Edge maximal non-bipartite Hamiltonian graphs without theta graphs of order 7

M.S. Bataineh

Department of Mathematics University of Sharjah Sharjah UAE Mbataineh@sharjah.ac.ae and Department of Mathematics Yarmouk University Irbid Jordan M.bataineh@yu.edu.jo

A.A. Al-Rhayyel

Department of Mathematics Yarmouk University Irbid Jordan al-rhayyel@yu.edu.jo

Zead Mustafa

Department of Mathematics Statistics and Physics Qatar University Doha Qatar zead@qu.edu.qa

M.M.M. Jaradat*

Department of Mathematics Statistics and Physics Qatar University Doha Qatar mmjst4@qu.edu.qa

Abstract. For a set of graphs \mathcal{F} , let $\mathcal{H}(n; \mathcal{F})$ denote the class of non-bipartite Hamiltonian graphs on n vertices that does not contain any graph of \mathcal{F} as a subgraph and $h(n; \mathcal{F}) = \max{\mathcal{E}(G) : G \in \mathcal{H}(n; \mathcal{F})}$ where $\mathcal{E}(G)$ is the number of edges in G. In this paper, we determine $h(n; \{\theta_4, \theta_5, \theta_7\})$ and we establish an upper bound of $h(n; \theta_7)$ for sufficiently even large n. Our results confirms the conjecture made in [1] for k = 3.

^{*.} Corresponding author

Keywords: Tuŕan number, theta graph, extremal graph.

1. Introduction and preliminaries

We consider undirected graphs without loops and multiple edges. Let V(G) be the vertex set and E(G) be the edge set of a graph G. The order of a graph G is the number of vertices of G and is denoted by $\mathcal{V}(G)$. The size of G, denoted by $\mathcal{E}(G)$, is the number of edges of G. A complete k-partite graph is a graph whose vertices can be partitioned into k disjoint sets, such that two vertices are adjacent if and only if they belong to different sets. We often denote by $x_1x_2...x_nx_1$ the cycle C_n having n vertices $x_1, x_2, ..., x_n$ and the edges $x_1x_2, x_2x_3, ..., x_{n-1}x_n$ and x_nx_1 . A theta graph is a cycle C_n with a new edge (a chord) joining two non-adjacent vertices of C_n . The set of all theta graphs of order n will be denoted by θ_n . It is easy to check that the set θ_n contains $\left|\frac{n}{2}\right| - 1$ (non-isomorphic) graphs.

If F is a subgraph of G, then G - F is the graph that contains all vertices of G which are not in F and all edges of G connecting two vertices of G - F. If P and Q are two subgraphs of G, then E(P,Q) is the set containing all edges of G, which connect a vertex in P and a vertex in Q and $\mathcal{E}(P,Q) = |E(P,Q)|$. An induced subgraph G[V(Q)] of a graph G consists of the vertices in Q and all edges of G connecting two vertices in Q. The join $G = G_1 \vee G_2$ of graphs G_1 and G_2 with disjoint vertex sets $V(G_1)$ and $V(G_2)$ and edge sets $E(G_1)$ and $E(G_2)$ is the graph G_1 union G_2 together with all the edges joining $V(G_1)$ and $V(G_2)$.

For a set of graphs S, the Turán number ex(n, S) is defined as the maximum number of edges in a graph of order n having no member of S as a subgraph. If S contains only one graph G, we write simply ex(n, G). The problem was formulated by Turán [14], who showed that $ex(n, K_r) = \lfloor \frac{rn^2}{2(r+1)} \rfloor$, where K_r is the complete graph having r vertices.

We now introduce some additional notation. For a positive integer n and a set of graphs \mathcal{F} , let $\mathcal{G}(n; \mathcal{F})$ (and $\mathcal{H}(n; \mathcal{F})$) denote the class of non-bipartite \mathcal{F} -free graphs (the subclass of $\mathcal{G}(n; \mathcal{F})$ which consists of all the Hamiltonian members in $\mathcal{G}(n; \mathcal{F})$) on n vertices, and

$$f(n; \mathcal{F}) = \max\{\mathcal{E}(G) : G \in \mathcal{G}(n; \mathcal{F})\},\$$

$$h(n; \mathcal{F}) = \max\{\mathcal{E}(G) : G \in \mathcal{H}(n; \mathcal{F})\}.$$

Hendry and Brandt [10] proved that $h(n; C_5) \leq \frac{(n-3)^2}{4} + 5$ for odd $n \geq 7, n \neq 9$, and $h(9; C_5) = 15$. However, they did not characterize the extremal graphs. Caccetta and Jia [7] characterized the extremal graphs and proved that $f(n; C_5) \leq \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + 3$ for $n \geq 9$. Also, they proved $h(n; C_5) \leq \frac{(n-4)^2}{4} + 7$ for even $n \geq 12$. Further, the extremal graphs were characterized. Jia [13]

conjectured that $f(n; C_{2k+1}) \leq \lfloor \frac{(n-2)^2}{4} \rfloor + 3$ for $n \geq 4k+2$. Bataineh [1] settled the above conjecture for $n \geq 36k$. Further, he showed that equality holds if and only if $G \in \mathcal{G}^*(n)$ where $\mathcal{G}^*(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\lfloor (n-2)/2 \rfloor, \lfloor (n-2)/2 \rfloor}$. Furthermore he proved the following result:

Theorem 1 (Bataineh [1]). For positive integers $k \ge 3$ and $n > (4k+2)(4k^2+10k)$,

$$h(n; C_{2k+1}) = \begin{cases} \frac{(n-2k+1)^2}{4} + 4k - 3, & \text{if } n \text{ is odd} \\ \frac{(n-2k)^2}{4} + 4k + 1, & \text{if } n \text{ is even.} \end{cases}$$

For θ_5 -graph, Bataineh et al. [2] proved that for $n \geq 5$

$$f(n;\theta_5) = \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1.$$

Later on, Bataineh et al. [3], [4] and Jaradat et al. [11] proved the following results

Theorem 2 (Jaradat et al. [11]). For positive integers n and k, let G be a graph on $n \ge 6k + 3$ vertices which contains no θ_{2k+1} as a subgraph, then

$$\mathcal{E}(G) \le \left\lfloor \frac{n^2}{4} \right\rfloor.$$

Theorem 3 (Jaradat et al. [11] and Bataineh et al. [3] and [4]). For sufficiently large integer n and for $k \geq 3$,

$$f(n;\theta_{2k+1}) = \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + 3.$$

Caccetta and Jia [7] proved the following results:

Theorem 4 (Caccetta and Jia [7]). Let $G \in \mathcal{G}(n; C_3, C_5, \ldots, C_{2k+1})$. Then

$$\mathcal{E}(G) \le \lfloor \frac{1}{4}(n-2k+1)^2 \rfloor + 2k - 1.$$

Theorem 5 (Caccetta and Jia [7]). Let $\mathcal{F}_k = \{C_3, C_5, C_7, \ldots, C_{2k+1}\}$. For even $n \ge 4k + 4, k \ge 2$, we have

$$h(n; \mathcal{F}_k) = \frac{(n-4k-4)^2}{4} + 8k - 11.$$

Analogously, In [1], Bataineh proved the following result concerning theta graphs:

Theorem 6 (Bataineh [1]). Let $\Theta_k = \{\theta_4\} \cup \{\theta_5, \theta_7, \dots, \theta_{2k+1}\}$, then for $k \ge 5$ and large odd n, we have

$$h(n; \Theta_k) = \frac{(n-2k+3)^2}{4} + 2k - 3.$$

Jaradat et al. [12] proved the following result.

Theorem 7 (Jaradat et al. [12]). For sufficiently large odd n, let $H \in \mathcal{H}(n; \theta_7)$ with $\delta(H) \geq 7$. Then

$$h(n; \theta_7) \le \frac{(n-3)^2}{4} + 3.$$

Furthermore, the bound is best possible.

Bataineh [1] made the following conjecture

Conjecture 1. Let $k \ge 3$ be a positive integer. For even $n \ge 4k+4$, $h(n; \theta_{2k+1}) \le \frac{(n-2k+2)^2}{4} + 2k$.

In this paper, we investigates the values of $h(n; \mathcal{F})$, for sufficiently large even n where $\mathcal{F} = \{\theta_4, \theta_5, \theta_7\}$ and $\mathcal{F} = \{\theta_7\}$. In fact, we settle the above conjecture for k = 3 under a constraint on the minimum degree.

2. Main results

For the sake of completeness, we start this section, by listing the following three results of Jaradat et al. [12] which will be used in the sequel.

Lemma 1 ([12]). Let $H \in \mathcal{H}(n, \{\theta_4, \theta_5, \theta_7\})$ and H contains a cycle C of length 7. If $u \in V(H - C)$, then $\mathcal{E}(u, C) \leq 3$. Also, if $B = \{u \in V(H - C) : \mathcal{E}(u, C) = 3\}$, then $|B| \leq 1$. Further, if $C = x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_1$ and $u \in B$, then $N_C(u) = \{x_i, x_{i+1}, x_{i+4}\}$ for some i = 1, 2, ..., 7 $(x_j = x_{j-7} \text{ for } j > 7)$.

Lemma 2 ([12]). Let $H \in \mathcal{H}(n, \{\theta_4, \theta_5, \theta_7\})$ such that H contains a cycle C of length 7. If |B| = 1 and uv is an edge in the subgraph H - C - B, then $\mathcal{E}(uv, C) \leq 3$ where B is as defined in Lemma 1.

The following remark follows from the fact that if $H \in \mathcal{H}(n, \{\theta_4, \theta_5, \theta_7\}), C$ is a cycle of length 7 in H and $\mathcal{E}(u, C) = 3$, then $N_C(u) = \{x_i, x_{i+1}, x_{i+4}\}.$

Remark 1 ([12]). Let $H \in \mathcal{H}(n, \{C_3, \theta_4, \theta_5, \theta_7\})$ and H contains a cycle C of length 7. Then $B = \emptyset$ where B is as defined in Lemma 1.

To investigate $h(n; \{\theta_4, \theta_5, \theta_7\})$ and $h(n; \theta_7)$ for even n, we prove the following lemmas.

Lemma 3. For any $H \in \mathcal{H}(n, \{\theta_4, \theta_5, \theta_7\})$, if H contains cycles of lengths 3 and 7, then

$$\mathcal{E}(H) \le \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5,$$

for sufficiently large even n.

Proof. Let $C_7 = x_1 x_2 \dots x_7 x_1$ and $C_3 = y_1 y_2 y_3 y_1$ be cycles of length 7 and 3 in H, respectively. Let $A = H[x_1, x_2, \dots, x_7]$ and $R_1 = H - A$. We distinguish two cases:

Case 1. $V(C_3) \subseteq V(R_1)$. Let $R_2 = R_1 - C_3$. By Lemma 2 we have $\mathcal{E}(R_2, A) \leq 2(n-10)$. Notice that if $u \in V(H - C_3)$, then $\mathcal{E}(u, C_3) \leq 1$, otherwise θ_4 is produced as a subgraph of H. Thus, $\mathcal{E}(R_2, C_3) \leq n-10$. Observe that for $i = 1, 2, \ldots, 7$ and j = 1, 2, 3, if x_i is adjacent to y_j , then neither x_{i+1} nor x_{i-1} can be adjacent to y_s for some s = 1, 2, 3, and $s \neq j$, otherwise θ_5 is produced as a subgraph. Now, if x_{i-1}, x_i and x_{i+1} are all adjacent to the same y_j , then θ_4 is produced as a subgraph, hence, $\mathcal{E}(C_3, A) \leq 4$. By Theorem 2 we have

$$\mathcal{E}(R_2) \le \left\lfloor \frac{(n-10)^2}{4} \right\rfloor.$$

Consequently, we have

$$\begin{aligned} \mathcal{E}(H) &= \mathcal{E}(R_2) + \mathcal{E}(R_2, A) + \mathcal{E}(R_2, C_3) + \mathcal{E}(A) + \mathcal{E}(A, C_3) + \mathcal{E}(C_3) \\ &\leq \left\lfloor \frac{(n-10)^2}{4} \right\rfloor + 2(n-10) + n - 10 + 7 + 4 + 3 \\ &\leq \left\lfloor \frac{n^2 - 8n + 36}{4} \right\rfloor \\ &= \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5. \end{aligned}$$

Case 2. $V(C_3) \nsubseteq V(R_1)$. Then $|V(C_3) \cap V(A)| = 2$ or 1, accordingly, we split this case into two subcases:

Subcase 2.1. $|V(C_3) \cap V(A)| = 2$. Withoutloss of generality assume $x_1, x_2 \in N_A(y_1)$ and let $A_1 = H[y_1, A]$ and $R_3 = H - A_1$, then by Lemma 1, we get $\mathcal{E}(y_1, A) \leq 3$, hence $\mathcal{E}(A_1) \leq 10$. Also, by Theorem 2 we have

$$\mathcal{E}(R_3) \leq \left\lfloor \frac{(n-8)^2}{4} \right\rfloor.$$

Now, we consider the case $\mathcal{E}(y_1, A) = 3$, then $\mathcal{E}(A_1) = 10$. By Lemma 1 $\mathcal{E}(x, A) \leq 2$ for each $x \in V(R_3)$. On the other hand, one can notice that if there is an $x \in V(R_3)$ such that $y_1 x \in E(H)$, then $\mathcal{E}(x, A) = 0$ as otherwise a θ_4 or θ_5 or θ_7 is produced as a subgraph of H, which implies that $\mathcal{E}(x, A_1) \leq 1$ and so $\mathcal{E}(R_3, A_1) \leq 2(n-8) - 1$. If $y_1 x \notin E(H)$ for each $x \in V(R_3)$, then $\mathcal{E}(x, A_1) = \mathcal{E}(x, A)$, but by Lemma 2 we get $\mathcal{E}(R_3, A_1) = \mathcal{E}(R_3, A) \leq 2(n-8) - 1$. Therefore,

$$\mathcal{E}(R_3, A_1) \le 2(n-8) - 1.$$

Consequently, we have

$$\mathcal{E}(H) = \mathcal{E}(R_3) + \mathcal{E}(R_3, A_1) + \mathcal{E}(A_1)$$

$$\leq \left\lfloor \frac{(n-8)^2}{4} \right\rfloor + 2(n-8) - 1 + 10$$

$$= \left\lfloor \frac{n^2 - 8n + 36}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

We now consider the case $\mathcal{E}(y_1, A) = 2$, then $\mathcal{E}(A_1) \leq 9$. Now, for $x \in V(R_3)$ if $xy_1 \in E(H)$, then $x_i x \notin E(H)$ for each i = 1, 2, 3, 5, 7 as otherwise a θ_4 or θ_5 or θ_7 is produced as a subgraph of H. Further, y_1 can not be adjacent to both x_4 and x_1 as otherwise $x_4x_3x_2y_1xx_6x_5x_4x$ is a θ_7 -graph of H. Thus, $\mathcal{E}(x, A) \leq 1$, which implies that $\mathcal{E}(x, A_1) \leq 2$. Also, if $uv \in E(H - A_1)$ and $y_1u \in E(H)$, then as above $N_{C_7}(u) \subseteq \{x_4\}$ or $N_{C_7}(u) \subseteq \{x_6\}$; and $vx_i \notin E(H)$ for each i = 1, 2, 4, 6 as otherwise θ_5 or θ_7 is produced as a subgraph of H. Further, v is adjacent to both x_3 and x_5 , then $vx_5x_4x_3x_2y_1uvx_3$ is a θ_7 -graph in H; (2) if v is adjacent to both of x_7 and x_5 , then by symmetry we get a θ_7 -graph in H; (3) if v is adjacent to both of x_3 and x_7 , then $vuy_1x_1x_7x_6x_5vx_5$ is a θ_7 -graph in H. In addition, if $vy_1 \in E(H)$, then $ux_4, ux_6 \notin E(H)$, to see that let $ux_4 \in E(H)$, then $ux_4x_3x_2x_1y_1vy_1$ is a θ_7 -graph in H. Thus, $\mathcal{E}(uv, A_1) \leq 3$. Therefore, from the above and using Lemma 2, we conclude that

$$\mathcal{E}(R_3, A_1) \le 2(n-8).$$

And so,

$$\mathcal{E}(H) = \mathcal{E}(R_3) + \mathcal{E}(R_3, A_1) + \mathcal{E}(A_1)$$

$$\leq \left\lfloor \frac{(n-8)^2}{4} \right\rfloor + 2(n-8) + 9$$

$$= \left\lfloor \frac{n^2 - 8n + 36}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Subcase 2.2. $|V(C_3) \cap V(A)| = 1$. Without loss of generality assume y_1, y_2 are adjacent to x_1 . Let $A_2 = H[y_1y_2, A]$ and $R_4 = H - A_2$. One can easily see that $\mathcal{E}(y_1y_2, A) = 2$, because otherwise θ_4 or θ_5 or θ_7 is produced, hence $\mathcal{E}(A_2) = 10$. Now, if $x \in V(R_4)$, then x cannot be adjacent to both y_1 and y_2 , as otherwise θ_4 is produced. Moreover, if x is adjacent to either y_1 or y_2 , then $N_A(x) \subseteq \{x_3, x_6\}$ as otherwise θ_4 or θ_5 or θ_7 is produced.

Now, let $x, x^* \in R_4$ be adjacent to y_1 or y_2 and assume $N_A(x) = \{x_3, x_6\}$, then x^* is adjacent to at most one of x_3 and x_6 . To see this, assume $N_A(x^*) = \{x_3, x_6\}$.

Then, If $xy_1, x^*y_1 \in E(H)$, then $xx_6x_7x_1y_1x^*x_3xy_1$ is θ_7 . A similar argument holds if $xy_2, x^*y_2 \in E(H)$. If $xy_1, x^*y_2 \in E(H)$, then $x^*x_3xx_6x_7x_1y_2x^*x_6$ is a θ_7 .

Let

$$S = \{ x \in R_4 : xy_1 \text{ or } xy_2 \in E(H) \},\$$

and

$$S^* = \{ x \in R_4 : xy_1, xy_2 \notin E(H) \}.$$

Then from the above argument

(1)
$$\mathcal{E}(S, A_2) \le 2|S| + 1,$$

and by Lemma 2

(2)
$$\mathcal{E}(S^*, A_2) \le 2|S^*| + 1.$$

Hence, combining 1 and 2, we get

$$\begin{aligned} \mathcal{E}(R_4, A_2) &\leq 2|S| + 1 + 2|S^*| + 1 \\ &\leq 2(n-9) + 2. \end{aligned}$$

Thus,

$$\mathcal{E}(H) = \mathcal{E}(R_4) + \mathcal{E}(R_4, A_2) + \mathcal{E}(A_2)$$

$$\leq \left\lfloor \frac{(n-9)^2}{4} \right\rfloor + 2(n-9) + 2 + 9$$

$$= \left\lfloor \frac{n^2 - 10n + 49}{4} \right\rfloor$$

$$< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Lemma 4. For any $H \in \mathcal{H}(n, \{C_3, \theta_4, \theta_5, \theta_7\})$, if H contains a cycle of length 5 and a cycle of length 7, then

$$\mathcal{E}(H) \le \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5,$$

for sufficiently large even n.

Proof. Let $C_5 = y_1y_2y_3y_4y_5y_1$ and $C_7 = x_1x_2x_3...x_7x_1$ be cycles of length 5 and 7 in H, respectively. As in Lemma 3, we let $R_1 = H - A$ where $A = H[x_1, x_2, ..., x_7]$. Now we consider two cases:

Case 1. $V(C_5) \subseteq V(R_1)$. Let $R_5 = R_1 - C_5$. Notice that $A = C_7$ and $H[C_5] = C_5$, otherwise θ_7 or θ_5 is produced as a subgraph, and so $\mathcal{E}(A) = 7$ and

 $\mathcal{E}(H[C_5]) = \mathcal{E}(C_5) = 5$. By Lemma 2 we have $\mathcal{E}(R_5, A) \leq 2(n-12)$. Now, if $x \in V(R_5)$, then $\mathcal{E}(x, C_5) \leq 2$, otherwise θ_4 or θ_5 is produced as a subgraph.

Claim 1. Let $xy \in E(R_5)$, then $\mathcal{E}(xy, C_5) \leq 2$.

Proof of the claim. Suppose that $\mathcal{E}(x, C_5) = 2$. Then, by taking into account the symmetry, we have $N_{C_5}(x) = \{y_i, y_{i+2}\}$, otherwise C_3 is produced. Without loss of generality we may assume that $N_{C_5}(x) = \{y_1, y_3\}$, then we have the following possibilities:

- 1. y is adjacent to y_1 . Then the trail $xyy_1y_2y_3xy_1$ is a θ_5 -graph.
- 2. y is adjacent to y_2 . Then the trail $xyy_2y_1y_5y_4y_3xy_1$ is a θ_7 -graph.
- 3. y is adjacent to y_3 . Then the trail $xyy_3y_2y_1xy_3$ is a θ_5 -graph.
- 4. y is adjacent to y_4 . Then the trail $xyy_4y_5y_1y_2y_3xy_1$ is a θ_7 -graph.
- 5. y is adjacent to y_5 . Then the trail $xyy_5y_4y_3y_2y_1xy_3$ is a θ_7 -graph.

Thus $\mathcal{E}(y, C_5) = 0$, and so $\mathcal{E}(xy, C_5) \leq 2$. This completes the proof of the claim. Since *H* is a Hamiltonian graph, then there is an edge *e* in R_5 . Thus, by the Claim 1, $\mathcal{E}(e, C_5) \leq 2$, and so $\mathcal{E}(R_5, C_5) \leq 2(n - 12) - 2$. Also, by Claim 1, one can see that $\mathcal{E}(C_5, A) \leq 6$. Further, by Theorem 2, we have

$$\mathcal{E}(R_5) \le \left\lfloor \frac{(n-12)^2}{4} \right\rfloor$$

Consequently, we have

$$\begin{aligned} \mathcal{E}(H) &= \mathcal{E}(R_5) + \mathcal{E}(R_5, A) + \mathcal{E}(R_5, C_5) + \mathcal{E}(A) + \mathcal{E}(A, C_5) + \mathcal{E}(C_5) \\ &\leq \left\lfloor \frac{(n-12)^2}{4} \right\rfloor + 2(n-12) + 2(n-12) - 2 + 7 + 6 + 5 \\ &\leq \left\lfloor \frac{n^2 - 8n + 10}{4} \right\rfloor \\ &\leq \left\lfloor \frac{(n-4)^2}{4} \right\rfloor - 1 \\ &< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5. \end{aligned}$$

Case 2. $V(C_5) \nsubseteq V(R_1)$. Then $|V(C_5) \cap V(A)| = 1$ or 2 or 3 or 4. Thus, we split this case into 4 subcases:

Subcase 2.1. $|V(C_5) \cap V(A)| = 1$. Without loss of generality, assume $C_5 = x_1y_1y_2y_3y_4x_1$ is in H, then let $T_1 = H[y_1, y_2, y_3, y_4, A]$ and $D_1 = H - T_1$. From Remark 1, $\mathcal{E}(x, A) \leq 2$ for any $x \in H - A$. Since $\mathcal{E}(H[C_5]) = \mathcal{E}(C_5) = 5$, $\mathcal{E}(A) = 7$ and $\mathcal{E}(y_j, A) \leq 2$ for j = 1, 2, 3, 4, then $\mathcal{E}(T_1) \leq 18$. Also by Theorem 2 we have

$$\mathcal{E}(D_1) \leq \left\lfloor \frac{(n-11)^2}{4} \right\rfloor.$$

Claim 2. For each $x \in V(D_1), \mathcal{E}(x, T_1) \leq 3$.

Proof of the claim. Let $x \in V(D_1)$, then as above both $\mathcal{E}(x, A), \mathcal{E}(x, C_5) \leq 2$. If $\mathcal{E}(x, C_5) \leq 1$, then $\mathcal{E}(x, T_1) \leq 3$. Also, if $xx_1 \in E(H)$, then $\mathcal{E}(x, T_1) \leq 3$ because x_1 is a common vertex of both A and C_5 . To this end, we consider the case where $\mathcal{E}(x, C_5) = 2$ and $xx_1 \notin E(H)$. Then, x is either adjacent to both y_1 and y_3 or adjacent to both y_2 and y_4 or to both y_1 and y_4 . If $xy_1, xy_4 \in E(H)$, then $C_5^* = xy_1y_2y_3y_4x$ is a cycle of length 5 such that $V(C_5^*) \subseteq V(R_5)$ and so we get Case 1. If $xy_1, xy_3 \in E(H)$, then

- 1- $xx_2 \notin E(H)$ as otherwise $xy_1y_2y_3y_4x_1x_2xy_3$ is a θ_7 .
- 2- $xx_3 \notin E(H)$ as otherwise $xy_3y_2y_1x_1x_2x_3xy_1$ is a θ_7 .
- 3- $xx_7 \notin E(H)$ as otherwise $xy_1y_2y_3y_4x_1x_7xy_3$ is a θ_7 .
- 4- $xx_6 \notin E(H)$ as otherwise $xy_3y_2y_1x_1x_7x_6xy_1$ is a θ_7 .

Thus, $N_{C_7}(x) \subseteq \{x_4, x_5\}$. Also, if $xx_4, xx_5 \in E(H)$, then C_3 is produced. Hence x is adjacent to either x_4 or x_5 but not to both, and so, $\mathcal{E}(x, T_1) \leq 3$. Similarly, by using the symmetry, one can show that if $xy_2, xy_4 \in E(H)$, then $\mathcal{E}(x, T_1) \leq 3$. This completes the proof of the claim.

Therefore, by Claim 2, $\mathcal{E}(D_1, T_1) \leq 3(n-11)$. Consequently, we have

$$\begin{aligned} \mathcal{E}(H) &= \mathcal{E}(D_1) + \mathcal{E}(D_1, T_1) + \mathcal{E}(T_1) \\ &\leq \left\lfloor \frac{(n-11)^2}{4} \right\rfloor + 3(n-11) + 18 \\ &= \left\lfloor \frac{n^2 - 10n + 61}{4} \right\rfloor \\ &= \left\lfloor \frac{(n-5)^2}{4} \right\rfloor + 9 \\ &< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5. \end{aligned}$$

Subcase 2.2. $|V(C_5) \cap V(A)| = 2$. Without loss of generality assume that $C_5 = x_1y_1y_2y_3x_2x_1$ is in H. Let $T_2 = H[y_1, y_2, y_3, A]$ and $D_2 = H - T_2$. As above, $\mathcal{E}(x, C_5) \leq 2$ and $\mathcal{E}(x, A) \leq 2$.

Claim 3. For each $x \in V(D_2)$, $\mathcal{E}(x, T_2) \leq 3$.

Proof of the claim. Suppose that $\mathcal{E}(x, T_2) = 4$. Then $\mathcal{E}(x, C_5) = 2$. Note that if $xx_1 \in E(H)$, then x_1 is a common vertex of both C_5 and A and so $\mathcal{E}(x, T_2) \leq 3$, similarly if $xx_2 \in E(H)$, then x_2 is a common vertex of both C_5 and A and so $\mathcal{E}(x, T_2) \leq 3$. Thus, $N_{C_5}(x) = \{y_1, y_3\}$, and

- 1- $xx_3 \notin E(H)$ as otherwise $xy_3y_2y_1x_1x_2x_3xy_1$ is a θ_7 .
- 2- $xx_4 \notin E(H)$ as otherwise $xy_1y_2y_3x_2x_3x_4xy_3$ is a θ_7 .
- 3- $xx_6 \notin E(H)$ as otherwise $xy_3y_2y_1x_1x_7x_6xy_1$ is a θ_7 .
- 4- $xx_7 \notin E(H)$ as otherwise $xy_1y_2y_3x_2x_1x_7xy_3$ is a θ_7 .

Thus, x is adjacent to at most x_5 , and so $\mathcal{E}(x, T_2) \leq 3$, as claimed.

Hence, $\mathcal{E}(D_2, T_2) \leq 3(n-10)$. Recall that for $j = 1, 2, 3, \mathcal{E}(y_j, A) \leq 2$. Observe that y_2 cannot be adjacent to x_1 or x_2 , as otherwise C_3 is produced as a subgraph of H. Thus, $N_A(y_2) = \{x_3\}$ or $\{x_4\}$ or $\{x_5\}$ or $\{x_6\}$ or $\{x_7\}$ or $\{x_3, x_7\}$ as

otherwise C_3, θ_4, θ_5 or θ_7 is produced as a subgraph of H. If $N_A(y_2) = \{x_3, x_7\}$, then $N_A(y_1) = \{x_1\}$ and $N_A(y_3) = \{x_2\}$ as otherwise C_3, θ_4, θ_5 or θ_7 is produced as a subgraph of H. Thus, $\mathcal{E}(T_2) \leq 14$. By Theorem 2 we have

$$\mathcal{E}(D_2) \le \left\lfloor \frac{(n-10)^2}{4} \right\rfloor.$$

Consequently, we have

$$\mathcal{E}(H) = \mathcal{E}(D_2) + \mathcal{E}(D_2, T_2) + \mathcal{E}(T_2)$$

$$\leq \left\lfloor \frac{(n-10)^2}{4} \right\rfloor + 3(n-10) + 14$$

$$= \left\lfloor \frac{n^2 - 8n + 36}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Subcase 2.3. $|V(C_5) \cap V(A)| = 3$. Without loss of generality, assume that $C_5 = x_1y_1y_2x_3x_2x_1$ is in H, then let $T_3 = H[y_1, y_2, A]$ and $D_3 = H - T_3$. Now, $\mathcal{E}(A) = 7$ and by Lemma 2 $\mathcal{E}(y_1y_2, A) \leq 3$, thus $\mathcal{E}(T_3) \leq 11$. Now, let $x \in V(D_3)$, then x is adjacent to at most one of y_1 and y_2 as otherwise C_3 is produced. Further, by Remark 1, $\mathcal{E}(x, A) \leq 2$. Thus, $\mathcal{E}(x, T_3) \leq 3$. Let $B_1 = \{x \in V(D_3) : \mathcal{E}(x, T_3) = 3\}.$

Claim 4. $|B_1| = 0.$

Proof of the claim. Let $x \in B_1$, then $N_{T_3}(x) = \{y_2, x_2, x_4\}$ or $\{y_2, x_2, x_6\}$ or $\{y_1, x_2, x_5\}$ or $\{y_1, x_2, x_7\}$.

If $N_{T_3}(x) = \{y_2, x_2, x_4\}$, then the trail $x_2x_1y_1y_2x_3x_4xx_2x_3$ is a θ_7 -graph. If $N_{T_3}(x) = \{y_2, x_2, x_6\}$, then the trail $xx_6x_7x_1x_2x_3y_2x_2$ is a θ_7 -graph. By symmetry we get similar trails if $N_{T_3}(x) = \{y_1, x_2, x_5\}$ or $\{y_1, x_2, x_7\}$. The proof of the claim is complete.

Thus, $\mathcal{E}(x, T_3) \leq 2$ for any $x \in V(D_3)$, which implies that

$$\mathcal{E}(D_3, T_3) \le 2(n-9).$$

Also, by Theorem 2 we have

$$\mathcal{E}(D_3) \le \left\lfloor \frac{(n-9)^2}{4} \right\rfloor.$$

Therefore,

$$\mathcal{E}(H) = \mathcal{E}(D_3) + \mathcal{E}(D_3, T_3) + \mathcal{E}(T_3)$$

$$\leq \left\lfloor \frac{(n-9)^2}{4} \right\rfloor + 2(n-9) + 11$$

$$= \left\lfloor \frac{n^2 - 10n + 53}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-5)^2}{4} \right\rfloor + 7$$

$$< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Subcase 2.4. $|V(C_5) \cap V(A)| = 4$. Without loss of generality, assume that $C_5 = x_1y_1x_4x_3x_2x_1$ is in H, then let $T_4 = H[y_1, A]$ and $D_4 = H - T_4$. By Remark 1 $\mathcal{E}(x, A) \leq 2$ for any $x \in H - A$. Therefore, $\mathcal{E}(y_1, A) = 2$, and so $\mathcal{E}(T_4) = 9$. Now, let $x \in V(D_4)$, if x is not adjacent to y_1 , then $\mathcal{E}(x, T_4) \leq 2$; if x is adjacent to y_1 , then

- 1. $xx_1 \notin E(H)$ as otherwise the trail xy_1x_1x is a C_3 .
- 2. $xx_4 \notin E(H)$ as otherwise the trail xy_1x_4x is a C_3 .
- 3. $xx_5 \notin E(H)$ as otherwise the trail $y_1xx_5x_4x_3x_2x_1y_1x_4$ is a θ_7 -graph.
- 4. $xx_7 \notin E(H)$ as otherwise the trail $y_1xx_7x_1x_2x_3x_4y_1x_1$ is a θ_7 -graph.

Thus, $N_{C_7}(x) \subseteq \{x_2, x_3, x_6\}$. Now, If x is adjacent to x_2 , then it is neither adjacent to x_3 (as otherwise $C_3 = xx_2x_3x$ is produced) nor to x_6 (as otherwise $\theta_7 = xx_6x_5x_4y_1x_1x_2xy_1$ is produced). Similarly if x is adjacent to x_3 , then it can not be adjacent to x_6 (as otherwise $\theta_7 = xx_6x_7x_1y_1x_4x_3xy_1$ is produced). Thus, $\mathcal{E}(x, T_4) \leq 2$, and so $\mathcal{E}(D_4, T_4) \leq 2(n-8)$. Also, by Theorem 2 we have

$$\mathcal{E}(D_4) \le \left\lfloor \frac{(n-8)^2}{4} \right\rfloor.$$

Consequently we have

$$\mathcal{E}(H) = \mathcal{E}(D_4) + \mathcal{E}(D_4, T_4) + \mathcal{E}(T_4)$$

$$\leq \left\lfloor \frac{(n-8)^2}{4} \right\rfloor + 2(n-8) + 9$$

$$= \left\lfloor \frac{n^2 - 8n + 36}{4} \right\rfloor$$

$$= \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Now, we give the following construction: Let \mathcal{H}_1 be the class of graphs that obtained from $\overline{K}_{\frac{n-4}{2}} \vee \overline{K}_{\frac{n-4}{2}}$ by replacing one edge, say $u_1 u_2 \in \overline{K}_{\frac{n-4}{2}} \vee \overline{K}_{\frac{n-4}{2}}$,

by the path $u_1w_2w_3w_4w_5u_2$ in addition to one of the two edges u_1w_3 and w_2w_4 . Note that if $H \in \mathcal{H}_1$, then H is a non-bipartite Hamiltonian graph which has none of $\{\theta_4, \theta_5, \theta_7\}$ as a subgraph of H and $\mathcal{E}(H) = \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5$. Thus, we establish that

(3)
$$h(n; \{\theta_4, \theta_5, \theta_7\}) \ge \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5 \text{ for even } n.$$

Theorem 8. Let $H \in \mathcal{H}(n; \{\theta_4, \theta_5, \theta_7\})$, then

$$h(n; \{\theta_4, \theta_5, \theta_7\}) = \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5,$$

for sufficiently large even n. Furthermore, the bound is best possible.

Proof. By 3, it is suffices to prove the upper bound of $h(n; \{\theta_4, \theta_5, \theta_7\})$. Let $H \in \mathcal{H}(n; \{\theta_4, \theta_5, \theta_7\})$. If H has no cycles of length 7, then by Theorem 1 we have

$$\begin{aligned} \mathcal{E}(H) &\leq \quad \frac{(n-6)^2}{4} + 13 \\ &< \quad \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5. \end{aligned}$$

Now, we assume that H has cycles of length 7. If H contains neither cycles of length 3 nor cycles of length 5, then by Theorem 5 we have

$$\mathcal{E}(H) \le \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

To this end, If H contains cycles of length 5, then the results follows from Lemma 4. Finally, if H contains no cycles of length 5 but it contains cycles of length 3, then the results follows from Lemma 3.

In the following theorem we give an upper bound of $h(n; \theta_7)$ for sufficiently large even n under a constraint of the minimum degree.

Theorem 9. For sufficiently large even n, let $H \in \mathcal{H}(n; \theta_7)$ with $\delta(H) \geq 22$. Then

$$h(n;\theta_7) \le \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

Proof. Let $H \in \mathcal{H}(n;\theta_7)$ with $\delta(H) \geq 22$. Suppose that H has θ_5 -graph, say $\theta_5 = x_1x_2x_3x_4x_5x_1x_4$. For i = 1, 2, 3, let A_i be a set that consist of 6 neighbors of x_i in $H - \theta_5$ selected so that $A_i \cap A_j = \emptyset$ for $i \neq j$. Let T = H[$x_1, x_2, x_3, x_4, x_5, A_1, A_2, A_3]$ and B = H - T. Let $u \in V(B)$, if u is adjacent to a vertex in one of the sets A_1, A_2 and A_3 , then u cannot be adjacent to any vertex in the other two sets as otherwise H would have a θ_7 -graph. Also, if u is adjacent to a vertex in A_i for some i = 1, 2, 3, then u cannot be adjacent to any of x_{i+1} and x_{i-1} , otherwise, H would have a θ_7 -graph. Thus, $\mathcal{E}(u, T) \leq 9$, which implies $\mathcal{E}(B, T) \leq 9(n-23)$. Also, by Theorem 2 we have

$$\mathcal{E}(B) \leq \left\lfloor \frac{(n-23)^2}{4} \right\rfloor$$
 and $\mathcal{E}(T) \leq \left\lfloor \frac{(23)^2}{4} \right\rfloor$.

Consequently, we have

$$\begin{aligned} \mathcal{E}(H) &= \mathcal{E}(B) + \mathcal{E}(B,T) + \mathcal{E}(T) \\ &\leq \left\lfloor \frac{(n-23)^2}{4} \right\rfloor + 9(n-23) + \left\lfloor \frac{(23)^2}{4} \right\rfloor \end{aligned}$$

$$\leq \left\lfloor \frac{n^2 - 10n + 230}{4} \right\rfloor$$
$$= \left\lfloor \frac{(n-5)^2}{4} \right\rfloor + 51$$
$$< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

So, we consider that H contains no θ_5 -graph. If H contains no θ_4 -graph as a subgraph, then by Theorem 8 we have

$$\mathcal{E}(H) \le \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5.$$

If H contains θ_4 -graph as a subgraph, then let $\theta_4 = x_1 x_2 x_3 x_4 x_1 x_3$. For i = 2, 3, 4, let A_i be a set that consist of 5 neighbors of x_i in H selected so that $A_i \cap A_j = \emptyset$ for $i \neq j$. Let $T = H[x_1, x_2, x_3, x_4, A_2, A_3, A_4]$ and B = H - T. Also, let $u \in V(B)$. If u is adjacent to a vertex in one of the sets A_2, A_3 and A_4 , then u cannot be adjacent to a vertex in the other two sets as otherwise H would have a θ_7 -graph. Also, if u is adjacent to a vertex in A_i for some i = 2, 3, 4, then u cannot be adjacent to x_{i+1} and x_{i-1} , otherwise H would have a θ_5 -graph. Thus, $\mathcal{E}(u, T) \leq 7$. Therefore, $\mathcal{E}(B, T) \leq 7(n-19)$. By Theorem 2 we have

$$\mathcal{E}(B) \le \left\lfloor \frac{(n-19)^2}{4} \right\rfloor$$
 and $\mathcal{E}(T) \le \left\lfloor \frac{(19)^2}{4} \right\rfloor$.

Consequently, we have

$$\begin{split} \mathcal{E}(H) &= \mathcal{E}(B) + \mathcal{E}(B,T) + \mathcal{E}(T) \\ &\leq \left\lfloor \frac{(n-19)^2}{4} \right\rfloor + 7(n-19) + \left\lfloor \frac{(19)^2}{4} \right\rfloor \\ &\leq \left\lfloor \frac{n^2 - 10n + 190}{4} \right\rfloor \\ &= \left\lfloor \frac{(n-5)^2}{4} \right\rfloor + 41 \\ &< \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5. \end{split}$$

In the above theorem, we have proved that if G is a θ_7 -free graph with n vertices and minimum degree greater than or equal to 22, then $\mathcal{E}(G) \leq \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 5 \leq \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 6$ which confirm Conjecture 1 in the case k = 3. Now consider H is the graph obtained from $\overline{K}_{\frac{n-4}{2}} \vee \overline{K}_{\frac{n-4}{2}}$ by replacing one edge, say $u_1u_2 \in \overline{K}_{\frac{n-4}{2}} \vee \overline{K}_{\frac{n-4}{2}}$, by the path $u_1w_2w_3w_4w_5u_2$ in addition to the two edges u_1w_3 and w_2w_4 . Note that H is a non-bipartite Hamiltonian graph which has no θ_7 as a subgraph of H. Furthermore, $\mathcal{E}(H) = \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 6$. Thus, we establish the upper bound of the Conjecture 1 in the case k = 3.

References

- M. Bataineh, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 2007.
- [2] M. Bataineh, M.M.M. Jaradat, E. Al-Shboul, *Edge-maximal graphs without* θ_5 -graphs, Ars Combinatoria, 124 (2016), 193-207.
- [3] M. Bataineh, M.M.M. Jaradat, E. Al-Shboul, *Edge-maximal graphs without* θ_7 -graphs, SUT Journal of Mathematics, 47 (2011), 91-103.
- [4] M.S.A. Bataineh, M.M.M. Jaradat, I.Y. Al-Shboul, Edge-maximal graphs with-out theta graphs of order seven: Part II, Proceeding of the Annual International Conference on Computational Mathematics, Computational Geometry& Statistics. DOI#10.5176/2251-1911_CMCGS66.
- [5] J.A. Bondy, *Pancyclic graphs*, J. Combinatorial Theory Ser B, 11 (1971), 80-84.
- [6] J.A. Bondy, Large cycle in graphs, Discrete Mathematics 1 (1971), 121-132.
- [7] L. Caccetta, R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combinatorics, 18 (2002), 75-92.

- [8] L. Caccetta and K. Vijayan, *Maximal cycles in graphs*, Discrete Mathematics 98 (1991), 1-7.
- [9] R. Häggkvist, R.J. Faudree and R.H. Schelp, *Pancyclic graphs-connected Ramsey number*, Ars Combinatoria 11 (1981), 37-49.
- [10] G.R.T. Hendry and S. Brandt, An extremal problem for cycles in Hamiltonian graphs, Graphs Comb., 11 (1995), 255-262.
- [11] M.M.M. Jaradat, M.S. Bataineh and E. Al-Shboul, *Edge-maximal graphs* without θ_{2k+1} -graphs, Akce International Journal of Graphs and Combinatorics, 11 (2014), 57-65.
- [12] M.M.M. Jaradat, M. Bataineh, A. Al-Rhayyel and Z. Mustafa, *Extremal number of theta graphs of order* 7, Bol. Soc. Paran. Mat. (Accepted).
- [13] R. Jia, Some external problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 1998.
- [14] P. Turán, On a problem in graph theory, Mat. Fiz. Lapok, 48 (1941), 436-452.
- [15] D. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar., 28 (1976), 77-80.

Accepted: 18.02.2018