ∈ A ∩B(x,W ) ̸= ϕ. As y ∈ A and y ∈ B(x,W ), so x ∈ B(y,W ) ⊆ B(y, V ) ⊆
B(A, V ). Hence x ∈

∩
{B(A, V ) : V ∈ β}. Now let x ∈

∩
{B(A, V ) : V ∈ β}

then x ∈ B(A, V ) for all V ∈ β. Let V ∈ β, since x ∈ B(A, V ), then there exists
t ∈ A such that x ∈ B(t, V ), so t ∈ B(x, V ) ∩A which implies x ∈ Ā.

Corollary 3.19. Let (X,Γ)be a semi-linear uniform and A ⊆ X. If B(A,U) =
A for some U ∈ Γ then A is both open and closed.

Proof. Let (X,Γ)be a semi-linear uniform and A ⊆ X. If x ∈ Ā, then x ∈∩
{B(A, V ) : V ∈ Γ}, so x ∈ B(A,U) = A. To show that A is open, suppose

x ∈ A, then B(x,U) ⊆ A. Hence A is open.

In [12], A. Tallafha and R. Khalil, proved that if x ∈ Al then ρ(x,A) = ∆.
Then they asked the following question: If ρ(x,A) = ∆, must x ∈ Al. Now we
shall answer this question:

Proposition 3.20. If ρ(x,A) = ∆ then x ∈ Ā.

Proof. To show that x ∈ Ā, we want to show A
∩

B(x,U) ̸= ϕ for every U ∈ Γ.
Suppose not, i.e., there exists U ∈ Γ such that A

∩
B(x,U) = ϕ, which means

(x, α) /∈ U for all α ∈ A, by Proposition 2.5, U ( ρ(x, α) for all α ∈ A. Thus
U (

∩
α∈A ρ(x, α) ⊆ ∆, which is contradiction. Hence A

∩
B(x,U) ̸= ϕ for

every U ∈ Γ, and so x ∈ Ā.

So we have the following corollary:

Corollary 3.21. x ∈ Ā if and only if ρ(x,A) = ∆ .

Now we shall discuss some concept related to continuous function:

Theorem 3.22. Let (X, τΓ), (Y,ΓτY )be two topologies which induced by the
semi-linear uniform spaces (X,ΓX) and (Y,ΓY ) respectively. Then f : (X,ΓX) →
(Y,ΓY ) is continuous if and only if f : (X, τΓX

) −→ (Y, τΓY
) is continuous.

Proof. Letf : (X,ΓX) → (Y,ΓY )be continuous at x◦. For V ∈ ΓY take
B(f(x◦), V ). Since f : (X,ΓX) → (Y,ΓY )is continuous at x◦ then there ex-
ists U ∈ ΓX such that (x, x◦) ∈ U then (f(x), f(x◦)) ∈ V. If z ∈ f(B(x◦, U))
then there exists x ∈ B(x◦, U) such that z = f(x), which means (x, x◦) ∈ U, and
so (f(x), f(x◦)) ∈ V. Hence f(x) ∈ B(f(x◦), V ).To proof the converse, suppose
f : (X, τΓX

) −→ (Y, τΓY
) is continuous at x◦. For V ∈ ΓY take B(f(x◦), V ). As

f : (X, τΓX
) −→ (Y, τΓY

) is continuous at x◦, so there exists open set O ∈ τΓX

such that x◦ ∈ O and f(O) ⊆ B(f(x◦), V ), but as x◦ ∈ O ∈ τΓX
, there exists

W ∈ ΓX such that B(x◦,W ) ⊆ O. So if (x, x◦) ∈ W then x ∈ B(x◦,W ) ⊆ O,
which means f(x) ∈ f(O) ⊆ B(f(x◦), V ). Hence (f(x), f(x◦)) ∈ V.
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Let (X,Γ) be a semi-linear uniform space. For A ⊆ X, we can define a
semi-linear uniform space on A by ΓA = {(A×A) ∩ U : U ∈ Γ}.

Theorem 3.23. Let (X,Γ) be a semi-linear uniform space and A ⊆ X. Then
(A,ΓA) can be defined by ΓA = {(A×A) ∩U : U ∈ Γ} is a semi-linear uniform
space on A and (A,ΓA) is called the subspace of the semi-linear uniform space
(X,Γ).

Proof. Let (X,Γ)be a semi-linear uniform and A ⊆ X. For U ∈ Γ define
AU = (A×A) ∩ U. From the definition of ΓA, we note that for all AU ∈ ΓA we
have {(α, α) : α ∈ A} ⊆ AU and AU = A−1

U . Now to complete the proof we need
to prove the following:

(i) If AV1 and AV2 are in ΓA, then AV1∩ AV2 = (A×A) ∩ (V1∩ V2) ∈ ΓA as
V1∩ V2 ∈ Γ. (ii) For every AV ∈ ΓA, there exists U ∈ Γ such that U ◦ U ⊂ V.
Let (s, t) ∈ [(A × A) ∩ U ] ◦ [(A × A) ∩ U ]. Then there exists y ∈ X such that
(s, y) ∈ [(A×A)∩U ] and (y, t) ∈ [(A×A)∩U ], so (s, y),(y, t) ∈ U which means
(s, t) ∈ U ◦U ⊂ V . Thus [(A×A)∩U ] ◦ [(A×A)∩U ] ⊆ (A×A)∩V = AV . (iii)∩

V ∈ΓAV ⊆ (
∩

V ∈Γ V )∩A×A = ∆A.(vi) Since (X,Γ) is a semi-linear uniform,
so

∪
V ∈Γ V = X ×X. Thus

∪
V ∈ΓAV = A × A.(v) Since Γ is a chain, so ΓA is

a chain.

From the definition of (A,ΓA) we can note, if τΓ is the topology onX induced
by Γ, then (A, τA) is the subspace topology on A.

Theorem 3.24. If f : (X,ΓX) → (Y,ΓY ) is continuous, then f : (A,ΓA) →
(Y,ΓY ) is continuous.

Proof. Let f : (X,ΓX) → (Y,ΓY ) be continuous. Let V ∈ ΓY . Then there
exists U ∈ ΓX , such that (x, x◦) ∈ U, implies (f(x), f(x◦)) ∈ V. So AU =
(A×A) ∩ U is the set required.

Theorem 3.25. Let f : (X,ΓX) → (Y,ΓY ) be uniform continuous. Then
f : (A,ΓA) → (Y,ΓY ) is uniformly continuous.

Proof. Let f : (X,ΓX) → (Y,ΓY ) be uniform continuous. For V ∈ ΓY , there
exists U ∈ ΓX , such that (x, y) ∈ U, implies (f(x), f(y)) ∈ V. So AU = (A ×
A) ∩ U is the set required.

Now we will present a new definition:

Definition 3.26. Let (X,Γ)be a semi-linear uniform space and A,B ⊆ X,
U ∈ Γ. If (A × B) ∩ U = ϕ, then we say A and B are U−apart and A,B are
apart if there exists U ∈ Γsuch that A,B are U−apart.

Direct application on the previous definition is the following proposition:

Proposition 3.27. Let (X,Γ)be a semi-linear uniform space and A,B be U−apart.
If V ◦ V ◦ V ⊆ U for V ∈ Γ, then B(A, V ) and B(B, V )are V−apart.
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Proof. Let (X,Γ)be a semi-linear uniform space and A,B ⊆ X be U−apart.
if (s, t) ∈ (B(A, V ) × B(B, V ))∩ V , then s ∈ B(A, V ) and t ∈ B(B, V ), which
means (a, s) ∈ V and (b, t) ∈ V for a ∈ A and b ∈ B, but (s, t) ∈ V so we have
(a, b) ∈ V ◦ V ◦ V ⊆ U. Which contradicts A,B ⊆ X are U−apart.

In topology Urysohn Lemma is widely applicable, where it is commonly used
to construct continuous functions with various properties on normal space. So
we shall present one of the most important facts in semi−linear uniform spaces
which is called by Urysohn Lemma in semi-linear uniform spaces. Urysohn
Lemma in semi-linear uniform spaces is the surprising fact in this work, the
proof of this lemma will increase the strength and beauty of the previous defi-
nitions that have been defined in this paper or in the other research related to
semi−linear uniform spaces. Now we will present the lemma:

Lemma 3.28 (Urysohn Lemma in semi-linear uniform spaces.). Let A,C ⊆ X
be apart.Then there exists a uniformly continuos function f : (X,Γ) → [0, 1],
such that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ C.

Proof. Let A,C ⊆ X be apart. There exists U ∈ Γ such that (A×C)∩U = ϕ,
and as (X,Γ) is semi-linear uniform space, so for all U ∈ Γ there exists V ∈ Γ
such that V ◦ V ⊆ U , so we can define the following sequence (U0, U1, U2.....)
as the following: U0 = U , Un ◦ Un ⊆ Un−1, for every n = 1, 2, 3.... For n =
1, 2, ....and k = 0, 1, ..., 2n, define Ar , Cr ⊆ X for every r = k

2n as the following:
A◦ = A,A1 = X,C◦ = X , C1 = C , where A 2k−1

2n
= X − B(C k

2n−1
, Un)

and C 2k−1
2n

= X − B(A k−1
2n−1

, Un). It is clear that Am−1
2n

and C m
2n

are Un−apart

n = 0, 1, 2, .... and m = 1, ..., 2n. Note that X = Ar ∪ Cr, now define the
following increasing assignment: f : r → Ar by f(x) = inf{r : x ∈ Ar}. It is
clear f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ C. For every ϵ > 0 then there is
n > 0 such that ϵ > 1

2n−1 . Now for x, y ∈ X with f(x) + ϵ ≤ f(y) there exists
m ∈ {1, 2, 3, ...2n} such that f(x) < m−1

2n < m
2n < f(y). Hence if x ∈ Am−1

2n
and

y /∈ A m
2n

we have y ∈ C m
2n
, so Un ( ρ(x, y). Thus for every (x, y) ∈ Un, we have

(x, y) /∈ Am−1
2n

× C m
2n
, which means |(f(x)− f(y)| < ϵ.
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