Edge maximal non-bipartite Hamiltonian graphs without theta graphs of order 7

M.S. Bataineh

Department of Mathematics
University of Sharjah
Sharjah
UAE
Mbataineh@sharjah.ac.ae
and
Department of Mathematics
Yarmouk University
Irbid
Jordan
M.bataineh@yu.edu.jo
A.A. Al-Rhayyel

Department of Mathematics
Yarmouk University
Irbid
Jordan
al-rhayyel@yu.edu.jo

Zead Mustafa

Department of Mathematics
Statistics and Physics
Qatar University
Doha
Qatar
zead@qu.edu.qa

M.M.M. Jaradat*

Department of Mathematics
Statistics and Physics
Qatar University
Doha
Qatar
mmjst4@qu.edu.qa

Abstract

For a set of graphs \mathcal{F}, let $\mathcal{H}(n ; \mathcal{F})$ denote the class of non-bipartite Hamiltonian graphs on n vertices that does not contain any graph of \mathcal{F} as a subgraph and $h(n ; \mathcal{F})=\max \{\mathcal{E}(G): G \in \mathcal{H}(n ; \mathcal{F})\}$ where $\mathcal{E}(G)$ is the number of edges in G. In this paper, we determine $h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and we establish an upper bound of $h\left(n ; \theta_{7}\right)$ for sufficiently even large n. Our results confirms the conjecture made in [1] for $k=3$.

[^0]Keywords: Tứan number, theta graph, extremal graph.

1. Introduction and preliminaries

We consider undirected graphs without loops and multiple edges. Let $V(G)$ be the vertex set and $E(G)$ be the edge set of a graph G. The order of a graph G is the number of vertices of G and is denoted by $\mathcal{V}(G)$. The size of G, denoted by $\mathcal{E}(G)$, is the number of edges of G. A complete k-partite graph is a graph whose vertices can be partitioned into k disjoint sets, such that two vertices are adjacent if and only if they belong to different sets. We often denote by $x_{1} x_{2} \ldots x_{n} x_{1}$ the cycle C_{n} having n vertices $x_{1}, x_{2}, \ldots, x_{n}$ and the edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}$ and $x_{n} x_{1}$. A theta graph is a cycle C_{n} with a new edge (a chord) joining two non-adjacent vertices of C_{n}. The set of all theta graphs of order n will be denoted by θ_{n}. It is easy to check that the set θ_{n} contains $\left\lfloor\frac{n}{2}\right\rfloor-1$ (non-isomorphic) graphs.

If F is a subgraph of G, then $G-F$ is the graph that contains all vertices of G which are not in F and all edges of G connecting two vertices of $G-F$. If P and Q are two subgraphs of G, then $E(P, Q)$ is the set containing all edges of G, which connect a vertex in P and a vertex in Q and $\mathcal{E}(P, Q)=|E(P, Q)|$. An induced subgraph $G[V(Q)$] of a graph G consists of the vertices in Q and all edges of G connecting two vertices in Q. The join $G=G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph G_{1} union G_{2} together with all the edges joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

For a set of graphs S, the Turán number $e x(n, S)$ is defined as the maximum number of edges in a graph of order n having no member of S as a subgraph. If S contains only one graph G, we write simply $\operatorname{ex}(n, G)$. The problem was formulated by Turán [14], who showed that $e x\left(n, K_{r}\right)=\left\lfloor\frac{r n^{2}}{2(r+1)}\right\rfloor$, where K_{r} is the complete graph having r vertices.

We now introduce some additional notation. For a positive integer n and a set of graphs \mathcal{F}, let $\mathcal{G}(n ; \mathcal{F})$ (and $\mathcal{H}(n ; \mathcal{F})$) denote the class of non-bipartite \mathcal{F}-free graphs (the subclass of $\mathcal{G}(n ; \mathcal{F})$ which consists of all the Hamiltonian members in $\mathcal{G}(n ; \mathcal{F})$) on n vertices, and

$$
\begin{aligned}
f(n ; \mathcal{F}) & =\max \{\mathcal{E}(G): G \in \mathcal{G}(n ; \mathcal{F})\} \\
h(n ; \mathcal{F}) & =\max \{\mathcal{E}(G): G \in \mathcal{H}(n ; \mathcal{F})\}
\end{aligned}
$$

Hendry and Brandt [10] proved that $h\left(n ; C_{5}\right) \leq \frac{(n-3)^{2}}{4}+5$ for odd $n \geq$ $7, n \neq 9$, and $h\left(9 ; C_{5}\right)=15$. However, they did not characterize the extremal graphs. Caccetta and Jia [7] characterized the extremal graphs and proved that $f\left(n ; C_{5}\right) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$ for $n \geq 9$. Also, they proved $h\left(n ; C_{5}\right) \leq \frac{(n-4)^{2}}{4}+7$ for even $n \geq 12$. Further, the extremal graphs were characterized. Jia [13]
conjectured that $f\left(n ; C_{2 k+1}\right) \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3$ for $n \geq 4 k+2$. Bataineh [1] settled the above conjecture for $n \geq 36 k$. Further, he showed that equality holds if and only if $G \in \mathcal{G}^{*}(n)$ where $\mathcal{G}^{*}(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\lfloor(n-2) / 2\rfloor,\lceil(n-2) / 2\rceil}$. Furthermore he proved the following result:
Theorem 1 (Bataineh [1]). For positive integers $k \geq 3$ and $n>(4 k+2)\left(4 k^{2}+\right.$ $10 k$),

$$
h\left(n ; C_{2 k+1}\right)= \begin{cases}\frac{(n-2 k+1)^{2}}{4}+4 k-3, & \text { if } n \text { is odd } \\ \frac{(n-2 k)^{2}}{4}+4 k+1, & \text { if } n \text { is even }\end{cases}
$$

For θ_{5}-graph, Bataineh et al. [2] proved that for $n \geq 5$

$$
f\left(n ; \theta_{5}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1
$$

Later on, Bataineh et al. [3], [4] and Jaradat et al. [11] proved the following results

Theorem 2 (Jaradat et al. [11]). For positive integers n and k, let G be a graph on $n \geq 6 k+3$ vertices which contains no $\theta_{2 k+1}$ as a subgraph, then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

Theorem 3 (Jaradat et al. [11] and Bataineh et al. [3] and [4]). For sufficiently large integer n and for $k \geq 3$,

$$
f\left(n ; \theta_{2 k+1}\right)=\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3
$$

Caccetta and Jia [7] proved the following results:
Theorem 4 (Caccetta and Jia [7]). Let $G \in \mathcal{G}\left(n ; C_{3}, C_{5}, \ldots, C_{2 k+1}\right)$. Then

$$
\mathcal{E}(G) \leq\left\lfloor\frac{1}{4}(n-2 k+1)^{2}\right\rfloor+2 k-1
$$

Theorem 5 (Caccetta and Jia [7]). Let $\mathcal{F}_{k}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 k+1}\right\}$. For even $n \geq 4 k+4, k \geq 2$, we have

$$
h\left(n ; \mathcal{F}_{k}\right)=\frac{(n-4 k-4)^{2}}{4}+8 k-11
$$

Analogously, In [1], Bataineh proved the following result concerning theta graphs:

Theorem 6 (Bataineh [1]). Let $\Theta_{k}=\left\{\theta_{4}\right\} \cup\left\{\theta_{5}, \theta_{7}, \ldots, \theta_{2 k+1}\right\}$, then for $k \geq 5$ and large odd n, we have

$$
h\left(n ; \Theta_{k}\right)=\frac{(n-2 k+3)^{2}}{4}+2 k-3
$$

Jaradat et al. [12] proved the following result.
Theorem 7 (Jaradat et al. [12]). For sufficiently large odd n, let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 7$. Then

$$
h\left(n ; \theta_{7}\right) \leq \frac{(n-3)^{2}}{4}+3
$$

Furthermore, the bound is best possible.
Bataineh [1] made the following conjecture
Conjecture 1. Let $k \geq 3$ be a positive integer. For even $n \geq 4 k+4, h\left(n ; \theta_{2 k+1}\right) \leq$ $\frac{(n-2 k+2)^{2}}{4}+2 k$.

In this paper, we investigates the values of $h(n ; \mathcal{F})$, for sufficiently large even n where $\mathcal{F}=\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}$ and $\mathcal{F}=\left\{\theta_{7}\right\}$. In fact, we settle the above conjecture for $k=3$ under a constrain on the minimum degree.

2. Main results

For the sake of completeness, we start this section, by listing the following three results of Jaradat et al. [12] which will be used in the sequel.
Lemma $1([12])$. Let $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and H contains a cycle C of length 7. If $u \in V(H-C)$, then $\mathcal{E}(u, C) \leq 3$. Also, if $B=\{u \in V(H-C)$: $\mathcal{E}(u, C)=3\}$, then $|B| \leq 1$. Further, if $C=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$ and $u \in B$, then $N_{C}(u)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$ for some $i=1,2, \ldots, 7\left(x_{j}=x_{j-7}\right.$ for $\left.j>7\right)$.
Lemma 2 ([12]). Let $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ such that H contains a cycle C of length 7. If $|B|=1$ and uv is an edge in the subgraph $H-C-B$, then $\mathcal{E}(u v, C) \leq 3$ where B is as defined in Lemma 1.

The following remark follows from the fact that if $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right), C$ is a cycle of length 7 in H and $\mathcal{E}(u, C)=3$, then $N_{C}(u)=\left\{x_{i}, x_{i+1}, x_{i+4}\right\}$.
Remark $1([12])$. Let $H \in \mathcal{H}\left(n,\left\{C_{3}, \theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and H contains a cycle C of length 7. Then $B=\varnothing$ where B is as defined in Lemma 1.

To investigate $h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$ and $h\left(n ; \theta_{7}\right)$ for even n, we prove the following lemmas.
Lemma 3. For any $H \in \mathcal{H}\left(n,\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$, if H contains cycles of lengths 3 and 7, then

$$
\mathcal{E}(H) \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

for sufficiently large even n.

Proof. Let $C_{7}=x_{1} x_{2} \ldots x_{7} x_{1}$ and $C_{3}=y_{1} y_{2} y_{3} y_{1}$ be cycles of length 7 and 3 in H, respectively. Let $A=H\left[x_{1}, x_{2}, \ldots, x_{7}\right]$ and $R_{1}=H-A$. We distinguish two cases:
Case 1. $V\left(C_{3}\right) \subseteq V\left(R_{1}\right)$. Let $R_{2}=R_{1}-C_{3}$. By Lemma 2 we have $\mathcal{E}\left(R_{2}, A\right) \leq$ $2(n-10)$. Notice that if $u \in V\left(H-C_{3}\right)$, then $\mathcal{E}\left(u, C_{3}\right) \leq 1$, otherwise θ_{4} is produced as a subgraph of H. Thus, $\mathcal{E}\left(R_{2}, C_{3}\right) \leq n-10$. Observe that for $i=1,2, \ldots, 7$ and $j=1,2,3$, if x_{i} is adjacent to y_{j}, then neither x_{i+1} nor x_{i-1} can be adjacent to y_{s} for some $s=1,2,3$, and $s \neq j$, otherwise θ_{5} is produced as a subgraph. Now, if x_{i-1}, x_{i} and x_{i+1} are all adjacent to the same y_{j}, then θ_{4} is produced as a subgraph, hence, $\mathcal{E}\left(C_{3}, A\right) \leq 4$. By Theorem 2 we have

$$
\mathcal{E}\left(R_{2}\right) \leq\left\lfloor\frac{(n-10)^{2}}{4}\right\rfloor .
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(R_{2}\right)+\mathcal{E}\left(R_{2}, A\right)+\mathcal{E}\left(R_{2}, C_{3}\right)+\mathcal{E}(A)+\mathcal{E}\left(A, C_{3}\right)+\mathcal{E}\left(C_{3}\right) \\
& \leq\left\lfloor\frac{(n-10)^{2}}{4}\right\rfloor+2(n-10)+n-10+7+4+3 \\
& \leq\left\lfloor\frac{n^{2}-8 n+36}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 .
\end{aligned}
$$

Case 2. $V\left(C_{3}\right) \nsubseteq V\left(R_{1}\right)$. Then $\left|V\left(C_{3}\right) \cap V(A)\right|=2$ or 1 , accordingly, we split this case into two subcases:
Subcase 2.1. $\left|V\left(C_{3}\right) \cap V(A)\right|=2$. Withoutloss of generality assume $x_{1}, x_{2} \in$ $N_{A}\left(y_{1}\right)$ and let $A_{1}=H\left[y_{1}, A\right]$ and $R_{3}=H-A_{1}$, then by Lemma 1, we get $\mathcal{E}\left(y_{1}, A\right) \leq 3$, hence $\mathcal{E}\left(A_{1}\right) \leq 10$. Also, by Theorem 2 we have

$$
\mathcal{E}\left(R_{3}\right) \leq\left\lfloor\frac{(n-8)^{2}}{4}\right\rfloor .
$$

Now, we consider the case $\mathcal{E}\left(y_{1}, A\right)=3$, then $\mathcal{E}\left(A_{1}\right)=10$. By Lemma 1 $\mathcal{E}(x, A) \leq 2$ for each $x \in V\left(R_{3}\right)$. On the other hand, one can notice that if there is an $x \in V\left(R_{3}\right)$ such that $y_{1} x \in E(H)$, then $\mathcal{E}(x, A)=0$ as otherwise a θ_{4} or θ_{5} or θ_{7} is produced as a subgraph of H, which implies that $\mathcal{E}\left(x, A_{1}\right) \leq 1$ and so $\mathcal{E}\left(R_{3}, A_{1}\right) \leq 2(n-8)-1$. If $y_{1} x \notin E(H)$ for each $x \in V\left(R_{3}\right)$, then $\mathcal{E}\left(x, A_{1}\right)=\mathcal{E}(x, A)$, but by Lemma 2 we get $\mathcal{E}\left(R_{3}, A_{1}\right)=\mathcal{E}\left(R_{3}, A\right) \leq 2(n-8)-1$. Therefore,

$$
\mathcal{E}\left(R_{3}, A_{1}\right) \leq 2(n-8)-1 .
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(R_{3}\right)+\mathcal{E}\left(R_{3}, A_{1}\right)+\mathcal{E}\left(A_{1}\right) \\
& \leq\left\lfloor\frac{(n-8)^{2}}{4}\right\rfloor+2(n-8)-1+10 \\
& =\left\lfloor\frac{n^{2}-8 n+36}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 .
\end{aligned}
$$

We now consider the case $\mathcal{E}\left(y_{1}, A\right)=2$, then $\mathcal{E}\left(A_{1}\right) \leq 9$. Now, for $x \in V\left(R_{3}\right)$ if $x y_{1} \in E(H)$, then $x_{i} x \notin E(H)$ for each $i=1,2,3,5,7$ as otherwise a θ_{4} or θ_{5} or θ_{7} is produced as a subgraph of H. Further, y_{1} can not be adjacent to both x_{4} and x_{1} as otherwise $x_{4} x_{3} x_{2} y_{1} x x_{6} x_{5} x_{4} x$ is a θ_{7}-graph of H. Thus, $\mathcal{E}(x, A) \leq 1$, which implies that $\mathcal{E}\left(x, A_{1}\right) \leq 2$. Also, if $u v \in E\left(H-A_{1}\right)$ and $y_{1} u \in E(H)$, then as above $N_{C_{7}}(u) \subseteq\left\{x_{4}\right\}$ or $N_{C_{7}}(u) \subseteq\left\{x_{6}\right\}$; and $v x_{i} \notin E(H)$ for each $i=1,2,4,6$ as otherwise θ_{5} or θ_{7} is produced as a subgraph of H. Further, v is adjacent to at most one of x_{3}, x_{5} and x_{7}, to see this, note that: (1) If v is adjacent to both x_{3} and x_{5}, then $v x_{5} x_{4} x_{3} x_{2} y_{1} u v x_{3}$ is a θ_{7}-graph in H; (2) if v is adjacent to both of x_{7} and x_{5}, then by symmetry we get a θ_{7}-graph in H; (3) if v is adjacent to both of x_{3} and x_{7}, then $v u y_{1} x_{1} x_{7} x_{6} x_{5} v x_{5}$ is a θ_{7}-graph in H. In addition, if $v y_{1} \in E(H)$, then $u x_{4}, u x_{6} \notin E(H)$, to see that let $u x_{4} \in E(H)$, then $u x_{4} x_{3} x_{2} x_{1} y_{1} v y_{1}$ is a θ_{7}-graph in H. Thus, $\mathcal{E}\left(u v, A_{1}\right) \leq 3$. Therefore, from the above and using Lemma 2, we conclude that

$$
\mathcal{E}\left(R_{3}, A_{1}\right) \leq 2(n-8)
$$

And so,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(R_{3}\right)+\mathcal{E}\left(R_{3}, A_{1}\right)+\mathcal{E}\left(A_{1}\right) \\
& \leq\left\lfloor\frac{(n-8)^{2}}{4}\right\rfloor+2(n-8)+9 \\
& =\left\lfloor\frac{n^{2}-8 n+36}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Subcase 2.2. $\left|V\left(C_{3}\right) \cap V(A)\right|=1$. Without loss of generality assume y_{1}, y_{2} are adjacent to x_{1}. Let $A_{2}=H\left[y_{1} y_{2}, A\right]$ and $R_{4}=H-A_{2}$. One can easily see that $\mathcal{E}\left(y_{1} y_{2}, A\right)=2$, because otherwise θ_{4} or θ_{5} or θ_{7} is produced, hence $\mathcal{E}\left(A_{2}\right)=10$. Now, if $x \in V\left(R_{4}\right)$, then x cannot be adjacent to both y_{1} and y_{2}, as otherwise θ_{4} is produced. Moreover, if x is adjacent to either y_{1} or y_{2}, then $N_{A}(x) \subseteq\left\{x_{3}, x_{6}\right\}$ as otherwise θ_{4} or θ_{5} or θ_{7} is produced.
Now, let $x, x^{*} \in R_{4}$ be adjacent to y_{1} or y_{2} and assume $N_{A}(x)=\left\{x_{3}, x_{6}\right\}$, then x^{*} is adjacent to at most one of x_{3} and x_{6}. To see this, assume $N_{A}\left(x^{*}\right)=\left\{x_{3}, x_{6}\right\}$.

Then, If $x y_{1}, x^{*} y_{1} \in E(H)$, then $x x_{6} x_{7} x_{1} y_{1} x^{*} x_{3} x y_{1}$ is θ_{7}. A similar argument holds if $x y_{2}, x^{*} y_{2} \in E(H)$. If $x y_{1}, x^{*} y_{2} \in E(H)$, then $x^{*} x_{3} x x_{6} x_{7} x_{1} y_{2} x^{*} x_{6}$ is a θ_{7}.

Let

$$
S=\left\{x \in R_{4}: x y_{1} \text { or } x y_{2} \in E(H)\right\},
$$

and

$$
S^{*}=\left\{x \in R_{4}: x y_{1}, x y_{2} \notin E(H)\right\}
$$

Then from the above argument

$$
\begin{equation*}
\mathcal{E}\left(S, A_{2}\right) \leq 2|S|+1 \tag{1}
\end{equation*}
$$

and by Lemma 2

$$
\begin{equation*}
\mathcal{E}\left(S^{*}, A_{2}\right) \leq 2\left|S^{*}\right|+1 \tag{2}
\end{equation*}
$$

Hence, combining 1 and 2 , we get

$$
\begin{aligned}
\mathcal{E}\left(R_{4}, A_{2}\right) & \leq 2|S|+1+2\left|S^{*}\right|+1 \\
& \leq 2(n-9)+2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(R_{4}\right)+\mathcal{E}\left(R_{4}, A_{2}\right)+\mathcal{E}\left(A_{2}\right) \\
& \leq\left\lfloor\frac{(n-9)^{2}}{4}\right\rfloor+2(n-9)+2+9 \\
& =\left\lfloor\frac{n^{2}-10 n+49}{4}\right\rfloor \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Lemma 4. For any $H \in \mathcal{H}\left(n,\left\{C_{3}, \theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$, if H contains a cycle of length 5 and a cycle of length 7, then

$$
\mathcal{E}(H) \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

for sufficiently large even n.
Proof. Let $C_{5}=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$ and $C_{7}=x_{1} x_{2} x_{3} \ldots x_{7} x_{1}$ be cycles of length 5 and 7 in H, respectively. As in Lemma 3, we let $R_{1}=H-A$ where $A=$ $H\left[x_{1}, x_{2}, \ldots, x_{7}\right]$. Now we consider two cases:
Case 1. $V\left(C_{5}\right) \subseteq V\left(R_{1}\right)$. Let $R_{5}=R_{1}-C_{5}$. Notice that $A=C_{7}$ and $H\left[C_{5}\right]=C_{5}$, otherwise θ_{7} or θ_{5} is produced as a subgraph, and so $\mathcal{E}(A)=7$ and
$\mathcal{E}\left(H\left[C_{5}\right]\right)=\mathcal{E}\left(C_{5}\right)=5$. By Lemma 2 we have $\mathcal{E}\left(R_{5}, A\right) \leq 2(n-12)$. Now, if $x \in V\left(R_{5}\right)$, then $\mathcal{E}\left(x, C_{5}\right) \leq 2$, otherwise θ_{4} or θ_{5} is produced as a subgraph.

Claim 1. Let $x y \in E\left(R_{5}\right)$, then $\mathcal{E}\left(x y, C_{5}\right) \leq 2$.
Proof of the claim. Suppose that $\mathcal{E}\left(x, C_{5}\right)=2$. Then, by taking into account the symmetry, we have $N_{C_{5}}(x)=\left\{y_{i}, y_{i+2}\right\}$, otherwise C_{3} is produced. Without loss of generality we may assume that $N_{C_{5}}(x)=\left\{y_{1}, y_{3}\right\}$, then we have the following possibilities:

1. y is adjacent to y_{1}. Then the trail $x y y_{1} y_{2} y_{3} x y_{1}$ is a θ_{5}-graph.
2. y is adjacent to y_{2}. Then the trail $x y y_{2} y_{1} y_{5} y_{4} y_{3} x y_{1}$ is a θ_{7}-graph.
3. y is adjacent to y_{3}. Then the trail $x y y_{3} y_{2} y_{1} x y_{3}$ is a θ_{5}-graph.
4. y is adjacent to y_{4}. Then the trail $x y y_{4} y_{5} y_{1} y_{2} y_{3} x y_{1}$ is a θ_{7}-graph.
5. y is adjacent to y_{5}. Then the trail $x y y_{5} y_{4} y_{3} y_{2} y_{1} x y_{3}$ is a θ_{7}-graph.

Thus $\mathcal{E}\left(y, C_{5}\right)=0$, and so $\mathcal{E}\left(x y, C_{5}\right) \leq 2$. This completes the proof of the claim. Since H is a Hamiltonian graph, then there is an edge e in R_{5}. Thus, by the Claim 1, $\mathcal{E}\left(e, C_{5}\right) \leq 2$, and so $\mathcal{E}\left(R_{5}, C_{5}\right) \leq 2(n-12)-2$. Also, by Claim 1, one can see that $\mathcal{E}\left(C_{5}, A\right) \leq 6$. Further, by Theorem 2 , we have

$$
\mathcal{E}\left(R_{5}\right) \leq\left\lfloor\frac{(n-12)^{2}}{4}\right\rfloor
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(R_{5}\right)+\mathcal{E}\left(R_{5}, A\right)+\mathcal{E}\left(R_{5}, C_{5}\right)+\mathcal{E}(A)+\mathcal{E}\left(A, C_{5}\right)+\mathcal{E}\left(C_{5}\right) \\
& \leq\left\lfloor\frac{(n-12)^{2}}{4}\right\rfloor+2(n-12)+2(n-12)-2+7+6+5 \\
& \leq\left\lfloor\frac{n^{2}-8 n+10}{4}\right\rfloor \\
& \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor-1 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 .
\end{aligned}
$$

Case 2. $V\left(C_{5}\right) \nsubseteq V\left(R_{1}\right)$. Then $\left|V\left(C_{5}\right) \cap V(A)\right|=1$ or 2 or 3 or 4 . Thus, we split this case into 4 subcases:

Subcase 2.1. $\left|V\left(C_{5}\right) \cap V(A)\right|=1$. Without loss of generality, assume $C_{5}=$ $x_{1} y_{1} y_{2} y_{3} y_{4} x_{1}$ is in H, then let $T_{1}=H\left[y_{1}, y_{2}, y_{3}, y_{4}, A\right]$ and $D_{1}=H-T_{1}$. From Remark $1, \mathcal{E}(x, A) \leq 2$ for any $x \in H-A$. Since $\mathcal{E}\left(H\left[C_{5}\right]\right)=\mathcal{E}\left(C_{5}\right)=5, \mathcal{E}(A)=$ 7 and $\mathcal{E}\left(y_{j}, A\right) \leq 2$ for $j=1,2,3,4$, then $\mathcal{E}\left(T_{1}\right) \leq 18$. Also by Theorem 2 we have

$$
\mathcal{E}\left(D_{1}\right) \leq\left\lfloor\frac{(n-11)^{2}}{4}\right\rfloor
$$

Claim 2. For each $x \in V\left(D_{1}\right), \mathcal{E}\left(x, T_{1}\right) \leq 3$.

Proof of the claim. Let $x \in V\left(D_{1}\right)$, then as above both $\mathcal{E}(x, A), \mathcal{E}\left(x, C_{5}\right) \leq 2$. If $\mathcal{E}\left(x, C_{5}\right) \leq 1$, then $\mathcal{E}\left(x, T_{1}\right) \leq 3$. Also, if $x x_{1} \in E(H)$, then $\mathcal{E}\left(x, T_{1}\right) \leq 3$ because x_{1} is a common vertex of both A and C_{5}. To this end, we consider the case where $\mathcal{E}\left(x, C_{5}\right)=2$ and $x x_{1} \notin E(H)$. Then, x is either adjacent to both y_{1} and y_{3} or adjacent to both y_{2} and y_{4} or to both y_{1} and y_{4}. If $x y_{1}, x y_{4} \in E(H)$, then $C_{5}^{*}=x y_{1} y_{2} y_{3} y_{4} x$ is a cycle of length 5 such that $V\left(C_{5}^{*}\right) \subseteq V\left(R_{5}\right)$ and so we get Case 1. If $x y_{1}, x y_{3} \in E(H)$, then

1- $x x_{2} \notin E(H)$ as otherwise $x y_{1} y_{2} y_{3} y_{4} x_{1} x_{2} x y_{3}$ is a θ_{7}.
2- $x x_{3} \notin E(H)$ as otherwise $x y_{3} y_{2} y_{1} x_{1} x_{2} x_{3} x y_{1}$ is a θ_{7}.
$3-x x_{7} \notin E(H)$ as otherwise $x y_{1} y_{2} y_{3} y_{4} x_{1} x_{7} x y_{3}$ is a θ_{7}.
4- $x x_{6} \notin E(H)$ as otherwise $x y_{3} y_{2} y_{1} x_{1} x_{7} x_{6} x y_{1}$ is a θ_{7}.
Thus, $N_{C_{7}}(x) \subseteq\left\{x_{4}, x_{5}\right\}$. Also, if $x x_{4}, x x_{5} \in E(H)$, then C_{3} is produced. Hence x is adjacent to either x_{4} or x_{5} but not to both, and so, $\mathcal{E}\left(x, T_{1}\right) \leq 3$. Similarly, by using the symmetry, one can show that if $x y_{2}, x y_{4} \in E(H)$, then $\mathcal{E}\left(x, T_{1}\right) \leq 3$. This completes the proof of the claim.
Therefore, by Claim 2, $\mathcal{E}\left(D_{1}, T_{1}\right) \leq 3(n-11)$. Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(D_{1}\right)+\mathcal{E}\left(D_{1}, T_{1}\right)+\mathcal{E}\left(T_{1}\right) \\
& \leq\left\lfloor\frac{(n-11)^{2}}{4}\right\rfloor+3(n-11)+18 \\
& =\left\lfloor\frac{n^{2}-10 n+61}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-5)^{2}}{4}\right\rfloor+9 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Subcase 2.2. $\left|V\left(C_{5}\right) \cap V(A)\right|=2$. Without loss of generality assume that $C_{5}=x_{1} y_{1} y_{2} y_{3} x_{2} x_{1}$ is in H. Let $T_{2}=H\left[y_{1}, y_{2}, y_{3}, A\right]$ and $D_{2}=H-T_{2}$. As above, $\mathcal{E}\left(x, C_{5}\right) \leq 2$ and $\mathcal{E}(x, A) \leq 2$.
Claim 3. For each $x \in V\left(D_{2}\right), \mathcal{E}\left(x, T_{2}\right) \leq 3$.
Proof of the claim. Suppose that $\mathcal{E}\left(x, T_{2}\right)=4$. Then $\mathcal{E}\left(x, C_{5}\right)=2$. Note that if $x x_{1} \in E(H)$, then x_{1} is a common vertex of both C_{5} and A and so $\mathcal{E}\left(x, T_{2}\right) \leq 3$, similarly if $x x_{2} \in E(H)$, then x_{2} is a common vertex of both C_{5} and A and so $\mathcal{E}\left(x, T_{2}\right) \leq 3$. Thus, $N_{C_{5}}(x)=\left\{y_{1}, y_{3}\right\}$, and

1- $x x_{3} \notin E(H)$ as otherwise $x y_{3} y_{2} y_{1} x_{1} x_{2} x_{3} x y_{1}$ is a θ_{7}.
$2-x x_{4} \notin E(H)$ as otherwise $x y_{1} y_{2} y_{3} x_{2} x_{3} x_{4} x y_{3}$ is a θ_{7}.
3- $x x_{6} \notin E(H)$ as otherwise $x y_{3} y_{2} y_{1} x_{1} x_{7} x_{6} x y_{1}$ is a θ_{7}.
4- $x x_{7} \notin E(H)$ as otherwise $x y_{1} y_{2} y_{3} x_{2} x_{1} x_{7} x y_{3}$ is a θ_{7}.
Thus, x is adjacent to at most x_{5}, and so $\mathcal{E}\left(x, T_{2}\right) \leq 3$, as claimed.
Hence, $\mathcal{E}\left(D_{2}, T_{2}\right) \leq 3(n-10)$. Recall that for $j=1,2,3, \mathcal{E}\left(y_{j}, A\right) \leq 2$. Observe that y_{2} cannot be adjacent to x_{1} or x_{2}, as otherwise C_{3} is produced as a subgraph of H. Thus, $N_{A}\left(y_{2}\right)=\left\{x_{3}\right\}$ or $\left\{x_{4}\right\}$ or $\left\{x_{5}\right\}$ or $\left\{x_{6}\right\}$ or $\left\{x_{7}\right\}$ or $\left\{x_{3}, x_{7}\right\}$ as
otherwise $C_{3}, \theta_{4}, \theta_{5}$ or θ_{7} is produced as a subgraph of H. If $N_{A}\left(y_{2}\right)=\left\{x_{3}, x_{7}\right\}$, then $N_{A}\left(y_{1}\right)=\left\{x_{1}\right\}$ and $N_{A}\left(y_{3}\right)=\left\{x_{2}\right\}$ as otherwise $C_{3}, \theta_{4}, \theta_{5}$ or θ_{7} is produced as a subgraph of H. Thus, $\mathcal{E}\left(T_{2}\right) \leq 14$. By Theorem 2 we have

$$
\mathcal{E}\left(D_{2}\right) \leq\left\lfloor\frac{(n-10)^{2}}{4}\right\rfloor
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(D_{2}\right)+\mathcal{E}\left(D_{2}, T_{2}\right)+\mathcal{E}\left(T_{2}\right) \\
& \leq\left\lfloor\frac{(n-10)^{2}}{4}\right\rfloor+3(n-10)+14 \\
& =\left\lfloor\frac{n^{2}-8 n+36}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Subcase 2.3. $\left|V\left(C_{5}\right) \cap V(A)\right|=3$. Without loss of generality, assume that $C_{5}=x_{1} y_{1} y_{2} x_{3} x_{2} x_{1}$ is in H, then let $T_{3}=H\left[y_{1}, y_{2}, A\right]$ and $D_{3}=H-T_{3}$. Now, $\mathcal{E}(A)=7$ and by Lemma $2 \mathcal{E}\left(y_{1} y_{2}, A\right) \leq 3$, thus $\mathcal{E}\left(T_{3}\right) \leq 11$. Now, let $x \in V\left(D_{3}\right)$, then x is adjacent to at most one of y_{1} and y_{2} as otherwise C_{3} is produced. Further, by Remark $1, \mathcal{E}(x, A) \leq 2$. Thus, $\mathcal{E}\left(x, T_{3}\right) \leq 3$. Let $B_{1}=\left\{x \in V\left(D_{3}\right): \mathcal{E}\left(x, T_{3}\right)=3\right\}$ 。

Claim 4. $\left|B_{1}\right|=0$.
Proof of the claim. Let $x \in B_{1}$, then $N_{T_{3}}(x)=\left\{y_{2}, x_{2}, x_{4}\right\}$ or $\left\{y_{2}, x_{2}, x_{6}\right\}$ or $\left\{y_{1}, x_{2}, x_{5}\right\}$ or $\left\{y_{1}, x_{2}, x_{7}\right\}$.

If $N_{T_{3}}(x)=\left\{y_{2}, x_{2}, x_{4}\right\}$, then the trail $x_{2} x_{1} y_{1} y_{2} x_{3} x_{4} x x_{2} x_{3}$ is a θ_{7}-graph. If $N_{T_{3}}(x)=\left\{y_{2}, x_{2}, x_{6}\right\}$, then the trail $x x_{6} x_{7} x_{1} x_{2} x_{3} y_{2} x_{2}$ is a θ_{7}-graph. By symmetry we get similar trails if $N_{T_{3}}(x)=\left\{y_{1}, x_{2}, x_{5}\right\}$ or $\left\{y_{1}, x_{2}, x_{7}\right\}$. The proof of the claim is complete.
Thus, $\mathcal{E}\left(x, T_{3}\right) \leq 2$ for any $x \in V\left(D_{3}\right)$, which implies that

$$
\mathcal{E}\left(D_{3}, T_{3}\right) \leq 2(n-9)
$$

Also, by Theorem 2 we have

$$
\mathcal{E}\left(D_{3}\right) \leq\left\lfloor\frac{(n-9)^{2}}{4}\right\rfloor
$$

Therefore,

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(D_{3}\right)+\mathcal{E}\left(D_{3}, T_{3}\right)+\mathcal{E}\left(T_{3}\right) \\
& \leq\left\lfloor\frac{(n-9)^{2}}{4}\right\rfloor+2(n-9)+11 \\
& =\left\lfloor\frac{n^{2}-10 n+53}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-5)^{2}}{4}\right\rfloor+7 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 .
\end{aligned}
$$

Subcase 2.4. $\left|V\left(C_{5}\right) \cap V(A)\right|=4$. Without loss of generality, assume that $C_{5}=x_{1} y_{1} x_{4} x_{3} x_{2} x_{1}$ is in H, then let $T_{4}=H\left[y_{1}, A\right]$ and $D_{4}=H-T_{4}$. By Remark $1 \mathcal{E}(x, A) \leq 2$ for any $x \in H-A$. Therefore, $\mathcal{E}\left(y_{1}, A\right)=2$, and so $\mathcal{E}\left(T_{4}\right)=9$. Now, let $x \in V\left(D_{4}\right)$, if x is not adjacent to y_{1}, then $\mathcal{E}\left(x, T_{4}\right) \leq 2$; if x is adjacent to y_{1}, then

1. $x x_{1} \notin E(H)$ as otherwise the trail $x y_{1} x_{1} x$ is a C_{3}.
2. $x x_{4} \notin E(H)$ as otherwise the trail $x y_{1} x_{4} x$ is a C_{3}.
3. $x x_{5} \notin E(H)$ as otherwise the trail $y_{1} x x_{5} x_{4} x_{3} x_{2} x_{1} y_{1} x_{4}$ is a θ_{7}-graph.
4. $x x_{7} \notin E(H)$ as otherwise the trail $y_{1} x x_{7} x_{1} x_{2} x_{3} x_{4} y_{1} x_{1}$ is a θ_{7}-graph.

Thus, $N_{C_{7}}(x) \subseteq\left\{x_{2}, x_{3}, x_{6}\right\}$. Now, If x is adjacent to x_{2}, then it is neither adjacent to x_{3} (as otherwise $C_{3}=x x_{2} x_{3} x$ is produced) nor to x_{6} (as otherwise $\theta_{7}=x x_{6} x_{5} x_{4} y_{1} x_{1} x_{2} x y_{1}$ is produced). Similarly if x is adjacent to x_{3}, then it can not be adjacent to x_{6} (as otherwise $\theta_{7}=x x_{6} x_{7} x_{1} y_{1} x_{4} x_{3} x y_{1}$ is produced). Thus, $\mathcal{E}\left(x, T_{4}\right) \leq 2$, and so $\mathcal{E}\left(D_{4}, T_{4}\right) \leq 2(n-8)$. Also, by Theorem 2 we have

$$
\mathcal{E}\left(D_{4}\right) \leq\left\lfloor\frac{(n-8)^{2}}{4}\right\rfloor
$$

Consequently we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}\left(D_{4}\right)+\mathcal{E}\left(D_{4}, T_{4}\right)+\mathcal{E}\left(T_{4}\right) \\
& \leq\left\lfloor\frac{(n-8)^{2}}{4}\right\rfloor+2(n-8)+9 \\
& =\left\lfloor\frac{n^{2}-8 n+36}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Now, we give the following construction: Let \mathcal{H}_{1} be the class of graphs that obtained from $\bar{K}_{\frac{n-4}{2}} \vee \bar{K}_{\frac{n-4}{2}}$ by replacing one edge, say $u_{1} u_{2} \in \bar{K}_{\frac{n-4}{2}} \vee \bar{K}_{\frac{n-4}{2}}$,
by the path $u_{1} w_{2} w_{3} w_{4} w_{5} u_{2}$ in addition to one of the two edges $u_{1} w_{3}$ and $w_{2} w_{4}$. Note that if $H \in \mathcal{H}_{1}$, then H is a non-bipartite Hamiltonian graph which has none of $\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}$ as a subgraph of H and $\mathcal{E}(H)=\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5$. Thus, we establish that

$$
\begin{equation*}
h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right) \geq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 \text { for even } n \tag{3}
\end{equation*}
$$

Theorem 8. Let $H \in \mathcal{H}\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$, then

$$
h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)=\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

for sufficiently large even n. Furthermore, the bound is best possible.
Proof. By 3, it is suffices to prove the upper bound of $h\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$. Let $H \in \mathcal{H}\left(n ;\left\{\theta_{4}, \theta_{5}, \theta_{7}\right\}\right)$. If H has no cycles of length 7 , then by Theorem 1 we have

$$
\begin{aligned}
\mathcal{E}(H) & \leq \frac{(n-6)^{2}}{4}+13 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

Now, we assume that H has cycles of length 7 . If H contains neither cycles of length 3 nor cycles of length 5 , then by Theorem 5 we have

$$
\mathcal{E}(H) \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

To this end, If H contains cycles of length 5 , then the results follows from Lemma 4. Finally, if H contains no cycles of length 5 but it contains cycles of length 3 , then the results follows from Lemma 3.

In the following theorem we give an upper bound of $h\left(n ; \theta_{7}\right)$ for sufficiently large even n under a constrain of the minimum degree.

Theorem 9. For sufficiently large even n, let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 22$. Then

$$
h\left(n ; \theta_{7}\right) \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

Proof. Let $H \in \mathcal{H}\left(n ; \theta_{7}\right)$ with $\delta(H) \geq 22$. Suppose that H has θ_{5}-graph, say $\theta_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1} x_{4}$. For $i=1,2,3$, let A_{i} be a set that consist of 6 neighbors of x_{i} in $H-\theta_{5}$ selected so that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Let $T=H[$ $\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, A_{1}, A_{2}, A_{3}\right]$ and $B=H-T$. Let $u \in V(B)$, if u is adjacent to a vertex in one of the sets A_{1}, A_{2} and A_{3}, then u cannot be adjacent to any vertex in the other two sets as otherwise H would have a θ_{7}-graph. Also, if u
is adjacent to a vertex in A_{i} for some $i=1,2,3$, then u cannot be adjacent to any of x_{i+1} and x_{i-1}, otherwise, H would have a θ_{7}-graph. Thus, $\mathcal{E}(u, T) \leq 9$, which implies $\mathcal{E}(B, T) \leq 9(n-23)$. Also, by Theorem 2 we have

$$
\mathcal{E}(B) \leq\left\lfloor\frac{(n-23)^{2}}{4}\right\rfloor \text { and } \mathcal{E}(T) \leq\left\lfloor\frac{(23)^{2}}{4}\right\rfloor
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(B)+\mathcal{E}(B, T)+\mathcal{E}(T) \\
& \leq\left\lfloor\frac{(n-23)^{2}}{4}\right\rfloor+9(n-23)+\left\lfloor\frac{(23)^{2}}{4}\right\rfloor \\
& \leq\left\lfloor\frac{n^{2}-10 n+230}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-5)^{2}}{4}\right\rfloor+51 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
\end{aligned}
$$

So, we consider that H contains no θ_{5}-graph. If H contains no θ_{4}-graph as a subgraph, then by Theorem 8 we have

$$
\mathcal{E}(H) \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5
$$

If H contains θ_{4}-graph as a subgraph, then let $\theta_{4}=x_{1} x_{2} x_{3} x_{4} x_{1} x_{3}$. For $i=$ $2,3,4$, let A_{i} be a set that consist of 5 neighbors of x_{i} in H selected so that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. Let $T=H\left[x_{1}, x_{2}, x_{3}, x_{4}, A_{2}, A_{3}, A_{4}\right]$ and $B=H-T$. Also, let $u \in V(B)$. If u is adjacent to a vertex in one of the sets A_{2}, A_{3} and A_{4}, then u cannot be adjacent to a vertex in the other two sets as otherwise H would have a θ_{7}-graph. Also, if u is adjacent to a vertex in A_{i} for some $i=2,3,4$, then u cannot be adjacent to x_{i+1} and x_{i-1}, otherwise H would have a θ_{5}-graph. Thus, $\mathcal{E}(u, T) \leq 7$. Therefore, $\mathcal{E}(B, T) \leq 7(n-19)$. By Theorem 2 we have

$$
\mathcal{E}(B) \leq\left\lfloor\frac{(n-19)^{2}}{4}\right\rfloor \quad \text { and } \quad \mathcal{E}(T) \leq\left\lfloor\frac{(19)^{2}}{4}\right\rfloor
$$

Consequently, we have

$$
\begin{aligned}
\mathcal{E}(H) & =\mathcal{E}(B)+\mathcal{E}(B, T)+\mathcal{E}(T) \\
& \leq\left\lfloor\frac{(n-19)^{2}}{4}\right\rfloor+7(n-19)+\left\lfloor\frac{(19)^{2}}{4}\right\rfloor \\
& \leq\left\lfloor\frac{n^{2}-10 n+190}{4}\right\rfloor \\
& =\left\lfloor\frac{(n-5)^{2}}{4}\right\rfloor+41 \\
& <\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 .
\end{aligned}
$$

In the above theorem, we have proved that if G is a θ_{7}-free graph with n vertices and minimum degree greater than or equal to 22 , then $\mathcal{E}(G) \leq$ $\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+5 \leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+6$ which confirm Conjecture 1 in the case $k=3$. Now consider H is the graph obtained from $\bar{K}_{\frac{n-4}{2}} \vee \bar{K}_{\frac{n-4}{2}}$ by replacing one edge, say $u_{1} u_{2} \in \bar{K}_{\frac{n-4}{2}} \vee \bar{K}_{\frac{n-4}{2}}$, by the path $u_{1} w_{2} w_{3} w_{4} w_{5} u_{2}$ in addition to the two edges $u_{1} w_{3}$ and ${ }_{2} w_{4}$. Note that H is a non-bipartite Hamiltonian graph which has no θ_{7} as a subgraph of H. Furthermore, $\mathcal{E}(H)=\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor+6$. Thus, we establish the upper bound of the Conjecture 1 in the case $k=3$.

References

[1] M. Bataineh, Some extremal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 2007.
[2] M. Bataineh, M.M.M. Jaradat, E. Al-Shboul, Edge-maximal graphs without 0 $_{5}$-graphs, Ars Combinatoria, 124 (2016), 193-207.
[3] M. Bataineh, M.M.M. Jaradat, E. Al-Shboul, Edge-maximal graphs without θ_{7}-graphs, SUT Journal of Mathematics, 47 (2011), 91-103.
[4] M.S.A. Bataineh, M.M.M. Jaradat, I.Y. Al-Shboul, Edge-maximal graphs with-out theta graphs of order seven: Part II, Proceeding of the Annual International Conference on Computational Mathematics, Computational Geometry\& Statistics. DOI\#10.5176/2251-1911_CMCGS66.
[5] J.A. Bondy, Pancyclic graphs, J. Combinatorial Theory Ser B, 11 (1971), 80-84.
[6] J.A. Bondy, Large cycle in graphs, Discrete Mathematics 1 (1971), 121-132.
[7] L. Caccetta, R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combinatorics, 18 (2002), 75-92.
[8] L. Caccetta and K. Vijayan, Maximal cycles in graphs, Discrete Mathematics 98 (1991), 1-7.
[9] R. Häggkvist, R.J. Faudree and R.H. Schelp, Pancyclic graphs-connected Ramsey number, Ars Combinatoria 11 (1981), 37-49.
[10] G.R.T. Hendry and S. Brandt, An extremal problem for cycles in Hamiltonian graphs, Graphs Comb., 11 (1995), 255-262.
[11] M.M.M. Jaradat, M.S. Bataineh and E. Al-Shboul, Edge-maximal graphs without $\theta_{2 k+1}$-graphs, Akce International Journal of Graphs and Combinatorics, 11 (2014), 57-65.
[12] M.M.M. Jaradat, M. Bataineh, A. Al-Rhayyel and Z. Mustafa, Extremal number of theta graphs of order 7, Bol. Soc. Paran. Mat. (Accepted).
[13] R. Jia, Some extermal problems in graph theory, Ph.D. thesis, Curtin University of Technology, Australia, 1998.
[14] P. Turán, On a problem in graph theory, Mat. Fiz. Lapok, 48 (1941), 436452.
[15] D. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar., 28 (1976), 77-80.

Accepted: 18.02.2018

[^0]: *. Corresponding author

