
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 42–2019 (539–558) 539

Fuzzy sets in fully UP-semigroups

Akarachai Satirad
Aiyared Iampan∗

Department of Mathematics

School of Science

University of Phayao

Phayao 56000

Thailand

akarachai.sa@gmail.com

aiyared.ia@up.ac.th

Abstract. In this paper, we introduce several types of subsets and of fuzzy sets
of fully UP-semigroups, and investigate the algebraic properties of fuzzy sets under
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1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of
algebras. Examples of these are BCK-algebras [7], BCI-algebras [8], B-algebras
[17], UP-algebras [4] and others. They are strongly connected with logic. For
example, BCI-algebras introduced by Iseki [8] in 1966 have connections with
BCI-logic being the BCI-system in combinatory logic which has application in
the language of functional programming. BCK and BCI-algebras are two classes
of logical algebras. They were introduced by Imai and Iseki [7, 8] in 1966 and
have been extensively investigated by many researchers. It is known that the
class of BCK-algebras is a proper subclass of the class of BCI-algebras.

Several researches introduced a new class of algebras related to logical al-
gebras and semigroups such as: In 1993, Jun et al. [10] introduced the notion
of BCI-semigroups. In 1998, Jun et al. [14] renamed the BCI-semigroup as the
IS-algebra. In 2006, Kim [15] introduced the notion of KS-semigroups. In 2015,
Endam and Vilela [2] introduced the notion of JB-semigroups. In 2018, Iampan
[5] introduced the notion of fully UP-semigroups.

The concept of a fuzzy subset of a set was first considered by Zadeh [23] in
1965. The fuzzy set theories developed by Zadeh and others have found many
applications in the domain of mathematics and elsewhere. After the introduction
of the concept of fuzzy sets by Zadeh [23], several researches were conducted on
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the generalizations of the notion of fuzzy set and application to many logical
algebras such as: In 1998, Jun et al. [11] applied the notion of fuzzy sets to BCI-
semigroups (it was renamed as an IS-algebra for the convenience of study), and
introduced the concept of fuzzy I-ideals. In 2000, Roh et al. [18] considered the
fuzzification of an associative I-ideal of an IS-algebra. They proved that every
fuzzy associative I-ideal is a fuzzy I-ideal. By giving an appropriate example,
they verified that a fuzzy I-ideal may not be a fuzzy associative I-ideal. They
gave a condition for a fuzzy I-ideal to be a fuzzy associative I-ideal, and they
investigated some related properties. In 2003, Jun and Kondo [12] proved that
some concepts of BCK/BCI-algebras expressed by a certain formula can be
naturally extended to the fuzzy setting and that many results are obtained
immediately with the use of our method. Moreover They proved that these
results can be extended to fuzzy IS-algebras. In 2003, Jianming and Dajing [9]
introduced the concept of intuitionistic fuzzy associative I-ideals of IS-algebras
and they investigated some related properties. In 2007, Prince Williams and
Husain [22] studied fuzzy KS-semigroups. In 2016, Endam and Manahon [1]
introduced the notion of fuzzy JB-semigroups and they investigated some of its
properties.

In this paper, we introduce several types of subsets and of fuzzy sets of fully
UP-semigroups, and investigate the algebraic properties of fuzzy sets under the
operations of intersection and union. Further, we discuss the relation between
t-characteristic fuzzy sets and UPs-subalgebras (resp., UPi-subalgebras, UPs-
filters, UPi-filters, UPs-ideals, UPi-ideals, strongly UPs-ideals and strongly UPi-
ideals).

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1 ([4]). An algebra A = (A, ·, 0) of type (2, 0) is called a UP-
algebra where A is a nonempty set, · is a binary operation on A, and 0 is a fixed
element of A (i.e., a nullary operation) if it satisfies the following axioms: for
any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = 0 and y · x = 0 imply x = y.

From [4], we know that the notion of UP-algebras is a generalization of
KU-algebras.

On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A as follows:
for all x, y ∈ A,

x ≤ y if and only if x · y = 0.
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Example 1.2 ([20]). Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) =
{A ∈ P(X) | Ω ⊆ A}. Define a binary operation · on PΩ(X) by putting
A ·B = B ∩ (A′ ∪Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ·,Ω) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 1 with respect to Ω.

Example 1.3 ([20]). Let X be a universal set and let Ω ∈ P(X). Let PΩ(X) =
{A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by putting
A∗B = B∪ (A′∩Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 2 with respect to Ω.

In particular, (P(X), ·, ∅) is the power UP-algebra of type 1 and (P(X), ∗, X)
is the power UP-algebra of type 2.

In a UP-algebra A = (A, ·, 0), the following assertions are valid (see [4, 6]).

(∀x ∈ A)(x · x = 0),(1.1)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0),(1.2)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0),(1.3)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0),(1.4)

(∀x, y ∈ A)(x · (y · x) = 0),(1.5)

(∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x),(1.6)

(∀x, y ∈ A)(x · (y · y) = 0),(1.7)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),(1.8)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),(1.9)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),(1.10)

(∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0),(1.11)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and(1.12)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).(1.13)

Definition 1.4 ([3, 4, 21]). A nonempty subset S of a UP-algebra (A, ·, 0) is
called

(1) a UP-subalgebra of A if for any x, y ∈ S, x · y ∈ S.

(2) a UP-filter of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) for any x, y ∈ A, x · y ∈ S and x ∈ S imply y ∈ S.

(3) a UP-ideal of A if it satisfies the following properties:

(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, x · (y · z) ∈ S and y ∈ S imply x · z ∈ S.

(4) a strongly UP-ideal of A if it satisfies the following properties:
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(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, (z · y) · (z · x) ∈ S and y ∈ S imply x ∈ S.

Guntasow et al. [3] proved the generalization that the notion of UP-subalgebras
is a generalization of UP-filters, the notion of UP-filters is a generalization of
UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals.
Moreover, they also proved that a UP-algebra A is the only one strongly UP-
ideal of itself.

Definition 1.5. A nonempty subset S of a semigroup (A, ∗) is called

(1) a subsemigroup of A if for any x, y ∈ S, x ∗ y ∈ S.

(2) an ideal of A if for any x ∈ A and s ∈ S, x ∗ s, s ∗ x ∈ S.

Clearly, an ideal is a subsemigroup.

Definition 1.6 ([5]). Let A be a nonempty set, · and ∗ are binary operations
on A, and 0 is a fixed element of A (i.e., a nullary operation). An algebra
A = (A, ·, ∗, 0) of type (2, 2, 0) in which (A, ·, 0) is a UP-algebra and (A, ∗) is a
semigroup is called a fully UP-semigroup (in short, an f -UP-semigroup) if the
operation “∗” is distributive (on both sides) over the operation “·”.

Definition 1.7 ([23]). A fuzzy set F in a nonempty set U (or a fuzzy subset
of U) is described by its membership function fF. To every point x ∈ U , this
function associates a real number fF(x) in the interval [0, 1]. The number fF(x)
is interpreted for the point as a degree of belonging x to the fuzzy set F, that is,
F := {(u, fF(u)) | u ∈ U}. If A ⊆ U and t ∈ (0, 1], the t-characteristic function
[13] χt

A of U is a function of U into {0, t} defined as follows:

χt
A(x) =

{
t, if x ∈ A,

0, if x /∈ A.

By the definition of t-characteristic function, χt
A is a function of U into {0, t} ⊂

[0, 1]. We denote the fuzzy set Ft
A in U is described by its membership function

χt
A, is called the t-characteristic fuzzy set of A in U . We say that a fuzzy set F

in U is constant if its membership function fF is constant.

Definition 1.8 ([16]). Let {Fi}i∈I be a nonempty family of fuzzy sets in a
nonempty set U where I is an arbitrary index set. The intersection of Fi, de-
noted by

∧
i∈I Fi, is described by its membership function f∧

i∈I Fi
which defined

as follows:

f∧
i∈I Fi

(x) = inf{fFi(x)}i∈I for all x ∈ U .

The union of Fi, denoted by
∨

i∈I Fi, is described by its membership function
f∨

i∈I Fi
which defined as follows:
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f∨
i∈I Fi

(x) = sup{fFi(x)}i∈I for all x ∈ U .

Lemma 1.9. Let S be a nonempty subset of a UP-algebra (A, ·, 0) and t ∈ (0, 1].
Then the constant 0 of A is in S if and only if χt

S(0) ≥ χt
S(x) for all x ∈ A.

Proof. Assume that 0 ∈ S. Then for all x ∈ A, χt
S(0) = t ≥ χt

S(x).

Conversely, assume that χt
S(0) ≥ χt

S(x) for all x ∈ A. Since S is a nonempty
subset of A, we have an element a in S, that is, χt

S(a) = t. Thus t ≥ χt
S(0) ≥

χt
S(a) = t. So χt

S(0) = t, that is, 0 ∈ S.

Rosenfeld [19] introduced the notion of fuzzy subsemigroups (resp., fuzzy
ideals) of semigroups as follows:

Definition 1.10. A fuzzy set F in a semigroup A = (A, ∗) is called

(1) a fuzzy subsemigroup of A if for any x, y ∈ A,

fF(x ∗ y) ≥ min{fF(x), fF(y)}.

(2) a fuzzy ideal of A if for any x, y ∈ A,

fF(x ∗ y) ≥ max{fF(x), fF(y)}.

Clearly, a fuzzy ideal is a fuzzy subsemigroup.

Theorem 1.11. Let S be a nonempty subset of a semigroup A = (A, ∗) and
t ∈ (0, 1]. Then the following statements hold:

(1) S is a subsemigroup of A if and only if the t-characteristic fuzzy set Ft
S is

a fuzzy subsemigroup of A, and

(2) S is an ideal of A if and only if the t-characteristic fuzzy set Ft
S is a fuzzy

ideal of A.

Proof. (1) Assume that S is a subsemigroup of A. Let x, y ∈ A.
Case 1: x, y ∈ S. Then χt

S(x) = t = χt
S(y), so min{χt

S(x), χ
t
S(y)} = t. Since

S is a subsemigroup of A, we have x ∗ y ∈ S and so χt
S(x ∗ y) = t. Therefore,

χt
S(x ∗ y) = t ≥ t = min{χt

S(x), χ
t
S(y)}.

Case 2: x /∈ S or y /∈ S. Then χt
S(x) = 0 or χt

S(y) = 0, so min{χt
S(x), χ

t
S(y)} =

0. Therefore, χt
S(x ∗ y) ≥ 0 = min{χt

S(x), χ
t
S(y)}.

Hence, Ft
S is a fuzzy subsemigroup of A.

Conversely, assume that Ft
S is a fuzzy subsemigroup of A. Let x, y ∈ S. Then

χt
S(y) = t = χt

S(y), so min{χt
S(x), χ

t
S(y)} = t. Since Ft

S is a fuzzy subsemigroup
of A, we have t ≥ χt

S(x ∗ y) ≥ min{χt
S(x), χ

t
S(y)} = t. Thus χt

S(x ∗ y) = t, that
is, x ∗ y ∈ S. Hence, S is a subsemigroup of A.

(2) Assume that S is an ideal of A. Let x, y ∈ A.
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Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y), so max{χt
S(x), χ

t
S(y)} = t.

Since S is an ideal of A, we have x ∗ y ∈ S and so χt
S(x ∗ y) = t. Therefore,

χt
S(x ∗ y) = t ≥ t = max{χt

S(x), χ
t
S(y)}.

Case 2: x /∈ S or y /∈ S. If x∗y ∈ S, then χt
S(x∗y) = t. Therefore, χt

S(x∗y) =
t ≥ max{χt

S(x), χ
t
S(y)}. If x ∗ y /∈ S, then x, y /∈ S. Thus χt

S(x ∗ y) = 0 and
χt
S(x) = 0 = χt

S(y). Therefore, χ
t
S(x ∗ y) = 0 ≥ 0 = max{χt

S(x), χ
t
S(y)}.

Hence, Ft
S is a fuzzy ideal of A.

Conversely, assume that Ft
S is a fuzzy ideal of A. Let s ∈ S and x ∈ A. Then

χt
S(s) = t, so max{χt

S(s), χ
t
S(x)} = t. Since Ft

S is a fuzzy ideal of A, we have
t ≥ χt

S(s∗x), χt
S(x∗s) ≥ max{χt

S(s), χ
t
S(x)} = t. Thus χt

S(s∗x) = t = χt
S(x∗s),

that is s ∗ x, x ∗ s ∈ S. Hence, S is an ideal of A.

Somjanta et al. [21] and Guntasow et al. [3] introduced the notion of fuzzy
UP-subalgebras (resp., fuzzy UP-filters, fuzzy UP-ideals, fuzzy strongly UP-
ideals) of UP-algebras as follows:

Definition 1.12. A fuzzy set F in a UP-algebra A = (A, ·, 0) is called

(1) a fuzzy UP-subalgebra of A if for any x, y ∈ A,

fF(x · y) ≥ min{fF(x), fF(y)}.

(2) a fuzzy UP-filter of A if for any x, y ∈ A,

(i) fF(0) ≥ fF(x), and

(ii) fF(y) ≥ min{fF(x · y), fF(x)}.

(3) a fuzzy UP-ideal of A if for any x, y, z ∈ A,

(i) fF(0) ≥ fF(x), and

(ii) fF(x · z) ≥ min{fF(x · (y · z)), fF(y)}.

(4) a fuzzy strongly UP-ideal of A if for any x, y, z ∈ A,

(i) fF(0) ≥ fF(x), and

(ii) fF(x) ≥ min{fF((z · y) · (z · x)), fF(y)}.

Guntasow et al. [3] also proved that the notion of fuzzy UP-subalgebras is
a generalization of fuzzy UP-filters, the notion of fuzzy UP-filters is a general-
ization of fuzzy UP-ideals, and the notion of fuzzy UP-ideals is a generalization
of fuzzy strongly UP-ideals.

Theorem 1.13 ([3]). Fuzzy strongly UP-ideals and constant fuzzy sets coincide
in UP-algebras.

Lemma 1.14. Let F be a fuzzy UP-filter of a UP-algebra A = (A, ·, 0). Then
for any x, y ∈ A,
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x ≤ y implies fF(x) ≤ fF(y) ≤ fF(x · y).

Proof. Let x, y ∈ A be such that x ≤ y. Then x · y = 0, so

fF(y) ≥ min{fF(x · y), fF(x)} = min{fF(0), fF(x)} = fF(x).

By (1.5), we have y ≤ x · y and thus fF(y) ≤ fF(x · y).

Theorem 1.15. Let S be a nonempty subset of a UP-algebra A = (A, ·, 0) and
t ∈ (0, 1]. Then the following statements hold:

(1) S is a UP-subalgebra of A if and only if the t-characteristic fuzzy set Ft
S

is a fuzzy UP-subalgebra of A,

(2) S is a UP-filter of A if and only if the t-characteristic fuzzy set Ft
S is a

fuzzy UP-filter of A,

(3) S is a UP-ideal of A if and only if the t-characteristic fuzzy set Ft
S is a

fuzzy UP-ideal of A, and

(4) S is a strongly UP-ideal of A if and only if the t-characteristic fuzzy set
Ft
S is a fuzzy strongly UP-ideal of A.

Proof. (1) Assume that S is a UP-subalgebra of A. Let x, y ∈ A.
Case 1: x, y ∈ S. Then χt

S(x) = t = χt
S(y), so min{χt

S(x), χ
t
S(y)} = t. Since

S is a UP-subalgebra of A, we have x · y ∈ S and so χt
S(x · y) = t. Therefore,

χt
S(x · y) = t ≥ t = min{χt

S(x), χ
t
S(y)}.

Case 2: x /∈ S or y /∈ S. Then χt
S(x) = 0 or χt

S(y) = 0, so min{χt
S(x), χ

t
S(y)} =

0. Therefore, χt
S(x · y) ≥ 0 = min{χt

S(x), χ
t
S(y)}.

Hence, Ft
S is a fuzzy UP-subalgebra of A.

Conversely, assume that Ft
S is a fuzzy UP-subalgebra of A. Let x, y ∈ S.

Then χt
S(y) = t = χt

S(y), so min{χt
S(x), χ

t
S(y)} = t. Since Ft

S is a fuzzy
UP-subalgebra of A, we have t ≥ χt

S(x · y) ≥ min{χt
S(x), χ

t
S(y)} = t. Thus

χt
S(x · y) = t, that is, x · y ∈ S. Hence, S is a UP-subalgebra of A.

(2) Assume that S is a UP-filter of A. Since 0 ∈ S, it follows from Lemma
1.9 that χt

S(0) ≥ χt
S(x) for all x ∈ A. Next, let x, y ∈ A.

Case 1: x, y ∈ S. Then χt
S(x) = t = χt

S(y). Thus χt
S(y) = t ≥ χt

S(x · y) =
min{χt

S(x · y), χt
S(x)}.

Case 2: x /∈ S or y /∈ S. If x /∈ S, then χt
S(x) = 0. Thus χt

S(y) ≥ 0 =
min{χt

S(x · y), χt
S(x)}. If y /∈ S, then χt

S(y) = 0. Since S is a UP-filter of
A, we have x · y /∈ S or x /∈ S and so χt

S(x · y) = 0 or χt
S(x) = 0. Thus

χt
S(y) = 0 ≥ 0 = min{χt

S(x · y), χt
S(x)}.

Hence, Ft
S is a fuzzy UP-filter of A.

Conversely, assume that Ft
S is a fuzzy UP-filter of A. Since χt

S(0) ≥ χt
S(x) for

all x ∈ A, it follows from Lemma 1.9 that 0 ∈ S. Next, let x, y ∈ A be such that
x · y ∈ S and x ∈ S. Then χt

S(x · y) = t = χt
S(x), so min{χt

S(x · y), χt
S(x)} = t.
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Since Ft
S is a fuzzy UP-filter of A, we have t ≥ χt

S(y) ≥ min{χt
S(x·y), χt

S(x)} = t.
Thus χt

S(y) = t, that is, y ∈ S. Hence, S is a UP-filter of A.

(3) Assume that S is a UP-ideal of A. Since 0 ∈ S, it follows from Lemma
1.9 that χt

S(0) ≥ χt
S(x) for all x ∈ A. Next, let x, y, z ∈ A.

Case 1: x · (y · z), y ∈ S. Then χt
S(x · (y · z)) = t = χt

S(y), so min{χt
S(x · (y ·

z)), χt
S(y)} = t. Since S is a UP-ideal of A, we have x·z ∈ S and so χt

S(x·z) = t.
Thus χt

S(x · z) = t ≥ t = min{χt
S(x · (y · z)), χt

S(y)}.
Case 2: x · (y · z) /∈ S or y /∈ S. Then χt

S(x · (y · z)) = 0 or χt
S(y) = 0, so

min{χt
S(x · (y · z)), χt

S(y)} = 0. Thus χt
S(x · z) ≥ 0 = min{χt

S(x · (y · z)), χt
S(y)}.

Hence, Ft
S is a fuzzy UP-ideal of A.

Conversely, assume that Ft
S is a fuzzy UP-ideal of A. Since χt

S(0) ≥ χt
S(x)

for all x ∈ A, it follows from Lemma 1.9 that 0 ∈ S. Next, let x, y, z ∈ A
such that x · (y · z) ∈ S and y ∈ S. Then χt

S(x · (y · z)) = t = χt
S(y), so

min{χt
S(x · (y · z)), χt

S(y)} = t. Since Ft
S is a fuzzy UP-ideal of A, we have

t ≥ χt
S(x · z) ≥ min{χt

S(x · (y · z)), χt
S(y)} = t. Thus χt

S(x · z) = t, that is,
x · z ∈ S. Hence, S is a UP-ideal of A.

(4) It is straightforward by Theorem 1.13, and A is the only one strongly
UP-ideal of itself.

2. Special subsets of fully UP-semigroups

In this section, we introduce the notions of UPs-subalgebras, UPi-subalgebras,
UPs-filters, UPi-filters, UPs-ideals, UPi-ideals, strongly UPs-ideals, and strongly
UPi-ideals of fully UP-semigroups, provide the necessary examples and prove its
generalizations.

From now on, we shall let A be an f -UP-semigroup A = (A, ·, ∗, 0) unless
otherwise specified.

Definition 2.1. A subset S of an f -UP-semigroup A is called

(1) a UPs-subalgebra of A if S is a UP-subalgebra of (A, ·, 0), and S is a
subsemigroup of (A, ∗).

(2) a UPi-subalgebra of A if S is a UP-subalgebra of (A, ·, 0), and S is an ideal
of (A, ∗).

We have Theorem 2.2, 2.8, and 2.13 directly from Definition 1.5.

Theorem 2.2. Every UPi-subalgebra of A is a UPs-subalgebra of A.
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Example 2.3. Let A = {0, 1, 2, 3} be a set with two binary operations · and ∗
defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

∗ 0 1 2 3

0 0 0 0 0
1 0 1 0 0
2 0 0 2 0
3 0 3 0 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1, 2}. Then S is a
UPs-subalgebra of A. Since 1 ∈ S and 3 ∈ A but 3 ∗ 1 = 3 /∈ S, we have S is
not an ideal of (A, ∗). Thus S is not a UPi-subalgebra of A.

Definition 2.4. A subset S of an f -UP-semigroup A = (A, ·, ∗, 0) is called

(1) a UPs-filter of A if S is a UP-filter of (A, ·, 0), and S is a subsemigroup of
(A, ∗).

(2) a UPi-filter of A if S is a UP-filter of (A, ·, 0), and S is an ideal of (A, ∗).

We have Theorem 2.5, 2.7, 2.10, 2.12, 2.15, and 2.17 directly from a result
quoted in Definition 1.4.

Theorem 2.5. Every UPs-filter of A is a UPs-subalgebra of A.

Example 2.6. Let A = {0, 1, 2, 3} be a set with two binary operations · and ∗
defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 0 0 0

∗ 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 2}. Then S is a UPs-
subalgebra of A. Since 2 · 1 = 0 ∈ S and 2 ∈ S but 1 /∈ S, we have S is not a
UP-filter of (A, ·, 0). Thus S is not a UPs-filter of A.

Theorem 2.7. Every UPi-filter of A is a UPi-subalgebra of A.

In Example 2.6, we have S is a UPi-subalgebra of A. Since S is not a
UP-filter of (A, ·, 0), we have S is not a UPi-filter of A.

Theorem 2.8. Every UPi-filter of A is a UPs-filter of A.

In Example 2.3, we have S is a UPs-filter of A. Since S is not an ideal of
(A, ∗), we have S is not a UPi-filter of A.

Definition 2.9. A subset S of an f -UP-semigroup A is called
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(1) a UPs-ideal of A if S is a UP-ideal of (A, ·, 0), and S is a subsemigroup of
(A, ∗).

(2) a UPi-ideal of A if S is a UP-ideal of (A, ·, 0), and S is an ideal of (A, ∗).

Theorem 2.10. Every UPs-ideal of A is a UPs-filter of A.

Example 2.11. Let A = {0, 1, 2, 3} be a set with two binary operations · and
∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 2
3 0 1 0 0

∗ 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1}. Then S is a UPs-
filter of A. Since 2 · (1 · 3) = 0 ∈ S and 1 ∈ S but 2 · 3 = 2 /∈ S, we have S is not
a UP-ideal of (A, ·, 0). Thus S is not a UPs-ideal of A.

Theorem 2.12. Every UPi-ideal of A is a UPi-filter of A.

In Example 2.11, we have S is a UPi-filter of A. Since S is not a UP-ideal
of (A, ·, 0), we have S is not a UPi-ideal of A.

Theorem 2.13. Every UPi-ideal of A is a UPs-ideal of A.

In Example 2.3, we have S is a UPs-ideal of A. Since S is not an ideal of
(A, ∗), we have S is not a UPi-ideal of A.

Definition 2.14. A subset S of an f -UP-semigroup A is called

(1) a strongly UPs-ideal of A if S is a strongly UP-ideal of (A, ·, 0), and S is
a subsemigroup of (A, ∗).

(2) a strongly UPi-ideal of A if S is a strongly UP-ideal of (A, ·, 0), and S is
an ideal of (A, ∗).

Theorem 2.15. Every strongly UPs-ideal of A is a UPs-ideal of A.

Example 2.16. Let A = {0, 1, 2, 3} be a set with two binary operations · and
∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

∗ 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0

Then A = (A, ·, ∗, 0) is an f -UP-semigroup. Let S = {0, 1, 2}. Then S is a
UPs-ideal of A. Since S ̸= A, we have S is not a strongly UP-ideal of (A, ·, 0).
Thus S is not a strongly UPs-ideal of A.
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Theorem 2.17. Every strongly UPi-ideal of A is a UPi-ideal of A.

In Example 2.16, we have S is a UPi-ideal of A. Since S is not a strongly
UP-ideal of (A, ·, 0), we have S is not a strongly UPi-ideal of A.

Theorem 2.18. Strongly UPs-ideals and strongly UPi-ideals coincide in A and
it is only A.

Proof. It is straightforward by A is the only one strongly UP-ideal of itself.

3. Fuzzy sets in fully UP-semigroups

In this section, we introduce the notions of fuzzy UPs-subalgebras, fuzzy UPi-
subalgebras, fuzzy UPs-filters, fuzzy UPi-filters, fuzzy UPs-ideals, fuzzy UPi-
ideals, fuzzy strongly UPs-ideals, and fuzzy strongly UPi-ideals of fully UP-
semigroups, provide the necessary examples, prove its generalizations and inves-
tigate the algebraic properties of fuzzy sets under the operations of intersection
and union.

Definition 3.1. A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-subalgebra of A if F is a fuzzy UP-subalgebra of (A, ·, 0) and
a fuzzy subsemigroup of (A, ∗).

(2) a fuzzy UPi-subalgebra of A if F is a fuzzy UP-subalgebra of (A, ·, 0) and
a fuzzy ideal of (A, ∗).

Clearly, a fuzzy UPi-subalgebra is a fuzzy UPs-subalgebra.

In Example 2.16, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-subalgebra of A. Since fF(2 ∗ 3) = fF(1) = 0.4 � 0.5 =
max{0.5, 0.2} = max{fF(2), fF(3)}, we have F is not a fuzzy UPi-subalgebra of
A.

Theorem 3.2. The intersection of any nonempty family of fuzzy UPs-subalgebra
of A is also a fuzzy UPs-subalgebra of A.

Proof. Let Fi be a fuzzy UPs-subalgebra of A for all i ∈ I. Then

f∧
i∈I Fi

(x · y) = inf{fFi(x · y)}i∈I
≥ inf{min{fFi(x), fFi(y)}}i∈I
= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)} and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{min{fFi(x), fFi(y)}}i∈I
= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.
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Hence,
∧

i∈I Fi is a fuzzy UPs-subalgebra of A.

In Example 2.16, we define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3
fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-subalgebras ofA. Since fF1∨F2(3∗2) = fF1∨F2(1) =
0.5 � 0.6 = min{0.6, 0.7} = min{fF1∨F2(3), fF1∨F2(2)}, we have F1 ∨ F2 is not a
fuzzy UPs-subalgebra of A.

Theorem 3.3. A nonempty subset S of A is a UPs-subalgebra of A if and only
if the t-characteristic fuzzy set Ft

S is a fuzzy UPs-subalgebra of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (1).

Theorem 3.4. The intersection of any nonempty family of fuzzy UPi-subalgebra
of A is also a fuzzy UPi-subalgebra of A.

Proof. Let Fi be a fuzzy UPi-subalgebra of A for all i ∈ I. Then

f∧
i∈I Fi

(x · y) = inf{fFi(x · y)}i∈I
≥ inf{min{fFi(x), fFi(y)}}i∈I
= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)} and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{max{fFi(x), fFi(y)}}i∈I
≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= max{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.

Hence,
∧

i∈I Fi is a fuzzy UPi-subalgebra of A.

In Example 2.11, we define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.9 0.7 0.1 0.1
fF2 0.8 0.4 0.5 0.6

Then F1 and F2 are fuzzy UPi-subalgebras of A. Since fF1∨F2(1·3) = fF1∨F2(2) =
0.5 � 0.6 = min{0.7, 0.6} = min{fF1∨F2(1), fF1∨F2(3)}, we have F1 ∨ F2 is not a
fuzzy UPi-subalgebra of A.

Theorem 3.5. A nonempty subset S of A is a UPi-subalgebra of A if and only
if the t-characteristic fuzzy set Ft

S is a fuzzy UPi-subalgebra of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (1).
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Definition 3.6. A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-filter of A if F is a fuzzy UP-filter of (A, ·, 0) and a fuzzy
subsemigroup of (A, ∗).

(2) a fuzzy UPi-filter of A if F is a fuzzy UP-filter of (A, ·, 0) and a fuzzy ideal
of (A, ∗).

Clearly, a fuzzy UPi-filter is a fuzzy UPs-filter.

In Example 2.16, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-filter of A. SincefF(2 ∗ 3) = fF(1) = 0.4 � 0.5 =
max{0.5, 0.2} = max{fF(2), fF(3)}, we have F is not a fuzzy UPi-filter of A.

Theorem 3.7. The intersection of any nonempty family of fuzzy UPs-filter of
A is also a fuzzy UPs-filter of A.

Proof. Let Fi be a fuzzy UPs-filter of A for all i ∈ I. Then

f∧
i∈I Fi

(0) = inf{fFi(0)}i∈I
≥ inf{fFi(x)}i∈I
= f∧

i∈I Fi
(x),

f∧
i∈I Fi

(y) = inf{fFi(y)}i∈I
≥ inf{min{fFi(x · y), fFi(x)}}i∈I
= min{inf{fFi(x · y)}i∈I , inf{fFi(x)}i∈I}
= min{f∧

i∈I Fi
(x · y), f∧

i∈I Fi
(x)}, and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{min{fFi(x), fFi(y)}}i∈I
= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.

Hence,
∧

i∈I Fi is a fuzzy UPs-filter of A.

In Example 2.16, we define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3
fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-filters of A. Since fF1∨F2(2 ∗ 3) = fF1∨F2(1) =
0.5 � 0.6 = min{0.7, 0.6} = min{fF1∨F2(2), fF1∨F2(3)}, we have F1 ∨ F2 is not a
fuzzy UPs-filter of A.
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Theorem 3.8. A nonempty subset S of A is a UPs-filter of A if and only if the
t-characteristic fuzzy set Ft

S is a fuzzy UPs-filter of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (2).

Theorem 3.9. The intersection of any nonempty family of fuzzy UPi-filter of
A is also a fuzzy UPi-filter of A.

Proof. Let Fi be a fuzzy UPi-filter of A for all i ∈ I. Then

f∧
i∈I Fi

(0) = inf{fFi(0)}i∈I
≥ inf{fFi(x)}i∈I
= f∧

i∈I Fi
(x),

f∧
i∈I Fi

(y) = inf{fFi(y)}i∈I
≥ inf{min{fFi(x · y), fFi(x)}}i∈I
= min{inf{fFi(x · y)}i∈I , inf{fFi(x)}i∈I}
= min{f∧

i∈I Fi
(x · y), f∧

i∈I Fi
(x)}, and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{max{fFi(x), fFi(y)}}i∈I
≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= max{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.

Hence,
∧

i∈I Fi is a fuzzy UPi-filter of A.

Example 3.10. Let A = {0, 1, 2, 3} be a set with two binary operations · and
∗ defined by the following Cayley tables:

· 0 1 2 3

0 0 1 2 3
1 0 0 2 2
2 0 1 0 1
3 0 0 0 0

∗ 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

We define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.9 0.9 0.5 0.5
fF2 1 0.5 0.6 0.5

Then F1 and F2 are fuzzy UPi-filters of A. Since fF1∨F2(3) = 0.5 � 0.6 =
min{0.9, 0.6} = min{fF1∨F2(1), fF1∨F2(2)} = min{fF1∨F2(2 · 3), fF1∨F2(2)}, we
have F1 ∨ F2 is not a fuzzy UPi-filter of A.

Theorem 3.11. A nonempty subset S of A is a UPi-filter of A if and only if
the t-characteristic fuzzy set Ft

S is a fuzzy UPi-filter of A.
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Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (2).

We have Theorem 3.12, 3.13, 3.19, 3.20, and 3.27 directly from a result
quoted in Definition 1.12.

Theorem 3.12. Every fuzzy UPs-filter of A is a fuzzy UPs-subalgebra of A.

In Example 2.6, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.2, fF(2) = 0.9, and fF(3) = 0.1.

Then F is a fuzzy UPs-subalgebra of A. Since fF(1) = 0.2 � 0.9 = min{1, 0.9} =
min{fF(0), fF(2)} = min{fF(2 · 1), fF(2)}, we have F is not a fuzzy UPs-filter of
A.

Theorem 3.13. Every fuzzy UPi-filter of A is a fuzzy UPi-subalgebra of A.

In Example 2.6, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.2, fF(2) = 0.9, and fF(3) = 0.1.

Then F is a fuzzy UPi-subalgebra of A. Since fF(1) = 0.2 � 0.9 = min{1, 0.9} =
min{fF(0), fF(2)} = min{fF(2 · 1), fF(2)}, we have F is not a fuzzy UPi-filter of
A.

Definition 3.14. A fuzzy set F in an f -UP-semigroup A is called

(1) a fuzzy UPs-ideal of A if F is a fuzzy UP-ideal of (A, ·, 0) and a fuzzy
subsemigroup of (A, ∗).

(2) a fuzzy UPi-ideal of A if F is a fuzzy UP-ideal of (A, ·, 0) and a fuzzy ideal
of (A, ∗).

Clearly, a fuzzy UPi-ideal is a fuzzy UPs-ideal.

In Example 2.16, we define a membership function fF as follows:

fF(0) = 1, fF(1) = 0.4, fF(2) = 0.5, and fF(3) = 0.2.

Then F is a fuzzy UPs-ideal of A. Since fF(3 ∗ 2) = fF(1) = 0.4 � 0.5 =
max{0.2, 0.5} = max{fF(3), fF(2)}, we have F is not a fuzzy UPi-ideal of A.

Theorem 3.15. The intersection of any nonempty family of fuzzy UPs-ideal of
A is also a fuzzy UPs-ideal of A.
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Proof. Let Fi be a fuzzy UPs-ideal of A for all i ∈ I. Then

f∧
i∈I Fi

(0) = inf{fFi(0)}i∈I
≥ inf{fFi(x)}i∈I
= f∧

i∈I Fi
(x),

f∧
i∈I Fi

(x · z) = inf{fFi(x · z)}i∈I
≥ inf{min{fFi(x · (y · z)), fFi(y)}}i∈I
= min{inf{fFi(x · (y · z))}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x · (y · z)), f∧

i∈I Fi
(y)}, and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{min{fFi(x), fFi(y)}}i∈I
= min{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.

Hence,
∧

i∈I Fi is a fuzzy UPs-ideal of A.

In Example 2.16, we define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.7 0.5 0.7 0.3
fF2 0.7 0.3 0.2 0.6

Then F1 and F2 are fuzzy UPs-ideals of A. Since fF1∨F2(3 ∗ 2) = fF1∨F2(1) =
0.5 � 0.6 = min{0.6, 0.7} = min{fF1∨F2(3), fF1∨F2(2)}, we have F1 ∨ F2 is not a
fuzzy UPs-ideal of A.

Theorem 3.16. A nonempty subset S of A is a UPs-ideal of A if and only if
the t-characteristic fuzzy set Ft

S is a fuzzy UPs-ideal of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (3).

Theorem 3.17. The intersection of any nonempty family of fuzzy UPi-ideal of
A is also a fuzzy UPi-ideal of A.

Proof. Let Fi be a fuzzy UPi-ideal of A for all i ∈ I. Then

f∧
i∈I Fi

(0) = inf{fFi(0)}i∈I
≥ inf{fFi(x)}i∈I
= f∧

i∈I Fi
(x),

f∧
i∈I Fi

(x · z) = inf{fFi(x · z)}i∈I
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≥ inf{min{fFi(x · (y · z)), fFi(y)}}i∈I
= min{inf{fFi(x · (y · z))}i∈I , inf{fFi(y)}i∈I}
= min{f∧

i∈I Fi
(x · (y · z)), f∧

i∈I Fi
(y)}, and

f∧
i∈I Fi

(x ∗ y) = inf{fFi(x ∗ y)}i∈I
≥ inf{max{fFi(x), fFi(y)}}i∈I
≥ max{inf{fFi(x)}i∈I , inf{fFi(y)}i∈I}
= max{f∧

i∈I Fi
(x), f∧

i∈I Fi
(y)}.

Hence,
∧

i∈I Fi is a fuzzy UPi-ideal of A.

In Example 3.10, we define two membership functions fF1 and fF2 as follow:

A 0 1 2 3

fF1 0.7 0.3 0.4 0.3
fF2 0.8 0.5 0.2 0.2

Then F1 and F2 are fuzzy UPi-ideals of A. Since fF1∨F2(0 · 3) = fF1∨F2(3) =
0.3 � 0.4 = min{0.4, 0.5} = min{fF1∨F2(2), fF1∨F2(1)} = min{fF1∨F2(0 · (1 ·
3)), fF1∨F2(1)}, we have F1 ∨ F2 is not a fuzzy UPi-ideal of A.

Theorem 3.18. A nonempty subset S of A is a UPi-ideal of A if and only if
the t-characteristic fuzzy set Ft

S is a fuzzy UPi-ideal of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (3).

Theorem 3.19. Every fuzzy UPs-ideal of A is a fuzzy UPs-filter of A.

In Example 2.11, we define a membership function fF as follows:

fF(0) = 0.8, fF(1) = 0.6, fF(2) = 0.3, and fF(3) = 0.3.

Then F is a fuzzy UPs-filter of A. Since fF(2 · 3) = fF(2) = 0.3 � 0.6 =
min{0.8, 0.6} = min{fF(0), fF(1)} = min{fF(2 · (1 · 3)), fF(1)}, we have F is not
a fuzzy UPs-ideal of A.

Theorem 3.20. Every fuzzy UPi-ideal of A is a fuzzy UPi-filter of A.

In Example 2.11, we define a membership function fF as follows:

fF(0) = 0.8, fF(1) = 0.6, fF(2) = 0.3, and fF(3) = 0.3.

Then F is a fuzzy UPi-filter of A. Since fF(2 · 3) = fF(2) = 0.3 � 0.6 =
max{0.8, 0.6} = max{fF(0), fF(1)} = max{fF(2 · (1 · 3)), fF(1)}, we have F is not
a fuzzy UPi-ideal of A.

Definition 3.21. A fuzzy set F in an f -UP-semigroup A is called
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(1) a fuzzy strongly UPs-ideal of A if F is a fuzzy strongly UP-ideal of (A, ·, 0)
and a fuzzy subsemigroup of (A, ∗).

(2) a fuzzy strongly UPi-ideal of A if F is a fuzzy strongly UP-ideal of (A, ·, 0)
and a fuzzy ideal of (A, ∗).

Theorem 3.22. Fuzzy strongly UPs-ideals, fuzzy strongly UPi-ideals, and con-
stant fuzzy sets coincide in A.

Proof. It is straightforward by Theorem 1.13.

If a fuzzy set Fi is constant for all i ∈ I, then we see that the fuzzy sets∧
i∈I Fi and

∨
i∈I Fi are constant. From this, we have Theorem 3.23 and 3.24.

Theorem 3.23. The intersection and union of any nonempty family of fuzzy
strongly UPs-ideal of A are also a fuzzy strongly UPs-ideal of A.

Theorem 3.24. The intersection and union of any nonempty family of fuzzy
strongly UPi-ideal of A are also a fuzzy strongly UPi-ideal of A.

Theorem 3.25. A nonempty subset S of A is a strongly UPs-ideal of A if and
only if the t-characteristic fuzzy set Ft

S is a fuzzy strongly UPs-ideal of A.

Proof. It is straightforward by Theorem 1.11 (1) and Theorem 1.15 (4).

Theorem 3.26. A nonempty subset S of A is a strongly UPi-ideal of A if and
only if the t-characteristic fuzzy set Ft

S is a fuzzy strongly UPi-ideal of A.

Proof. It is straightforward by Theorem 1.11 (2) and Theorem 1.15 (4).

Theorem 3.27. Every fuzzy strongly UPs-ideal (fuzzy strongly UPi-ideal) of A
is a fuzzy UPs-ideal and a fuzzy UPi-ideal of A.

In Example 2.3, we define a membership function fF as follows:

fF(0) = 0.7, fF(1) = 0.5, fF(2) = 0.3, and fF(3) = 0.6.

Then F is a fuzzy UPi-ideal of A. Since F is not constant, we have F is not a
fuzzy strongly UPs-ideal and a fuzzy strongly UPi-ideal of A.

4. Conclusions and future works

In this paper, we have introduced the notions of fuzzy UPs-subalgebras, fuzzy
UPi-subalgebras, fuzzy UPs-filters, fuzzy UPi-filters, fuzzy UPs-ideals, fuzzy
UPi-ideals, fuzzy strongly UPs-ideals, and fuzzy strongly UPi-ideals of fully UP-
semigroups, proved its generalizations and investigated some of its important
properties. Then we have the generalization diagram of fuzzy sets in fully UP-
semigroups below.
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In our future study of fully UP-semigroups, may be the following topics should
be considered:

• To get more results in fuzzy sets in fully UP-semigroups.

• To define fuzzy translations in fully UP-semigroups.

• To define fuzzy soft sets over fully UP-semigroups.

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable
suggestions which lead to an improvement of this paper.

References

[1] J. C. Endam and M. D. Manahon, On fuzzy JB-semigroups, Int. Math.
Forum, 11 (2016), 379–386.

[2] J. C. Endam and J. P. Vilela, On JB-semigroups, Appl. Math. Sci., 9 (2015),
2901–2911.

[3] T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan, Fuzzy translations
of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1–19.

[4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra
Relat. Top., 5 (2017), 35–54.

[5] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra
Appl., 38 (2018), 297–306.

[6] A. Iampan, UP-algebras: the beginning, Copy House and Printing, Thai-
land, 2018.



558 AKARACHAI SATIRAD and AIYARED IAMPAN

[7] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc.
Japan Academy, 42 (1966), 19–22.

[8] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad.,
42 (1966), 26–29.

[9] Z. Jianming and X. Dajing, Intuitionistic fuzzy associative I-ideals of IS-
algebras, Sci. Math. Jpn. Online, 10 (2004), 93–98.

[10] J. B. Jun, S. M. Hong, and E. H. Roh, BCI-semigroups, Honam Math. J.,
15 (1993), 59–64.

[11] Y. B. Jun, S. S. Ahn, J. Y. Kim, and H. S. Kim, Fuzzy I-ideals in BCI-
semigroups, Southeast Asian Bull. Math., 2 (1998), 147–153.

[12] Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras,
Sci. Math. Jpn. Online, 9 (2003), 95–100.
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