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Abstract. For a set of graphs F , let H(n;F) denote the class of non-bipartite Hamil-
tonian graphs on n vertices that does not contain any graph of F as a subgraph and
h(n;F) = max{E(G) : G ∈ H(n;F)} where E(G) is the number of edges in G. In this
paper, we determine h(n; {θ4, θ5, θ7}) and we establish an upper bound of h(n; θ7) for
sufficiently even large n. Our results confirms the conjecture made in [1] for k = 3.
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1. Introduction and preliminaries

We consider undirected graphs without loops and multiple edges. Let V (G)
be the vertex set and E(G) be the edge set of a graph G. The order of a
graph G is the number of vertices of G and is denoted by V(G). The size
of G, denoted by E(G), is the number of edges of G. A complete k-partite
graph is a graph whose vertices can be partitioned into k disjoint sets, such
that two vertices are adjacent if and only if they belong to different sets. We
often denote by x1x2 . . . xnx1 the cycle Cn having n vertices x1, x2, . . . , xn and
the edges x1x2, x2x3, . . . , xn−1xn and xnx1. A theta graph is a cycle Cn with
a new edge (a chord) joining two non-adjacent vertices of Cn. The set of all
theta graphs of order n will be denoted by θn. It is easy to check that the set

θn contains
⌊
n
2

⌋
− 1 (non-isomorphic) graphs.

If F is a subgraph of G, then G − F is the graph that contains all vertices
of G which are not in F and all edges of G connecting two vertices of G−F . If
P and Q are two subgraphs of G, then E(P,Q) is the set containing all edges
of G, which connect a vertex in P and a vertex in Q and E(P,Q) = |E(P,Q)|.
An induced subgraph G[V (Q)] of a graph G consists of the vertices in Q and
all edges of G connecting two vertices in Q. The join G = G1 ∨ G2 of graphs
G1and G2 with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and
E(G2) is the graph G1 union G2 together with all the edges joining V (G1) and
V (G2).

For a set of graphs S, the Turán number ex(n, S) is defined as the maximum
number of edges in a graph of order n having no member of S as a subgraph.
If S contains only one graph G, we write simply ex(n,G). The problem was

formulated by Turán [14], who showed that ex(n,Kr) = ⌊ rn2

2(r+1)⌋, where Kr is
the complete graph having r vertices.

We now introduce some additional notation. For a positive integer n and
a set of graphs F , let G(n;F) (and H(n;F)) denote the class of non-bipartite
F-free graphs (the subclass of G(n;F) which consists of all the Hamiltonian
members in G(n;F)) on n vertices, and

f(n;F) = max{E(G) : G ∈ G(n;F)},
h(n;F) = max{E(G) : G ∈ H(n;F)}.

Hendry and Brandt [10] proved that h(n;C5) ≤ (n−3)2

4 + 5 for odd n ≥
7, n ̸= 9 , and h(9;C5) = 15. However, they did not characterize the extremal
graphs. Caccetta and Jia [7] characterized the extremal graphs and proved that

f(n;C5) ≤
⌊
(n−2)2

4

⌋
+ 3 for n ≥ 9. Also, they proved h(n;C5) ≤ (n−4)2

4 + 7

for even n ≥ 12. Further, the extremal graphs were characterized. Jia [13]
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conjectured that f(n;C2k+1) ≤
⌊
(n−2)2

4

⌋
+ 3 for n ≥ 4k + 2. Bataineh [1]

settled the above conjecture for n ≥ 36k. Further, he showed that equality
holds if and only if G ∈ G∗(n) where G∗(n) is the class of graphs obtained by
adding a triangle, two vertices of which are new, to the complete bipartite graph
K⌊(n−2)/2⌋,⌈(n−2)/2⌉. Furthermore he proved the following result:

Theorem 1 (Bataineh [1]). For positive integers k ≥ 3 and n > (4k+2)(4k2+
10k),

h(n;C2k+1) =


(n− 2k + 1)2

4
+ 4k − 3, if n is odd

(n− 2k)2

4
+ 4k + 1, if n is even.

For θ5-graph, Bataineh et al. [2] proved that for n ≥ 5

f(n; θ5) =

⌊
(n− 1)2

4

⌋
+ 1.

Later on, Bataineh et al. [3], [4] and Jaradat et al. [11] proved the following
results

Theorem 2 (Jaradat et al. [11]). For positive integers n and k, let G be a
graph on n ≥ 6k + 3 vertices which contains no θ2k+1 as a subgraph, then

E(G) ≤
⌊
n2

4

⌋
.

Theorem 3 (Jaradat et al. [11] and Bataineh et al. [3] and [4]). For sufficiently
large integer n and for k ≥ 3,

f(n; θ2k+1) =

⌊
(n− 2)2

4

⌋
+ 3.

Caccetta and Jia [7] proved the following results:

Theorem 4 (Caccetta and Jia [7]). Let G ∈ G(n;C3, C5, . . . , C2k+1). Then

E(G) ≤ ⌊1
4
(n− 2k + 1)2⌋+ 2k − 1.

Theorem 5 (Caccetta and Jia [7]). Let Fk = {C3, C5, C7, . . . , C2k+1}. For even
n ≥ 4k + 4, k ≥ 2, we have

h(n;Fk) =
(n− 4k − 4)2

4
+ 8k − 11.

Analogously, In [1], Bataineh proved the following result concerning theta
graphs:
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Theorem 6 (Bataineh [1]). Let Θk = {θ4} ∪ {θ5, θ7, . . . , θ2k+1}, then for k ≥ 5
and large odd n, we have

h(n; Θk) =
(n− 2k + 3)2

4
+ 2k − 3.

Jaradat et al. [12] proved the following result.

Theorem 7 (Jaradat et al. [12]). For sufficiently large odd n, let H ∈ H(n; θ7)
with δ(H) ≥ 7. Then

h(n; θ7) ≤
(n− 3)2

4
+ 3.

Furthermore, the bound is best possible.

Bataineh [1] made the following conjecture

Conjecture 1. Let k ≥ 3 be a positive integer. For even n ≥ 4k+4, h(n; θ2k+1) ≤
(n−2k+2)2

4 + 2k.

In this paper, we investigates the values of h(n;F), for sufficiently large even
n where F = {θ4, θ5, θ7} and F = {θ7}. In fact, we settle the above conjecture
for k = 3 under a constrain on the minimum degree.

2. Main results

For the sake of completeness, we start this section, by listing the following three
results of Jaradat et al. [12] which will be used in the sequel.

Lemma 1 ([12]). Let H ∈ H(n, {θ4, θ5, θ7}) and H contains a cycle C of length
7. If u ∈ V (H − C), then E(u,C) ≤ 3. Also, if B = {u ∈ V (H − C) :
E(u,C) = 3}, then |B| ≤ 1. Further, if C = x1x2x3x4x5x6x7x1 and u ∈ B, then
NC(u) = {xi, xi+1, xi+4} for some i = 1, 2, . . . , 7 (xj = xj−7 for j > 7).

Lemma 2 ([12]). Let H ∈ H(n, {θ4, θ5, θ7}) such that H contains a cycle C
of length 7. If |B| = 1 and uv is an edge in the subgraph H − C − B, then
E(uv,C) ≤ 3 where B is as defined in Lemma 1.

The following remark follows from the fact that if H ∈ H(n, {θ4, θ5, θ7}), C
is a cycle of length 7 in H and E(u,C) = 3, then NC(u) = {xi, xi+1, xi+4}.

Remark 1 ([12]). Let H ∈ H(n, {C3, θ4, θ5, θ7}) and H contains a cycle C of
length 7. Then B = ∅ where B is as defined in Lemma 1.

To investigate h(n; {θ4, θ5, θ7}) and h(n; θ7) for even n, we prove the following
lemmas.

Lemma 3. For any H ∈ H(n, {θ4, θ5, θ7}), if H contains cycles of lengths 3
and 7, then

E(H) ≤
⌊
(n− 4)2

4

⌋
+ 5,

for sufficiently large even n.
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Proof. Let C7 = x1x2 . . . x7x1 and C3 = y1y2y3y1 be cycles of length 7 and 3
in H, respectively. Let A = H[x1, x2, . . . , x7] and R1 = H − A. We distinguish
two cases:

Case 1. V (C3) ⊆ V (R1). Let R2 = R1 −C3. By Lemma 2 we have E(R2, A) ≤
2(n − 10). Notice that if u ∈ V (H − C3), then E(u,C3) ≤ 1, otherwise θ4 is
produced as a subgraph of H. Thus, E(R2, C3) ≤ n − 10. Observe that for
i = 1, 2, . . . , 7 and j = 1, 2, 3, if xi is adjacent to yj , then neither xi+1 nor xi−1

can be adjacent to ys for some s = 1, 2, 3, and s ̸= j, otherwise θ5 is produced
as a subgraph. Now, if xi−1, xi and xi+1 are all adjacent to the same yj , then
θ4 is produced as a subgraph, hence, E(C3, A) ≤ 4. By Theorem 2 we have

E(R2) ≤
⌊
(n− 10)2

4

⌋
.

Consequently, we have

E(H) = E(R2) + E(R2, A) + E(R2, C3) + E(A) + E(A,C3) + E(C3)

≤
⌊
(n− 10)2

4

⌋
+ 2(n− 10) + n− 10 + 7 + 4 + 3

≤
⌊
n2 − 8n+ 36

4

⌋
=

⌊
(n− 4)2

4

⌋
+ 5.

Case 2. V (C3) * V (R1). Then |V (C3) ∩ V (A)| = 2 or 1, accordingly, we split
this case into two subcases:

Subcase 2.1. |V (C3) ∩ V (A)| = 2. Withoutloss of generality assume x1, x2 ∈
NA(y1) and let A1 = H[y1, A] and R3 = H − A1, then by Lemma 1, we get
E(y1, A) ≤ 3, hence E(A1) ≤ 10. Also, by Theorem 2 we have

E(R3) ≤
⌊
(n− 8)2

4

⌋
.

Now, we consider the case E(y1, A) = 3, then E(A1) = 10. By Lemma 1
E(x,A) ≤ 2 for each x ∈ V (R3). On the other hand, one can notice that if
there is an x ∈ V (R3) such that y1x ∈ E(H), then E(x,A) = 0 as otherwise a
θ4 or θ5 or θ7 is produced as a subgraph of H, which implies that E(x,A1) ≤ 1
and so E(R3, A1) ≤ 2(n − 8) − 1. If y1x /∈ E(H) for each x ∈ V (R3), then
E(x,A1) = E(x,A), but by Lemma 2 we get E(R3, A1) = E(R3, A) ≤ 2(n−8)−1.
Therefore,

E(R3, A1) ≤ 2(n− 8)− 1.
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Consequently, we have

E(H) = E(R3) + E(R3, A1) + E(A1)

≤
⌊
(n− 8)2

4

⌋
+ 2(n− 8)− 1 + 10

=

⌊
n2 − 8n+ 36

4

⌋
=

⌊
(n− 4)2

4

⌋
+ 5.

We now consider the case E(y1, A) = 2, then E(A1) ≤ 9. Now, for x ∈ V (R3) if
xy1 ∈ E(H), then xix /∈ E(H) for each i = 1, 2, 3, 5, 7 as otherwise a θ4 or θ5 or
θ7 is produced as a subgraph of H. Further, y1 can not be adjacent to both x4
and x1 as otherwise x4x3x2y1xx6x5x4x is a θ7-graph of H. Thus, E(x,A) ≤ 1,
which implies that E(x,A1) ≤ 2. Also, if uv ∈ E(H − A1) and y1u ∈ E(H),
then as above NC7(u) ⊆ {x4} or NC7(u) ⊆ {x6}; and vxi /∈ E(H) for each
i = 1, 2, 4, 6 as otherwise θ5 or θ7 is produced as a subgraph of H. Further, v
is adjacent to at most one of x3, x5 and x7, to see this, note that: (1) If v is
adjacent to both x3 and x5, then vx5x4x3x2y1uvx3 is a θ7-graph in H; (2) if v
is adjacent to both of x7 and x5, then by symmetry we get a θ7-graph in H; (3)
if v is adjacent to both of x3 and x7, then vuy1x1x7x6x5vx5 is a θ7-graph in H.
In addition, if vy1 ∈ E(H), then ux4, ux6 /∈ E(H), to see that let ux4 ∈ E(H),
then ux4x3x2x1y1vy1 is a θ7-graph in H. Thus, E(uv,A1) ≤ 3. Therefore, from
the above and using Lemma 2, we conclude that

E(R3, A1) ≤ 2(n− 8).

And so,

E(H) = E(R3) + E(R3, A1) + E(A1)

≤
⌊
(n− 8)2

4

⌋
+ 2(n− 8) + 9

=

⌊
n2 − 8n+ 36

4

⌋
=

⌊
(n− 4)2

4

⌋
+ 5.

Subcase 2.2. |V (C3) ∩ V (A)| = 1. Without loss of generality assume y1, y2
are adjacent to x1. Let A2 = H[y1y2, A] and R4 = H − A2. One can easily
see that E(y1y2, A) = 2, because otherwise θ4 or θ5 or θ7 is produced, hence
E(A2) = 10. Now, if x ∈ V (R4), then x cannot be adjacent to both y1 and y2,
as otherwise θ4 is produced. Moreover, if x is adjacent to either y1 or y2, then
NA(x) ⊆ {x3, x6} as otherwise θ4 or θ5 or θ7 is produced.
Now, let x, x∗ ∈ R4 be adjacent to y1 or y2 and assumeNA(x) = {x3, x6}, then x∗

is adjacent to at most one of x3 and x6. To see this, assume NA(x
∗) = {x3, x6}.
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Then, If xy1, x
∗y1 ∈ E(H), then xx6x7x1y1x

∗x3xy1 is θ7. A similar argument
holds if xy2, x

∗y2 ∈ E(H). If xy1, x
∗y2 ∈ E(H), then x∗x3xx6x7x1y2x

∗x6 is a
θ7.

Let
S = {x ∈ R4 : xy1 or xy2 ∈ E(H)},

and
S∗ = {x ∈ R4 : xy1, xy2 /∈ E(H)}.

Then from the above argument

(1) E(S,A2) ≤ 2|S|+ 1,

and by Lemma 2

(2) E(S∗, A2) ≤ 2|S∗|+ 1.

Hence, combining 1 and 2, we get

E(R4, A2) ≤ 2|S|+ 1 + 2|S∗|+ 1

≤ 2(n− 9) + 2.

Thus,

E(H) = E(R4) + E(R4, A2) + E(A2)

≤
⌊
(n− 9)2

4

⌋
+ 2(n− 9) + 2 + 9

=

⌊
n2 − 10n+ 49

4

⌋
<

⌊
(n− 4)2

4

⌋
+ 5.

Lemma 4. For any H ∈ H(n, {C3, θ4, θ5, θ7}), if H contains a cycle of length
5 and a cycle of length 7, then

E(H) ≤
⌊
(n− 4)2

4

⌋
+ 5,

for sufficiently large even n.

Proof. Let C5 = y1y2y3y4y5y1 and C7 = x1x2x3 . . . x7x1 be cycles of length
5 and 7 in H, respectively. As in Lemma 3, we let R1 = H − A where A =
H[x1, x2, . . . , x7]. Now we consider two cases:

Case 1. V (C5) ⊆ V (R1). Let R5 = R1 − C5. Notice that A = C7 and
H[C5] = C5, otherwise θ7 or θ5 is produced as a subgraph, and so E(A) = 7 and
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E(H[C5]) = E(C5) = 5. By Lemma 2 we have E(R5, A) ≤ 2(n − 12). Now, if
x ∈ V (R5), then E(x,C5) ≤ 2, otherwise θ4 or θ5 is produced as a subgraph.

Claim 1. Let xy ∈ E(R5), then E(xy,C5) ≤ 2.

Proof of the claim. Suppose that E(x,C5) = 2. Then, by taking into account
the symmetry, we have NC5(x) = {yi, yi+2}, otherwise C3 is produced. Without
loss of generality we may assume that NC5(x) = {y1, y3}, then we have the
following possibilities:

1. y is adjacent to y1. Then the trail xyy1y2y3xy1 is a θ5-graph.

2. y is adjacent to y2. Then the trail xyy2y1y5y4y3xy1 is a θ7-graph.

3. y is adjacent to y3. Then the trail xyy3y2y1xy3 is a θ5-graph.

4. y is adjacent to y4. Then the trail xyy4y5y1y2y3xy1 is a θ7-graph.

5. y is adjacent to y5. Then the trail xyy5y4y3y2y1xy3 is a θ7-graph.

Thus E(y, C5) = 0, and so E(xy,C5) ≤ 2. This completes the proof of the claim.

Since H is a Hamiltonian graph, then there is an edge e in R5. Thus, by the
Claim 1, E(e, C5) ≤ 2, and so E(R5, C5) ≤ 2(n− 12)− 2. Also, by Claim 1, one
can see that E(C5, A) ≤ 6. Further, by Theorem 2, we have

E(R5) ≤
⌊
(n− 12)2

4

⌋
.

Consequently, we have

E(H) = E(R5) + E(R5, A) + E(R5, C5) + E(A) + E(A,C5) + E(C5)

≤
⌊
(n− 12)2

4

⌋
+ 2(n− 12) + 2(n− 12)− 2 + 7 + 6 + 5

≤
⌊
n2 − 8n+ 10

4

⌋
≤

⌊
(n− 4)2

4

⌋
− 1

<

⌊
(n− 4)2

4

⌋
+ 5.

Case 2. V (C5) * V (R1). Then |V (C5) ∩ V (A)| = 1 or 2 or 3 or 4. Thus, we
split this case into 4 subcases:

Subcase 2.1. |V (C5) ∩ V (A)| = 1. Without loss of generality, assume C5 =
x1y1y2y3y4x1 is in H, then let T1 = H[y1, y2, y3, y4, A] and D1 = H − T1. From
Remark 1, E(x,A) ≤ 2 for any x ∈ H−A. Since E(H[C5]) = E(C5) = 5, E(A) =
7 and E(yj , A) ≤ 2 for j = 1, 2, 3, 4, then E(T1) ≤ 18. Also by Theorem 2 we
have

E(D1) ≤
⌊
(n− 11)2

4

⌋
.

Claim 2. For each x ∈ V (D1), E(x, T1) ≤ 3.
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Proof of the claim. Let x ∈ V (D1), then as above both E(x,A), E(x,C5) ≤ 2.
If E(x,C5) ≤ 1, then E(x, T1) ≤ 3. Also, if xx1 ∈ E(H), then E(x, T1) ≤ 3
because x1 is a common vertex of both A and C5. To this end, we consider the
case where E(x,C5) = 2 and xx1 /∈ E(H). Then, x is either adjacent to both y1
and y3 or adjacent to both y2 and y4 or to both y1 and y4. If xy1, xy4 ∈ E(H),
then C∗

5 = xy1y2y3y4x is a cycle of length 5 such that V (C∗
5 ) ⊆ V (R5) and so

we get Case 1. If xy1, xy3 ∈ E(H), then
1- xx2 /∈ E(H) as otherwise xy1y2y3y4x1x2xy3 is a θ7.
2- xx3 /∈ E(H) as otherwise xy3y2y1x1x2x3xy1 is a θ7.
3- xx7 /∈ E(H) as otherwise xy1y2y3y4x1x7xy3 is a θ7.
4- xx6 /∈ E(H) as otherwise xy3y2y1x1x7x6xy1 is a θ7.

Thus, NC7(x) ⊆ {x4, x5}. Also, if xx4, xx5 ∈ E(H), then C3 is produced. Hence
x is adjacent to either x4 or x5 but not to both, and so, E(x, T1) ≤ 3. Similarly,
by using the symmetry, one can show that if xy2, xy4 ∈ E(H), then E(x, T1) ≤ 3.
This completes the proof of the claim.
Therefore, by Claim 2, E(D1, T1) ≤ 3(n− 11). Consequently, we have

E(H) = E(D1) + E(D1, T1) + E(T1)

≤
⌊
(n− 11)2

4

⌋
+ 3(n− 11) + 18

=

⌊
n2 − 10n+ 61

4

⌋
=

⌊
(n− 5)2

4

⌋
+ 9

<

⌊
(n− 4)2

4

⌋
+ 5.

Subcase 2.2. |V (C5) ∩ V (A)| = 2. Without loss of generality assume that
C5 = x1y1y2y3x2x1 is in H. Let T2 = H[y1, y2, y3, A] and D2 = H − T2. As
above, E(x,C5) ≤ 2 and E(x,A) ≤ 2.

Claim 3. For each x ∈ V (D2), E(x, T2) ≤ 3.

Proof of the claim. Suppose that E(x, T2) = 4. Then E(x,C5) = 2. Note
that if xx1 ∈ E(H), then x1 is a common vertex of both C5 and A and so
E(x, T2) ≤ 3, similarly if xx2 ∈ E(H), then x2 is a common vertex of both C5

and A and so E(x, T2) ≤ 3. Thus, NC5(x) = {y1, y3}, and
1- xx3 /∈ E(H) as otherwise xy3y2y1x1x2x3xy1 is a θ7.
2- xx4 /∈ E(H) as otherwise xy1y2y3x2x3x4xy3 is a θ7.
3- xx6 /∈ E(H) as otherwise xy3y2y1x1x7x6xy1 is a θ7.
4- xx7 /∈ E(H) as otherwise xy1y2y3x2x1x7xy3 is a θ7.

Thus, x is adjacent to at most x5, and so E(x, T2) ≤ 3, as claimed.
Hence, E(D2, T2) ≤ 3(n− 10). Recall that for j = 1, 2, 3, E(yj , A) ≤ 2. Observe
that y2 cannot be adjacent to x1 or x2, as otherwise C3 is produced as a subgraph
of H. Thus, NA(y2) = {x3} or {x4} or {x5} or {x6} or {x7} or {x3, x7} as
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otherwise C3, θ4, θ5 or θ7 is produced as a subgraph of H. If NA(y2) = {x3, x7},
then NA(y1) = {x1} and NA(y3) = {x2} as otherwise C3, θ4, θ5 or θ7 is produced
as a subgraph of H. Thus, E(T2) ≤ 14. By Theorem 2 we have

E(D2) ≤
⌊
(n− 10)2

4

⌋
.

Consequently, we have

E(H) = E(D2) + E(D2, T2) + E(T2)

≤
⌊
(n− 10)2

4

⌋
+ 3(n− 10) + 14

=

⌊
n2 − 8n+ 36

4

⌋
=

⌊
(n− 4)2

4

⌋
+ 5.

Subcase 2.3. |V (C5) ∩ V (A)| = 3. Without loss of generality, assume that
C5 = x1y1y2x3x2x1 is in H, then let T3 = H[y1, y2, A] and D3 = H − T3.
Now, E(A) = 7 and by Lemma 2 E(y1y2, A) ≤ 3, thus E(T3) ≤ 11. Now, let
x ∈ V (D3), then x is adjacent to at most one of y1 and y2 as otherwise C3

is produced. Further, by Remark 1, E(x,A) ≤ 2. Thus, E(x, T3) ≤ 3. Let
B1 = {x ∈ V (D3) : E(x, T3) = 3}.

Claim 4. |B1| = 0.

Proof of the claim. Let x ∈ B1, then NT3(x) = {y2, x2, x4} or {y2, x2, x6} or
{y1, x2, x5} or {y1, x2, x7}.

If NT3(x) = {y2, x2, x4}, then the trail x2x1y1y2x3x4xx2x3 is a θ7-graph.
If NT3(x) = {y2, x2, x6}, then the trail xx6x7x1x2x3y2x2 is a θ7-graph. By
symmetry we get similar trails if NT3(x) = {y1, x2, x5} or {y1, x2, x7}. The
proof of the claim is complete.

Thus, E(x, T3) ≤ 2 for any x ∈ V (D3), which implies that

E(D3, T3) ≤ 2(n− 9).

Also, by Theorem 2 we have

E(D3) ≤
⌊
(n− 9)2

4

⌋
.
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Therefore,

E(H) = E(D3) + E(D3, T3) + E(T3)

≤
⌊
(n− 9)2

4

⌋
+ 2(n− 9) + 11

=

⌊
n2 − 10n+ 53

4

⌋
=

⌊
(n− 5)2

4

⌋
+ 7

<

⌊
(n− 4)2

4

⌋
+ 5.

Subcase 2.4. |V (C5) ∩ V (A)| = 4. Without loss of generality, assume that
C5 = x1y1x4x3x2x1 is in H, then let T4 = H[y1, A] and D4 = H − T4. By
Remark 1 E(x,A) ≤ 2 for any x ∈ H − A. Therefore, E(y1, A) = 2, and so
E(T4) = 9. Now, let x ∈ V (D4), if x is not adjacent to y1, then E(x, T4) ≤ 2; if
x is adjacent to y1, then

1. xx1 /∈ E(H) as otherwise the trail xy1x1x is a C3.
2. xx4 /∈ E(H) as otherwise the trail xy1x4x is a C3.
3. xx5 /∈ E(H) as otherwise the trail y1xx5x4x3x2x1y1x4 is a θ7-graph.
4. xx7 /∈ E(H) as otherwise the trail y1xx7x1x2x3x4y1x1 is a θ7-graph.

Thus, NC7(x) ⊆ {x2, x3, x6}. Now, If x is adjacent to x2, then it is neither
adjacent to x3 (as otherwise C3 = xx2x3x is produced) nor to x6 (as otherwise
θ7 = xx6x5x4y1x1x2xy1 is produced). Similarly if x is adjacent to x3, then it
can not be adjacent to x6 (as otherwise θ7 = xx6x7x1y1x4x3xy1 is produced).
Thus, E(x, T4) ≤ 2, and so E(D4, T4) ≤ 2(n− 8). Also, by Theorem 2 we have

E(D4) ≤
⌊
(n− 8)2

4

⌋
.

Consequently we have

E(H) = E(D4) + E(D4, T4) + E(T4)

≤
⌊
(n− 8)2

4

⌋
+ 2(n− 8) + 9

=

⌊
n2 − 8n+ 36

4

⌋
=

⌊
(n− 4)2

4

⌋
+ 5.

Now, we give the following construction: Let H1 be the class of graphs that
obtained from K n−4

2
∨K n−4

2
by replacing one edge, say u1u2 ∈ K n−4

2
∨K n−4

2
,
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by the path u1w2w3w4w5u2 in addition to one of the two edges u1w3 and w2w4.
Note that if H ∈ H1, then H is a non-bipartite Hamiltonian graph which has

none of {θ4, θ5, θ7} as a subgraph of H and E(H) =
⌊
(n−4)2

4

⌋
+ 5. Thus, we

establish that

(3) h(n; {θ4, θ5, θ7}) ≥
⌊
(n− 4)2

4

⌋
+ 5 for even n.

Theorem 8. Let H ∈ H(n; {θ4, θ5, θ7}), then

h(n; {θ4, θ5, θ7}) =
⌊
(n− 4)2

4

⌋
+ 5,

for sufficiently large even n. Furthermore, the bound is best possible.

Proof. By 3, it is suffices to prove the upper bound of h(n; {θ4, θ5, θ7}). Let
H ∈ H(n; {θ4, θ5, θ7}). If H has no cycles of length 7, then by Theorem 1 we
have

E(H) ≤ (n− 6)2

4
+ 13

<

⌊
(n− 4)2

4

⌋
+ 5.

Now, we assume that H has cycles of length 7. If H contains neither cycles of
length 3 nor cycles of length 5, then by Theorem 5 we have

E(H) ≤
⌊
(n− 4)2

4

⌋
+ 5.

To this end, If H contains cycles of length 5, then the results follows from
Lemma 4. Finally, if H contains no cycles of length 5 but it contains cycles of
length 3, then the results follows from Lemma 3.

In the following theorem we give an upper bound of h(n; θ7) for sufficiently
large even n under a constrain of the minimum degree.

Theorem 9. For sufficiently large even n, let H ∈ H(n; θ7) with δ(H) ≥ 22.
Then

h(n; θ7) ≤
⌊
(n− 4)2

4

⌋
+ 5.

Proof. Let H ∈ H(n; θ7) with δ(H) ≥ 22. Suppose that H has θ5-graph,
say θ5 = x1x2x3x4x5x1x4. For i = 1, 2, 3, let Ai be a set that consist of 6
neighbors of xi in H− θ5 selected so that Ai ∩ Aj = ∅ for i ̸= j. Let T = H[
x1, x2, x3, x4, x5, A1, A2, A3] and B = H − T . Let u ∈ V (B), if u is adjacent
to a vertex in one of the sets A1, A2 and A3, then u cannot be adjacent to any
vertex in the other two sets as otherwise H would have a θ7-graph. Also, if u
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is adjacent to a vertex in Ai for some i = 1, 2, 3, then u cannot be adjacent to
any of xi+1 and xi−1, otherwise, H would have a θ7-graph. Thus, E(u, T ) ≤ 9,
which implies E(B, T ) ≤ 9(n− 23). Also, by Theorem 2 we have

E(B) ≤
⌊
(n− 23)2

4

⌋
and E(T ) ≤

⌊
(23)2

4

⌋
.

Consequently, we have

E(H) = E(B) + E(B, T ) + E(T )

≤
⌊
(n− 23)2

4

⌋
+ 9(n− 23) +

⌊
(23)2

4

⌋

≤
⌊
n2 − 10n+ 230

4

⌋
=

⌊
(n− 5)2

4

⌋
+ 51

<

⌊
(n− 4)2

4

⌋
+ 5.

So, we consider that H contains no θ5-graph. If H contains no θ4-graph as a
subgraph, then by Theorem 8 we have

E(H) ≤
⌊
(n− 4)2

4

⌋
+ 5.

If H contains θ4-graph as a subgraph, then let θ4 = x1x2x3x4x1x3. For i =
2, 3, 4, let Ai be a set that consist of 5 neighbors of xi in H selected so that
Ai ∩ Aj = ∅ for i ̸= j. Let T = H[ x1, x2, x3, x4, A2, A3, A4] and B = H − T .
Also, let u ∈ V (B). If u is adjacent to a vertex in one of the sets A2, A3 and
A4, then u cannot be adjacent to a vertex in the other two sets as otherwise
H would have a θ7-graph. Also, if u is adjacent to a vertex in Ai for some
i = 2, 3, 4, then u cannot be adjacent to xi+1 and xi−1, otherwise H would have
a θ5-graph. Thus, E(u, T ) ≤ 7. Therefore, E(B, T ) ≤ 7(n− 19). By Theorem 2
we have

E(B) ≤
⌊
(n− 19)2

4

⌋
and E(T ) ≤

⌊
(19)2

4

⌋
.
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Consequently, we have

E(H) = E(B) + E(B, T ) + E(T )

≤
⌊
(n− 19)2

4

⌋
+ 7(n− 19) +

⌊
(19)2

4

⌋
≤

⌊
n2 − 10n+ 190

4

⌋
=

⌊
(n− 5)2

4

⌋
+ 41

<

⌊
(n− 4)2

4

⌋
+ 5.

In the above theorem, we have proved that if G is a θ7-free graph with
n vertices and minimum degree greater than or equal to 22, then E(G) ≤⌊
(n−4)2

4

⌋
+ 5 ≤

⌊
(n−4)2

4

⌋
+ 6 which confirm Conjecture 1 in the case k = 3.

Now consider H is the graph obtained from K n−4
2

∨ K n−4
2

by replacing one

edge, say u1u2 ∈ K n−4
2

∨K n−4
2
, by the path u1w2w3w4w5u2 in addition to the

two edges u1w3 and w2w4. Note that H is a non-bipartite Hamiltonian graph

which has no θ7 as a subgraph of H. Furthermore, E(H) =
⌊
(n−4)2

4

⌋
+6. Thus,

we establish the upper bound of the Conjecture 1 in the case k = 3.
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