Fuzzy sets in fully UP-semigroups

Akarachai Satirad Aiyared Iampan^{*} Department of Mathematics School of Science University of Phayao Phayao 56000 Thailand

 $a karachai.sa @gmail.com\\ aiyared.ia @up.ac.th$

Abstract. In this paper, we introduce several types of subsets and of fuzzy sets of fully UP-semigroups, and investigate the algebraic properties of fuzzy sets under the operations of intersection and union. Further, we discuss the relation between *t*-characteristic fuzzy sets and UP_s-subalgebras (resp., UP_i-subalgebras, UP_s-filters, UP_i-filters, UP_s-ideals, UP_i-ideals, strongly UP_s-ideals and strongly UP_i-ideals). **Keywords:** fully UP-semigroup, fuzzy set, *t*-characteristic fuzzy set.

1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [7], BCI-algebras [8], B-algebras [17], UP-algebras [4] and others. They are strongly connected with logic. For example, BCI-algebras introduced by Iseki [8] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iseki [7, 8] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

Several researches introduced a new class of algebras related to logical algebras and semigroups such as: In 1993, Jun et al. [10] introduced the notion of BCI-semigroups. In 1998, Jun et al. [14] renamed the BCI-semigroup as the IS-algebra. In 2006, Kim [15] introduced the notion of KS-semigroups. In 2015, Endam and Vilela [2] introduced the notion of JB-semigroups. In 2018, Iampan [5] introduced the notion of fully UP-semigroups.

The concept of a fuzzy subset of a set was first considered by Zadeh [23] in 1965. The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere. After the introduction of the concept of fuzzy sets by Zadeh [23], several researches were conducted on

^{*.} Corresponsing author

the generalizations of the notion of fuzzy set and application to many logical algebras such as: In 1998, Jun et al. [11] applied the notion of fuzzy sets to BCIsemigroups (it was renamed as an IS-algebra for the convenience of study), and introduced the concept of fuzzy I-ideals. In 2000, Roh et al. [18] considered the fuzzification of an associative I-ideal of an IS-algebra. They proved that every fuzzy associative I-ideal is a fuzzy I-ideal. By giving an appropriate example, they verified that a fuzzy I-ideal may not be a fuzzy associative I-ideal. They gave a condition for a fuzzy I-ideal to be a fuzzy associative I-ideal, and they investigated some related properties. In 2003, Jun and Kondo [12] proved that some concepts of BCK/BCI-algebras expressed by a certain formula can be naturally extended to the fuzzy setting and that many results are obtained immediately with the use of our method. Moreover They proved that these results can be extended to fuzzy IS-algebras. In 2003, Jianming and Dajing [9] introduced the concept of intuitionistic fuzzy associative I-ideals of IS-algebras and they investigated some related properties. In 2007, Prince Williams and Husain [22] studied fuzzy KS-semigroups. In 2016, Endam and Manahon [1] introduced the notion of fuzzy JB-semigroups and they investigated some of its properties.

In this paper, we introduce several types of subsets and of fuzzy sets of fully UP-semigroups, and investigate the algebraic properties of fuzzy sets under the operations of intersection and union. Further, we discuss the relation between *t*-characteristic fuzzy sets and UP_s-subalgebras (resp., UP_i-subalgebras, UP_s-filters, UP_i-filters, UP_s-ideals, UP_i-ideals, strongly UP_s-ideals and strongly UP_i-ideals).

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1 ([4]). An algebra $A = (A, \cdot, 0)$ of type (2,0) is called a *UP*algebra where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in A$,

(UP-1) $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0$,

(UP-2) $0 \cdot x = x$,

(UP-3) $x \cdot 0 = 0$, and

(UP-4) $x \cdot y = 0$ and $y \cdot x = 0$ imply x = y.

From [4], we know that the notion of UP-algebras is a generalization of KU-algebras.

On a UP-algebra $A = (A, \cdot, 0)$, we define a binary relation \leq on A as follows: for all $x, y \in A$,

$$x \leq y$$
 if and only if $x \cdot y = 0$.

Example 1.2 ([20]). Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting $A \cdot B = B \cap (A' \cup \Omega)$ for all $A, B \in \mathcal{P}_{\Omega}(X)$. Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with respect to Ω .

Example 1.3 ([20]). Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting $A * B = B \cup (A' \cap \Omega)$ for all $A, B \in \mathcal{P}^{\Omega}(X)$. Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the *generalized power UP-algebra of type 2 with respect to* Ω .

In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ is the power UP-algebra of type 1 and $(\mathcal{P}(X), *, X)$ is the power UP-algebra of type 2.

In a UP-algebra $A = (A, \cdot, 0)$, the following assertions are valid (see [4, 6]).

(1.1) $(\forall x \in A)(x \cdot x = 0),$

(1.2) $(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0),$

- (1.3) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0),$
- (1.4) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0),$
- (1.5) $(\forall x, y \in A)(x \cdot (y \cdot x) = 0),$
- (1.6) $(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x),$
- (1.7) $(\forall x, y \in A)(x \cdot (y \cdot y) = 0),$
- $(1.8) \qquad (\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0),$
- (1.9) $(\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0),$
- (1.10) $(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0),$
- (1.11) $(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0),$
- (1.12) $(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0)$, and
- (1.13) $(\forall a, x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$

Definition 1.4 ([3, 4, 21]). A nonempty subset S of a UP-algebra $(A, \cdot, 0)$ is called

- (1) a UP-subalgebra of A if for any $x, y \in S, x \cdot y \in S$.
- (2) a UP-filter of A if it satisfies the following properties:
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y \in A$, $x \cdot y \in S$ and $x \in S$ imply $y \in S$.
- (3) a UP-ideal of A if it satisfies the following properties:
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y, z \in A$, $x \cdot (y \cdot z) \in S$ and $y \in S$ imply $x \cdot z \in S$.
- (4) a strongly UP-ideal of A if it satisfies the following properties:

- (i) the constant 0 of A is in S, and
- (ii) for any $x, y, z \in A$, $(z \cdot y) \cdot (z \cdot x) \in S$ and $y \in S$ imply $x \in S$.

Guntasow et al. [3] proved the generalization that the notion of UP-subalgebras is a generalization of UP-filters, the notion of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals. Moreover, they also proved that a UP-algebra A is the only one strongly UPideal of itself.

Definition 1.5. A nonempty subset S of a semigroup (A, *) is called

- (1) a subsemigroup of A if for any $x, y \in S, x * y \in S$.
- (2) an *ideal* of A if for any $x \in A$ and $s \in S$, x * s, $s * x \in S$.

Clearly, an ideal is a subsemigroup.

Definition 1.6 ([5]). Let A be a nonempty set, \cdot and * are binary operations on A, and 0 is a fixed element of A (i.e., a nullary operation). An algebra $A = (A, \cdot, *, 0)$ of type (2, 2, 0) in which $(A, \cdot, 0)$ is a UP-algebra and (A, *) is a semigroup is called a *fully UP-semigroup* (in short, an *f-UP-semigroup*) if the operation "*" is distributive (on both sides) over the operation ".".

Definition 1.7 ([23]). A fuzzy set F in a nonempty set U (or a fuzzy subset of U) is described by its membership function f_F . To every point $x \in U$, this function associates a real number $f_F(x)$ in the interval [0, 1]. The number $f_F(x)$ is interpreted for the point as a degree of belonging x to the fuzzy set F, that is, $F := \{(u, f_F(u)) \mid u \in U\}$. If $A \subseteq U$ and $t \in (0, 1]$, the *t*-characteristic function [13] χ_A^t of U is a function of U into $\{0, t\}$ defined as follows:

$$\chi_A^t(x) = \begin{cases} t, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

By the definition of t-characteristic function, χ_A^t is a function of U into $\{0, t\} \subset [0, 1]$. We denote the fuzzy set \mathbf{F}_A^t in U is described by its membership function χ_A^t , is called the *t*-characteristic fuzzy set of A in U. We say that a fuzzy set F in U is constant if its membership function \mathbf{f}_F is constant.

Definition 1.8 ([16]). Let $\{F_i\}_{i \in I}$ be a nonempty family of fuzzy sets in a nonempty set U where I is an arbitrary index set. The *intersection* of F_i , denoted by $\bigwedge_{i \in I} F_i$, is described by its membership function $f_{\bigwedge_{i \in I} F_i}$ which defined as follows:

$$f_{\bigwedge_{i \in I} F_i}(x) = \inf\{f_{F_i}(x)\}_{i \in I} \text{ for all } x \in U.$$

The union of F_i , denoted by $\bigvee_{i \in I} F_i$, is described by its membership function $f_{\bigvee_{i \in I} F_i}$ which defined as follows:

$$f_{\bigvee_{i \in I} F_i}(x) = \sup\{f_{F_i}(x)\}_{i \in I} \text{ for all } x \in U.$$

Lemma 1.9. Let S be a nonempty subset of a UP-algebra $(A, \cdot, 0)$ and $t \in (0, 1]$. Then the constant 0 of A is in S if and only if $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$.

Proof. Assume that $0 \in S$. Then for all $x \in A$, $\chi_S^t(0) = t \ge \chi_S^t(x)$.

Conversely, assume that $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$. Since S is a nonempty subset of A, we have an element a in S, that is, $\chi_S^t(a) = t$. Thus $t \ge \chi_S^t(0) \ge \chi_S^t(a) = t$. So $\chi_S^t(0) = t$, that is, $0 \in S$.

Rosenfeld [19] introduced the notion of fuzzy subsemigroups (resp., fuzzy ideals) of semigroups as follows:

Definition 1.10. A fuzzy set F in a semigroup A = (A, *) is called

(1) a fuzzy subsemigroup of A if for any $x, y \in A$,

$$f_{\rm F}(x * y) \ge \min\{f_{\rm F}(x), f_{\rm F}(y)\}.$$

(2) a fuzzy ideal of A if for any $x, y \in A$,

$$f_{\mathcal{F}}(x * y) \ge \max\{f_{\mathcal{F}}(x), f_{\mathcal{F}}(y)\}.$$

Clearly, a fuzzy ideal is a fuzzy subsemigroup.

Theorem 1.11. Let S be a nonempty subset of a semigroup A = (A, *) and $t \in (0, 1]$. Then the following statements hold:

- (1) S is a subsemigroup of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy subsemigroup of A, and
- (2) S is an ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy ideal of A.

Proof. (1) Assume that S is a subsemigroup of A. Let $x, y \in A$.

Case 1: $x, y \in S$. Then $\chi_S^t(x) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Since *S* is a subsemigroup of *A*, we have $x * y \in S$ and so $\chi_S^t(x * y) = t$. Therefore, $\chi_S^t(x * y) = t \ge t = \min\{\chi_S^t(x), \chi_S^t(y)\}.$

Case 2: $x \notin S$ or $y \notin S$. Then $\chi_S^t(x) = 0$ or $\chi_S^t(y) = 0$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = 0$. Therefore, $\chi_S^t(x * y) \ge 0 = \min\{\chi_S^t(x), \chi_S^t(y)\}$.

Hence, \mathbf{F}_{S}^{t} is a fuzzy subsemigroup of A.

Conversely, assume that F_S^t is a fuzzy subsemigroup of A. Let $x, y \in S$. Then $\chi_S^t(y) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Since F_S^t is a fuzzy subsemigroup of A, we have $t \ge \chi_S^t(x * y) \ge \min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Thus $\chi_S^t(x * y) = t$, that is, $x * y \in S$. Hence, S is a subsemigroup of A.

(2) Assume that S is an ideal of A. Let $x, y \in A$.

Case 1: $x, y \in S$. Then $\chi_S^t(x) = t = \chi_S^t(y)$, so $\max\{\chi_S^t(x), \chi_S^t(y)\} = t$. Since S is an ideal of A, we have $x * y \in S$ and so $\chi_S^t(x * y) = t$. Therefore, $\chi_S^t(x * y) = t \ge t = \max\{\chi_S^t(x), \chi_S^t(y)\}.$

Case 2: $x \notin S$ or $y \notin S$. If $x * y \in S$, then $\chi_S^t(x * y) = t$. Therefore, $\chi_S^t(x * y) = t \ge \max\{\chi_S^t(x), \chi_S^t(y)\}$. If $x * y \notin S$, then $x, y \notin S$. Thus $\chi_S^t(x * y) = 0$ and $\chi_S^t(x) = 0 = \chi_S^t(y)$. Therefore, $\chi_S^t(x * y) = 0 \ge 0 = \max\{\chi_S^t(x), \chi_S^t(y)\}$. Hence, \mathbf{F}_S^t is a fuzzy ideal of A.

Conversely, assume that \mathbf{F}_{S}^{t} is a fuzzy ideal of A. Let $s \in S$ and $x \in A$. Then $\chi_{S}^{t}(s) = t$, so $\max\{\chi_{S}^{t}(s), \chi_{S}^{t}(x)\} = t$. Since \mathbf{F}_{S}^{t} is a fuzzy ideal of A, we have $t \geq \chi_{S}^{t}(s*x), \chi_{S}^{t}(x*s) \geq \max\{\chi_{S}^{t}(s), \chi_{S}^{t}(x)\} = t$. Thus $\chi_{S}^{t}(s*x) = t = \chi_{S}^{t}(x*s)$, that is $s * x, x * s \in S$. Hence, S is an ideal of A.

Somjanta et al. [21] and Guntasow et al. [3] introduced the notion of fuzzy UP-subalgebras (resp., fuzzy UP-filters, fuzzy UP-ideals, fuzzy strongly UP-ideals) of UP-algebras as follows:

Definition 1.12. A fuzzy set F in a UP-algebra $A = (A, \cdot, 0)$ is called

(1) a fuzzy UP-subalgebra of A if for any $x, y \in A$,

$$f_{F}(x \cdot y) \ge \min\{f_{F}(x), f_{F}(y)\}.$$

- (2) a fuzzy UP-filter of A if for any $x, y \in A$,
 - (i) $f_{F}(0) \ge f_{F}(x)$, and
 - (ii) $f_F(y) \ge \min\{f_F(x \cdot y), f_F(x)\}.$
- (3) a fuzzy UP-ideal of A if for any $x, y, z \in A$,
 - (i) $f_F(0) \ge f_F(x)$, and
 - (ii) $f_{\mathrm{F}}(x \cdot z) \ge \min\{f_{\mathrm{F}}(x \cdot (y \cdot z)), f_{\mathrm{F}}(y)\}.$
- (4) a fuzzy strongly UP-ideal of A if for any $x, y, z \in A$,
 - (i) $f_F(0) \ge f_F(x)$, and
 - (ii) $f_{\mathrm{F}}(x) \ge \min\{f_{\mathrm{F}}((z \cdot y) \cdot (z \cdot x)), f_{\mathrm{F}}(y)\}.$

Guntasow et al. [3] also proved that the notion of fuzzy UP-subalgebras is a generalization of fuzzy UP-filters, the notion of fuzzy UP-filters is a generalization of fuzzy UP-ideals, and the notion of fuzzy UP-ideals is a generalization of fuzzy strongly UP-ideals.

Theorem 1.13 ([3]). Fuzzy strongly UP-ideals and constant fuzzy sets coincide in UP-algebras.

Lemma 1.14. Let F be a fuzzy UP-filter of a UP-algebra $A = (A, \cdot, 0)$. Then for any $x, y \in A$,

$$x \leq y \text{ implies } f_{\mathrm{F}}(x) \leq f_{\mathrm{F}}(y) \leq f_{\mathrm{F}}(x \cdot y)$$

Proof. Let $x, y \in A$ be such that $x \leq y$. Then $x \cdot y = 0$, so

$$f_{\rm F}(y) \ge \min\{f_{\rm F}(x \cdot y), f_{\rm F}(x)\} = \min\{f_{\rm F}(0), f_{\rm F}(x)\} = f_{\rm F}(x).$$

By (1.5), we have $y \leq x \cdot y$ and thus $f_F(y) \leq f_F(x \cdot y)$.

Theorem 1.15. Let S be a nonempty subset of a UP-algebra $A = (A, \cdot, 0)$ and $t \in (0, 1]$. Then the following statements hold:

- (1) S is a UP-subalgebra of A if and only if the t-characteristic fuzzy set \mathbf{F}_{S}^{t} is a fuzzy UP-subalgebra of A,
- (2) S is a UP-filter of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP-filter of A,
- (3) S is a UP-ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP-ideal of A, and
- (4) S is a strongly UP-ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy strongly UP-ideal of A.

Proof. (1) Assume that S is a UP-subalgebra of A. Let $x, y \in A$.

Case 1: $x, y \in S$. Then $\chi_S^t(x) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Since S is a UP-subalgebra of A, we have $x \cdot y \in S$ and so $\chi_S^t(x \cdot y) = t$. Therefore, $\chi_S^t(x \cdot y) = t \ge t = \min\{\chi_S^t(x), \chi_S^t(y)\}$.

Case 2: $x \notin S$ or $y \notin S$. Then $\chi_S^t(x) = 0$ or $\chi_S^t(y) = 0$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = 0$. Therefore, $\chi_S^t(x \cdot y) \ge 0 = \min\{\chi_S^t(x), \chi_S^t(y)\}$.

Hence, \mathbf{F}_{S}^{t} is a fuzzy UP-subalgebra of A.

Conversely, assume that F_S^t is a fuzzy UP-subalgebra of A. Let $x, y \in S$. Then $\chi_S^t(y) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Since F_S^t is a fuzzy UP-subalgebra of A, we have $t \ge \chi_S^t(x \cdot y) \ge \min\{\chi_S^t(x), \chi_S^t(y)\} = t$. Thus $\chi_S^t(x \cdot y) = t$, that is, $x \cdot y \in S$. Hence, S is a UP-subalgebra of A.

(2) Assume that S is a UP-filter of A. Since $0 \in S$, it follows from Lemma 1.9 that $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$. Next, let $x, y \in A$.

Case 1: $x, y \in \tilde{S}$. Then $\chi_S^t(x) = t = \chi_S^t(y)$. Thus $\chi_S^t(y) = t \ge \chi_S^t(x \cdot y) = \min\{\chi_S^t(x \cdot y), \chi_S^t(x)\}.$

Case 2: $x \notin S$ or $y \notin S$. If $x \notin S$, then $\chi_S^t(x) = 0$. Thus $\chi_S^t(y) \ge 0 = \min\{\chi_S^t(x \cdot y), \chi_S^t(x)\}$. If $y \notin S$, then $\chi_S^t(y) = 0$. Since S is a UP-filter of A, we have $x \cdot y \notin S$ or $x \notin S$ and so $\chi_S^t(x \cdot y) = 0$ or $\chi_S^t(x) = 0$. Thus $\chi_S^t(y) = 0 \ge 0 = \min\{\chi_S^t(x \cdot y), \chi_S^t(x)\}$.

Hence, \mathbf{F}_{S}^{t} is a fuzzy UP-filter of A.

Conversely, assume that F_S^t is a fuzzy UP-filter of A. Since $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$, it follows from Lemma 1.9 that $0 \in S$. Next, let $x, y \in A$ be such that $x \cdot y \in S$ and $x \in S$. Then $\chi_S^t(x \cdot y) = t = \chi_S^t(x)$, so $\min\{\chi_S^t(x \cdot y), \chi_S^t(x)\} = t$.

Since F_S^t is a fuzzy UP-filter of A, we have $t \ge \chi_S^t(y) \ge \min\{\chi_S^t(x \cdot y), \chi_S^t(x)\} = t$. Thus $\chi_S^t(y) = t$, that is, $y \in S$. Hence, S is a UP-filter of A.

(3) Assume that S is a UP-ideal of A. Since $0 \in S$, it follows from Lemma 1.9 that $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$. Next, let $x, y, z \in A$.

Case 1: $x \cdot (y \cdot z), y \in S$. Then $\chi_S^t(x \cdot (y \cdot z)) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\} = t$. Since S is a UP-ideal of A, we have $x \cdot z \in S$ and so $\chi_S^t(x \cdot z) = t$. Thus $\chi_S^t(x \cdot z) = t \ge t = \min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\}$.

Case 2: $x \cdot (y \cdot z) \notin S$ or $y \notin S$. Then $\chi_S^t(x \cdot (y \cdot z)) = 0$ or $\chi_S^t(y) = 0$, so $\min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\} = 0$. Thus $\chi_S^t(x \cdot z) \ge 0 = \min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\}$. Hence, \mathbf{F}_S^t is a fuzzy UP-ideal of A.

Conversely, assume that F_S^t is a fuzzy UP-ideal of A. Since $\chi_S^t(0) \ge \chi_S^t(x)$ for all $x \in A$, it follows from Lemma 1.9 that $0 \in S$. Next, let $x, y, z \in A$ such that $x \cdot (y \cdot z) \in S$ and $y \in S$. Then $\chi_S^t(x \cdot (y \cdot z)) = t = \chi_S^t(y)$, so $\min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\} = t$. Since F_S^t is a fuzzy UP-ideal of A, we have $t \ge \chi_S^t(x \cdot z) \ge \min\{\chi_S^t(x \cdot (y \cdot z)), \chi_S^t(y)\} = t$. Thus $\chi_S^t(x \cdot z) = t$, that is, $x \cdot z \in S$. Hence, S is a UP-ideal of A.

(4) It is straightforward by Theorem 1.13, and A is the only one strongly UP-ideal of itself. $\hfill \Box$

2. Special subsets of fully UP-semigroups

In this section, we introduce the notions of UP_s -subalgebras, UP_i -subalgebras, UP_s -filters, UP_i -filters, UP_s -ideals, UP_i -ideals, strongly UP_s -ideals, and strongly UP_i -ideals of fully UP-semigroups, provide the necessary examples and prove its generalizations.

From now on, we shall let A be an f-UP-semigroup $A = (A, \cdot, *, 0)$ unless otherwise specified.

Definition 2.1. A subset S of an f-UP-semigroup A is called

- (1) a UP_s -subalgebra of A if S is a UP-subalgebra of $(A, \cdot, 0)$, and S is a subsemigroup of (A, *).
- (2) a UP_i -subalgebra of A if S is a UP-subalgebra of $(A, \cdot, 0)$, and S is an ideal of (A, *).

We have Theorem 2.2, 2.8, and 2.13 directly from Definition 1.5.

Theorem 2.2. Every UP_i -subalgebra of A is a UP_s -subalgebra of A.

Example 2.3. Let $A = \{0, 1, 2, 3\}$ be a set with two binary operations \cdot and * defined by the following Cayley tables:

•	0	1	2	3	*	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	0	0	2	3	1	0	1	0	0
2	0	1	0	3	2	0	0	2	0
3	0	1	2	0	3	0	3	0	0

Then $A = (A, \cdot, *, 0)$ is an *f*-UP-semigroup. Let $S = \{0, 1, 2\}$. Then *S* is a UP_s-subalgebra of *A*. Since $1 \in S$ and $3 \in A$ but $3 * 1 = 3 \notin S$, we have *S* is not an ideal of (A, *). Thus *S* is not a UP_i-subalgebra of *A*.

Definition 2.4. A subset S of an f-UP-semigroup $A = (A, \cdot, *, 0)$ is called

- (1) a UP_s -filter of A if S is a UP-filter of $(A, \cdot, 0)$, and S is a subsemigroup of (A, *).
- (2) a UP_i -filter of A if S is a UP-filter of $(A, \cdot, 0)$, and S is an ideal of (A, *).

We have Theorem 2.5, 2.7, 2.10, 2.12, 2.15, and 2.17 directly from a result quoted in Definition 1.4.

Theorem 2.5. Every UP_s -filter of A is a UP_s -subalgebra of A.

Example 2.6. Let $A = \{0, 1, 2, 3\}$ be a set with two binary operations \cdot and * defined by the following Cayley tables:

•	0	1	2	3	*	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	0	0	2	3	1	0	0	0	0
2	0	0	0	3	2	0	0	0	0
3	0	0	0	0	3	0	0	0	1

Then $A = (A, \cdot, *, 0)$ is an f-UP-semigroup. Let $S = \{0, 2\}$. Then S is a UP_s-subalgebra of A. Since $2 \cdot 1 = 0 \in S$ and $2 \in S$ but $1 \notin S$, we have S is not a UP-filter of $(A, \cdot, 0)$. Thus S is not a UP_s-filter of A.

Theorem 2.7. Every UP_i-filter of A is a UP_i-subalgebra of A.

In Example 2.6, we have S is a UP_i-subalgebra of A. Since S is not a UP-filter of $(A, \cdot, 0)$, we have S is not a UP_i-filter of A.

Theorem 2.8. Every UP_i -filter of A is a UP_s -filter of A.

In Example 2.3, we have S is a UP_s-filter of A. Since S is not an ideal of (A, *), we have S is not a UP_i-filter of A.

Definition 2.9. A subset S of an f-UP-semigroup A is called

- (1) a UP_{s} -ideal of A if S is a UP-ideal of $(A, \cdot, 0)$, and S is a subsemigroup of (A, *).
- (2) a UP_i -ideal of A if S is a UP-ideal of $(A, \cdot, 0)$, and S is an ideal of (A, *).

Theorem 2.10. Every UP_s -ideal of A is a UP_s -filter of A.

Example 2.11. Let $A = \{0, 1, 2, 3\}$ be a set with two binary operations \cdot and * defined by the following Cayley tables:

•	0	1	2	3	*	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	0	0	2	2	1	0	0	0	0
2	0	1	0	2	2	0	0	0	0
3	0	1	0	0	3	0	0	0	0

Then $A = (A, \cdot, *, 0)$ is an f-UP-semigroup. Let $S = \{0, 1\}$. Then S is a UP_s-filter of A. Since $2 \cdot (1 \cdot 3) = 0 \in S$ and $1 \in S$ but $2 \cdot 3 = 2 \notin S$, we have S is not a UP-ideal of $(A, \cdot, 0)$. Thus S is not a UP_s-ideal of A.

Theorem 2.12. Every UP_i -ideal of A is a UP_i -filter of A.

In Example 2.11, we have S is a UP_i-filter of A. Since S is not a UP-ideal of $(A, \cdot, 0)$, we have S is not a UP_i-ideal of A.

Theorem 2.13. Every UP_i -ideal of A is a UP_s -ideal of A.

In Example 2.3, we have S is a UP_s-ideal of A. Since S is not an ideal of (A, *), we have S is not a UP_i-ideal of A.

Definition 2.14. A subset S of an f-UP-semigroup A is called

- (1) a strongly UP_{s} -ideal of A if S is a strongly UP-ideal of $(A, \cdot, 0)$, and S is a subsemigroup of (A, *).
- (2) a strongly UP_i -ideal of A if S is a strongly UP-ideal of $(A, \cdot, 0)$, and S is an ideal of (A, *).

Theorem 2.15. Every strongly UP_s -ideal of A is a UP_s -ideal of A.

Example 2.16. Let $A = \{0, 1, 2, 3\}$ be a set with two binary operations \cdot and * defined by the following Cayley tables:

•	0	1	2	3		*	0	1	2	3
0	0	1	2	3	-	0	0	0	0	0
1	0	0	2	3		1	0	0	0	0
2	0	1	0	3		2	0	0	0	1
3	0	1	2	0		3	0	0	1	0

Then $A = (A, \cdot, *, 0)$ is an *f*-UP-semigroup. Let $S = \{0, 1, 2\}$. Then *S* is a UP_s-ideal of *A*. Since $S \neq A$, we have *S* is not a strongly UP-ideal of $(A, \cdot, 0)$. Thus *S* is not a strongly UP_s-ideal of *A*.

Theorem 2.17. Every strongly UP_i -ideal of A is a UP_i -ideal of A.

In Example 2.16, we have S is a UP_i-ideal of A. Since S is not a strongly UP-ideal of $(A, \cdot, 0)$, we have S is not a strongly UP_i-ideal of A.

Theorem 2.18. Strongly UP_s -ideals and strongly UP_i -ideals coincide in A and it is only A.

Proof. It is straightforward by A is the only one strongly UP-ideal of itself. \Box

3. Fuzzy sets in fully UP-semigroups

In this section, we introduce the notions of fuzzy UP_s -subalgebras, fuzzy UP_i -subalgebras, fuzzy UP_s -filters, fuzzy UP_i -filters, fuzzy UP_s -ideals, fuzzy UP_i -ideals, fuzzy strongly UP_s -ideals, and fuzzy strongly UP_i -ideals of fully UP_s -semigroups, provide the necessary examples, prove its generalizations and investigate the algebraic properties of fuzzy sets under the operations of intersection and union.

Definition 3.1. A fuzzy set F in an f-UP-semigroup A is called

- (1) a fuzzy UP_s -subalgebra of A if F is a fuzzy UP-subalgebra of $(A, \cdot, 0)$ and a fuzzy subsemigroup of (A, *).
- (2) a fuzzy UP_i -subalgebra of A if F is a fuzzy UP-subalgebra of $(A, \cdot, 0)$ and a fuzzy ideal of (A, *).

Clearly, a fuzzy UP_i-subalgebra is a fuzzy UP_s-subalgebra.

In Example 2.16, we define a membership function f_F as follows:

 $f_F(0)=1,\ f_F(1)=0.4,\ f_F(2)=0.5,\ and\ f_F(3)=0.2.$

Then F is a fuzzy UP_s-subalgebra of A. Since $f_F(2 * 3) = f_F(1) = 0.4 \ge 0.5 = \max\{0.5, 0.2\} = \max\{f_F(2), f_F(3)\}$, we have F is not a fuzzy UP_i-subalgebra of A.

Theorem 3.2. The intersection of any nonempty family of fuzzy UP_s -subalgebra of A is also a fuzzy UP_s -subalgebra of A.

Proof. Let F_i be a fuzzy UP_s-subalgebra of A for all $i \in I$. Then

$$\begin{split} f_{\bigwedge_{i \in I} F_{i}}(x \cdot y) &= \inf\{f_{F_{i}}(x \cdot y)\}_{i \in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i \in I} \\ &= \min\{\inf\{f_{F_{i}}(x)\}_{i \in I}, \inf\{f_{F_{i}}(y)\}_{i \in I}\} \\ &= \min\{f_{\bigwedge_{i \in I} F_{i}}(x), f_{\bigwedge_{i \in I} F_{i}}(y)\} \text{ and } \\ f_{\bigwedge_{i \in I} F_{i}}(x * y) &= \inf\{f_{F_{i}}(x * y)\}_{i \in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i \in I} \\ &= \min\{\inf\{f_{F_{i}}(x)\}_{i \in I}, \inf\{f_{F_{i}}(y)\}_{i \in I}\} \\ &= \min\{f_{\bigwedge_{i \in I} F_{i}}(x), f_{\bigwedge_{i \in I} F_{i}}(y)\}. \end{split}$$

Hence, $\bigwedge_{i \in I} \mathbf{F}_i$ is a fuzzy UP_s-subalgebra of A.

In Example 2.16, we define two membership functions f_{F1} and f_{F2} as follow:

Then F_1 and F_2 are fuzzy UP_s-subalgebras of A. Since $f_{F_1 \vee F_2}(3*2) = f_{F_1 \vee F_2}(1) = 0.5 \not\geq 0.6 = \min\{0.6, 0.7\} = \min\{f_{F_1 \vee F_2}(3), f_{F_1 \vee F_2}(2)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_s-subalgebra of A.

Theorem 3.3. A nonempty subset S of A is a UP_s -subalgebra of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_s -subalgebra of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (1). \Box

Theorem 3.4. The intersection of any nonempty family of fuzzy UP_i -subalgebra of A is also a fuzzy UP_i -subalgebra of A.

Proof. Let F_i be a fuzzy UP_i-subalgebra of A for all $i \in I$. Then

$$\begin{split} f_{\bigwedge_{i\in I} F_{i}}(x \cdot y) &= \inf\{f_{F_{i}}(x \cdot y)\}_{i\in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i\in I} \\ &= \min\{\inf\{f_{F_{i}}(x)\}_{i\in I}, \inf\{f_{F_{i}}(y)\}_{i\in I}\} \\ &= \min\{f_{\bigwedge_{i\in I} F_{i}}(x), f_{\bigwedge_{i\in I} F_{i}}(y)\} \text{ and } \\ f_{\bigwedge_{i\in I} F_{i}}(x * y) &= \inf\{f_{F_{i}}(x * y)\}_{i\in I} \\ &\geq \inf\{\max\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i\in I} \\ &\geq \max\{\inf\{f_{F_{i}}(x)\}_{i\in I}, \inf\{f_{F_{i}}(y)\}_{i\in I}\} \\ &= \max\{f_{\bigwedge_{i\in I} F_{i}}(x), f_{\bigwedge_{i\in I} F_{i}}(y)\}. \end{split}$$

Hence, $\bigwedge_{i \in I} \mathbf{F}_i$ is a fuzzy UP_i-subalgebra of A.

In Example 2.11, we define two membership functions f_{F1} and f_{F2} as follow:

A	0	1	2	3
f_{F_1}	0.9	0.7	0.1	0.1
f_{F_2}	0.8	0.4	0.5	0.6

Then F_1 and F_2 are fuzzy UP_i-subalgebras of A. Since $f_{F_1 \vee F_2}(1 \cdot 3) = f_{F_1 \vee F_2}(2) = 0.5 \not\geq 0.6 = \min\{0.7, 0.6\} = \min\{f_{F_1 \vee F_2}(1), f_{F_1 \vee F_2}(3)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_i-subalgebra of A.

Theorem 3.5. A nonempty subset S of A is a UP_i -subalgebra of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_i -subalgebra of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (1). \Box

Definition 3.6. A fuzzy set F in an f-UP-semigroup A is called

- (1) a fuzzy UP_s -filter of A if F is a fuzzy UP-filter of $(A, \cdot, 0)$ and a fuzzy subsemigroup of (A, *).
- (2) a fuzzy UP_i -filter of A if F is a fuzzy UP-filter of $(A, \cdot, 0)$ and a fuzzy ideal of (A, *).

Clearly, a fuzzy UP_i-filter is a fuzzy UP_s-filter.

In Example 2.16, we define a membership function f_F as follows:

 $f_F(0) = 1$, $f_F(1) = 0.4$, $f_F(2) = 0.5$, and $f_F(3) = 0.2$.

Then F is a fuzzy UP_s-filter of A. Since $f_F(2 * 3) = f_F(1) = 0.4 \ge 0.5 = \max\{0.5, 0.2\} = \max\{f_F(2), f_F(3)\}$, we have F is not a fuzzy UP_i-filter of A.

Theorem 3.7. The intersection of any nonempty family of fuzzy UP_s -filter of A is also a fuzzy UP_s -filter of A.

Proof. Let F_i be a fuzzy UP_s-filter of A for all $i \in I$. Then

$$\begin{split} f_{\bigwedge_{i\in I} F_{i}}(0) &= \inf\{f_{F_{i}}(0)\}_{i\in I} \\ &\geq \inf\{f_{F_{i}}(x)\}_{i\in I} \\ &= f_{\bigwedge_{i\in I} F_{i}}(x), \\ f_{\bigwedge_{i\in I} F_{i}}(y) &= \inf\{f_{F_{i}}(y)\}_{i\in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x \cdot y), f_{F_{i}}(x)\}\}_{i\in I} \\ &= \min\{\inf\{f_{F_{i}}(x \cdot y)\}_{i\in I}, \inf\{f_{F_{i}}(x)\}_{i\in I}\} \\ &= \min\{f_{\bigwedge_{i\in I} F_{i}}(x \cdot y), f_{\bigwedge_{i\in I} F_{i}}(x)\}, \text{ and } \\ f_{\bigwedge_{i\in I} F_{i}}(x * y) &= \inf\{f_{F_{i}}(x * y)\}_{i\in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i\in I} \\ &= \min\{\inf\{f_{F_{i}}(x)\}_{i\in I}, \inf\{f_{F_{i}}(y)\}_{i\in I}\} \\ &= \min\{f_{\bigwedge_{i\in I} F_{i}}(x), f_{\bigwedge_{i\in I} F_{i}}(y)\}. \end{split}$$

Hence, $\bigwedge_{i \in I} \mathbf{F}_i$ is a fuzzy UP_s-filter of A.

In Example 2.16, we define two membership functions $f_{\rm F1}$ and $f_{\rm F2}$ as follow:

Then F_1 and F_2 are fuzzy UP_s -filters of A. Since $f_{F_1 \vee F_2}(2 * 3) = f_{F_1 \vee F_2}(1) = 0.5 \not\ge 0.6 = \min\{0.7, 0.6\} = \min\{f_{F_1 \vee F_2}(2), f_{F_1 \vee F_2}(3)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_s -filter of A.

Theorem 3.8. A nonempty subset S of A is a UP_s -filter of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_s -filter of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (2). \Box

Theorem 3.9. The intersection of any nonempty family of fuzzy UP_i -filter of A is also a fuzzy UP_i -filter of A.

Proof. Let F_i be a fuzzy UP_i-filter of A for all $i \in I$. Then

$$\begin{split} f_{\bigwedge_{i \in I} F_{i}}(0) &= \inf\{f_{F_{i}}(0)\}_{i \in I} \\ &\geq \inf\{f_{F_{i}}(x)\}_{i \in I} \\ &= f_{\bigwedge_{i \in I} F_{i}}(x), \\ f_{\bigwedge_{i \in I} F_{i}}(y) &= \inf\{f_{F_{i}}(y)\}_{i \in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x \cdot y), f_{F_{i}}(x)\}\}_{i \in I} \\ &= \min\{\inf\{f_{F_{i}}(x \cdot y), f_{\bigwedge_{i \in I} F_{i}}(x)\}_{i \in I}\} \\ &= \min\{f_{\bigwedge_{i \in I} F_{i}}(x \cdot y), f_{\bigwedge_{i \in I} F_{i}}(x)\}, \text{ and} \\ f_{\bigwedge_{i \in I} F_{i}}(x * y) &= \inf\{f_{F_{i}}(x * y)\}_{i \in I} \\ &\geq \inf\{\max\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i \in I} \\ &\geq \max\{\inf\{f_{F_{i}}(x), f_{F_{i}}(y)\}_{i \in I}\} \\ &= \max\{f_{\bigwedge_{i \in I} F_{i}}(x), f_{\bigwedge_{i \in I} F_{i}}(y)\}. \end{split}$$

Hence, $\bigwedge_{i \in I} F_i$ is a fuzzy UP_i-filter of A.

Example 3.10. Let $A = \{0, 1, 2, 3\}$ be a set with two binary operations \cdot and * defined by the following Cayley tables:

•	0	1	2	3	*	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	0	0	2	2	1	0	0	0	0
2	0	1	0	1	2	0	0	0	0
3	0	0	0	0	3	0	0	0	0

We define two membership functions f_{F1} and f_{F2} as follow:

Then F₁ and F₂ are fuzzy UP_i-filters of A. Since $f_{F_1 \vee F_2}(3) = 0.5 \not\geq 0.6 = \min\{0.9, 0.6\} = \min\{f_{F_1 \vee F_2}(1), f_{F_1 \vee F_2}(2)\} = \min\{f_{F_1 \vee F_2}(2 \cdot 3), f_{F_1 \vee F_2}(2)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_i-filter of A.

Theorem 3.11. A nonempty subset S of A is a UP_i -filter of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_i -filter of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (2). \Box

We have Theorem 3.12, 3.13, 3.19, 3.20, and 3.27 directly from a result quoted in Definition 1.12.

Theorem 3.12. Every fuzzy UP_s -filter of A is a fuzzy UP_s -subalgebra of A.

In Example 2.6, we define a membership function f_F as follows:

 $f_F(0) = 1$, $f_F(1) = 0.2$, $f_F(2) = 0.9$, and $f_F(3) = 0.1$.

Then F is a fuzzy UP_s-subalgebra of A. Since $f_F(1) = 0.2 \ge 0.9 = \min\{1, 0.9\} = \min\{f_F(0), f_F(2)\} = \min\{f_F(2 \cdot 1), f_F(2)\}$, we have F is not a fuzzy UP_s-filter of A.

Theorem 3.13. Every fuzzy UP_i -filter of A is a fuzzy UP_i -subalgebra of A.

In Example 2.6, we define a membership function f_F as follows:

 $f_F(0) = 1$, $f_F(1) = 0.2$, $f_F(2) = 0.9$, and $f_F(3) = 0.1$.

Then F is a fuzzy UP_i-subalgebra of A. Since $f_F(1) = 0.2 \ge 0.9 = \min\{1, 0.9\} = \min\{f_F(0), f_F(2)\} = \min\{f_F(2 \cdot 1), f_F(2)\}$, we have F is not a fuzzy UP_i-filter of A.

Definition 3.14. A fuzzy set F in an f-UP-semigroup A is called

- (1) a fuzzy UP_{s} -ideal of A if F is a fuzzy UP-ideal of $(A, \cdot, 0)$ and a fuzzy subsemigroup of (A, *).
- (2) a fuzzy UP_i -ideal of A if F is a fuzzy UP-ideal of $(A, \cdot, 0)$ and a fuzzy ideal of (A, *).

Clearly, a fuzzy UP_i-ideal is a fuzzy UP_s-ideal.

In Example 2.16, we define a membership function f_F as follows:

$$f_F(0) = 1$$
, $f_F(1) = 0.4$, $f_F(2) = 0.5$, and $f_F(3) = 0.2$.

Then F is a fuzzy UP_s-ideal of A. Since $f_F(3 * 2) = f_F(1) = 0.4 \ge 0.5 = \max\{0.2, 0.5\} = \max\{f_F(3), f_F(2)\}$, we have F is not a fuzzy UP_i-ideal of A.

Theorem 3.15. The intersection of any nonempty family of fuzzy UP_s -ideal of A is also a fuzzy UP_s -ideal of A.

Proof. Let F_i be a fuzzy UP_s-ideal of A for all $i \in I$. Then

$$\begin{split} f_{\bigwedge_{i\in I} F_{i}}(0) &= \inf\{f_{F_{i}}(0)\}_{i\in I} \\ &\geq \inf\{f_{F_{i}}(x)\}_{i\in I} \\ &= f_{\bigwedge_{i\in I} F_{i}}(x), \\ f_{\bigwedge_{i\in I} F_{i}}(x \cdot z) &= \inf\{f_{F_{i}}(x \cdot z)\}_{i\in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x \cdot (y \cdot z)), f_{F_{i}}(y)\}\}_{i\in I} \\ &= \min\{\inf\{f_{F_{i}}(x \cdot (y \cdot z))\}_{i\in I}, \inf\{f_{F_{i}}(y)\}_{i\in I}\} \\ &= \min\{f_{\bigwedge_{i\in I} F_{i}}(x \cdot (y \cdot z)), f_{\bigwedge_{i\in I} F_{i}}(y)\}, \text{ and } \\ f_{\bigwedge_{i\in I} F_{i}}(x * y) &= \inf\{f_{F_{i}}(x * y)\}_{i\in I} \\ &\geq \inf\{\min\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i\in I} \\ &= \min\{\inf\{f_{F_{i}}(x)\}_{i\in I}, \inf\{f_{F_{i}}(y)\}_{i\in I}\} \\ &= \min\{f_{\bigwedge_{i\in I} F_{i}}(x), f_{\bigwedge_{i\in I} F_{i}}(y)\}. \end{split}$$

Hence, $\bigwedge_{i \in I} \mathbf{F}_i$ is a fuzzy UPs-ideal of A.

In Example 2.16, we define two membership functions $f_{\rm F1}$ and $f_{\rm F2}$ as follow:

A	0	1	2	3
f_{F_1}	0.7	0.5	0.7	0.3
f_{F_2}	0.7	0.3	0.2	0.6

Then F_1 and F_2 are fuzzy UP_s -ideals of A. Since $f_{F_1 \vee F_2}(3 * 2) = f_{F_1 \vee F_2}(1) = 0.5 \not\ge 0.6 = \min\{0.6, 0.7\} = \min\{f_{F_1 \vee F_2}(3), f_{F_1 \vee F_2}(2)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_s -ideal of A.

Theorem 3.16. A nonempty subset S of A is a UP_s -ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_s -ideal of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (3). \Box

Theorem 3.17. The intersection of any nonempty family of fuzzy UP_i -ideal of A is also a fuzzy UP_i -ideal of A.

Proof. Let F_i be a fuzzy UP_i-ideal of A for all $i \in I$. Then

$$f_{\bigwedge_{i\in I} F_{i}}(0) = \inf\{f_{F_{i}}(0)\}_{i\in I}$$

$$\geq \inf\{f_{F_{i}}(x)\}_{i\in I}$$

$$= f_{\bigwedge_{i\in I} F_{i}}(x),$$

$$f_{\bigwedge_{i\in I} F_{i}}(x \cdot z) = \inf\{f_{F_{i}}(x \cdot z)\}_{i\in I}$$

$$\geq \inf\{\min\{f_{F_{i}}(x \cdot (y \cdot z)), f_{F_{i}}(y)\}\}_{i \in I}$$

$$= \min\{\inf\{f_{F_{i}}(x \cdot (y \cdot z))\}_{i \in I}, \inf\{f_{F_{i}}(y)\}_{i \in I}\}$$

$$= \min\{f_{\bigwedge_{i \in I} F_{i}}(x \cdot (y \cdot z)), f_{\bigwedge_{i \in I} F_{i}}(y)\}, \text{ and }$$

$$f_{\bigwedge_{i \in I} F_{i}}(x * y) = \inf\{f_{F_{i}}(x * y)\}_{i \in I}$$

$$\geq \inf\{\max\{f_{F_{i}}(x), f_{F_{i}}(y)\}\}_{i \in I}$$

$$\geq \max\{\inf\{f_{F_{i}}(x)\}_{i \in I}, \inf\{f_{F_{i}}(y)\}_{i \in I}\}$$

$$= \max\{f_{\bigwedge_{i \in I} F_{i}}(x), f_{\bigwedge_{i \in I} F_{i}}(y)\}.$$

Hence, $\bigwedge_{i \in I} \mathbf{F}_i$ is a fuzzy UP_i-ideal of A.

In Example 3.10, we define two membership functions f_{F1} and f_{F2} as follow:

Then F_1 and F_2 are fuzzy UP_i -ideals of A. Since $f_{F_1 \vee F_2}(0 \cdot 3) = f_{F_1 \vee F_2}(3) = 0.3 \geq 0.4 = \min\{0.4, 0.5\} = \min\{f_{F_1 \vee F_2}(2), f_{F_1 \vee F_2}(1)\} = \min\{f_{F_1 \vee F_2}(0 \cdot (1 \cdot 3)), f_{F_1 \vee F_2}(1)\}$, we have $F_1 \vee F_2$ is not a fuzzy UP_i -ideal of A.

Theorem 3.18. A nonempty subset S of A is a UP_i-ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy UP_i-ideal of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (3). \Box

Theorem 3.19. Every fuzzy UP_s -ideal of A is a fuzzy UP_s -filter of A.

In Example 2.11, we define a membership function f_F as follows:

 $f_F(0) = 0.8$, $f_F(1) = 0.6$, $f_F(2) = 0.3$, and $f_F(3) = 0.3$.

Then F is a fuzzy UP_s-filter of A. Since $f_F(2 \cdot 3) = f_F(2) = 0.3 \not\geq 0.6 = \min\{0.8, 0.6\} = \min\{f_F(0), f_F(1)\} = \min\{f_F(2 \cdot (1 \cdot 3)), f_F(1)\}$, we have F is not a fuzzy UP_s-ideal of A.

Theorem 3.20. Every fuzzy UP_i -ideal of A is a fuzzy UP_i -filter of A.

In Example 2.11, we define a membership function f_F as follows:

 $f_F(0) = 0.8, f_F(1) = 0.6, f_F(2) = 0.3, and f_F(3) = 0.3.$

Then F is a fuzzy UP_i-filter of A. Since $f_F(2 \cdot 3) = f_F(2) = 0.3 \not\geq 0.6 = \max\{0.8, 0.6\} = \max\{f_F(0), f_F(1)\} = \max\{f_F(2 \cdot (1 \cdot 3)), f_F(1)\}$, we have F is not a fuzzy UP_i-ideal of A.

Definition 3.21. A fuzzy set F in an f-UP-semigroup A is called

- (1) a fuzzy strongly UP_{s} -ideal of A if F is a fuzzy strongly UP-ideal of $(A, \cdot, 0)$ and a fuzzy subsemigroup of (A, *).
- (2) a fuzzy strongly UP_i -ideal of A if F is a fuzzy strongly UP-ideal of $(A, \cdot, 0)$ and a fuzzy ideal of (A, *).

Theorem 3.22. Fuzzy strongly UP_s -ideals, fuzzy strongly UP_i -ideals, and constant fuzzy sets coincide in A.

Proof. It is straightforward by Theorem 1.13.

If a fuzzy set F_i is constant for all $i \in I$, then we see that the fuzzy sets $\bigwedge_{i \in I} F_i$ and $\bigvee_{i \in I} F_i$ are constant. From this, we have Theorem 3.23 and 3.24.

Theorem 3.23. The intersection and union of any nonempty family of fuzzy strongly UP_s -ideal of A are also a fuzzy strongly UP_s -ideal of A.

Theorem 3.24. The intersection and union of any nonempty family of fuzzy strongly UP_i -ideal of A are also a fuzzy strongly UP_i -ideal of A.

Theorem 3.25. A nonempty subset S of A is a strongly UP_s -ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy strongly UP_s -ideal of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (4). \Box

Theorem 3.26. A nonempty subset S of A is a strongly UP_i -ideal of A if and only if the t-characteristic fuzzy set F_S^t is a fuzzy strongly UP_i -ideal of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (4). \Box

Theorem 3.27. Every fuzzy strongly UP_s -ideal (fuzzy strongly UP_i -ideal) of A is a fuzzy UP_s -ideal and a fuzzy UP_i -ideal of A.

In Example 2.3, we define a membership function f_F as follows:

 $f_F(0) = 0.7$, $f_F(1) = 0.5$, $f_F(2) = 0.3$, and $f_F(3) = 0.6$.

Then F is a fuzzy UP_i-ideal of A. Since F is not constant, we have F is not a fuzzy strongly UP_s-ideal and a fuzzy strongly UP_i-ideal of A.

4. Conclusions and future works

In this paper, we have introduced the notions of fuzzy UP_s -subalgebras, fuzzy UP_i -subalgebras, fuzzy UP_s -filters, fuzzy UP_i -filters, fuzzy UP_s -ideals, fuzzy UP_i -ideals, fuzzy strongly UP_s -ideals, and fuzzy strongly UP_i -ideals of fully UP-semigroups, proved its generalizations and investigated some of its important properties. Then we have the generalization diagram of fuzzy sets in fully UP-semigroups below.

In our future study of fully UP-semigroups, may be the following topics should be considered:

- To get more results in fuzzy sets in fully UP-semigroups.
- To define fuzzy translations in fully UP-semigroups.
- To define fuzzy soft sets over fully UP-semigroups.

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- J. C. Endam and M. D. Manahon, On fuzzy JB-semigroups, Int. Math. Forum, 11 (2016), 379–386.
- [2] J. C. Endam and J. P. Vilela, On JB-semigroups, Appl. Math. Sci., 9 (2015), 2901–2911.
- [3] T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1–19.
- [4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5 (2017), 35–54.
- [5] A. Iampan, *Introducing fully UP-semigroups*, Discuss. Math., Gen. Algebra Appl., 38 (2018), 297–306.
- [6] A. Iampan, UP-algebras: the beginning, Copy House and Printing, Thailand, 2018.

- [7] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19–22.
- [8] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26–29.
- [9] Z. Jianming and X. Dajing, Intuitionistic fuzzy associative I-ideals of ISalgebras, Sci. Math. Jpn. Online, 10 (2004), 93–98.
- [10] J. B. Jun, S. M. Hong, and E. H. Roh, *BCI-semigroups*, Honam Math. J., 15 (1993), 59–64.
- [11] Y. B. Jun, S. S. Ahn, J. Y. Kim, and H. S. Kim, Fuzzy I-ideals in BCIsemigroups, Southeast Asian Bull. Math., 2 (1998), 147–153.
- [12] Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras, Sci. Math. Jpn. Online, 9 (2003), 95–100.
- [13] Y. B. Jun, M. A. Oztürk, and G. Muhiuddin, A generalization of (∈, ∈ ∨q)fuzzy subgroups, Int. J. Math. Stat., 5 (2016), 7–18.
- [14] Y. B. Jun, X. L. Xin, and E. H. Roh, A class of algebras related to BCIalgebras and semigroups, Soochow J. Math., 24 (1998), 309–321.
- [15] K. H. Kim, On structure of KS-semigroups, Int. Math. Forum, 1 (2006), 67–76.
- [16] K. H. Lee, First course on fuzzy theory and applications, Springer-Verlag Berlin Heidelberg, 2018.
- [17] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik, 54 (2002), 21–29.
- [18] E. H. Roh, Y. B. Jun, and W. H. Shim, Fuzzy associative I-ideals of ISalgebras, Int. J. Math. Math. Sci., 24 (2000), 729–735.
- [19] A. Rosenfeld, Fuzzy groups, J. Math, Anal. Appl., 35 (1971), 512–517.
- [20] A. Satirad, P. Mosrijai, and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17–25.
- [21] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan, *Fuzzy sets in UP-algebras*, Ann. Fuzzy Math. Inform., 12 (2016), 739–756.
- [22] D. R. Prince Williams and S. Husain, On fuzzy KS-semigroups, Int. Math. Forum, 2 (2007), 1577–1586.
- [23] L. A. Zadeh, *Fuzzy sets*, Inf. Cont., 8 (1965), 338–353.

Accepted: 26.07.2018