Coefficient estimates for a subclass of analytic functions using Faber polynomials

G. Saravanan*
Department of Mathematics
Patrician College of Arts and Science
Adyar, Chennai-600020
Tamil Nadu
India
and
Research Scholar
School of Advanced Sciences
VIT University
Chennai - 600 127
Tamil Nadu
India
gsaran825@yahoo.com

K. Muthunagai
School of Advanced Sciences
VIT University
Chennai - 600 127
Tamil Nadu
India
muthunagai@vit.ac.in

Abstract. In this paper, we introduce and investigate a new subclass $Q_{k}^{*}(\alpha, \phi)$ of normalized analytic functions defined using convolution in the open unit disk U whose inverse has univalent analytic continuation to U. Estimates of the coefficients of bi-univalent functions belonging to this class are determined by using Faber polynomial techniques.

Keywords: bi-univalent, Faber polynomials, Quasi-convex.

1. Introduction

Let A be the class of all normalized functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the unit disk U.

* Corresponding author
A function that is regular (holomorphic) in U is said to be univalent in U if it assumes no value more than once in U. Denote by S, the subclass of A, of all univalent functions in U.

Convolution or Hadamard is a mathematical operation on two functions f and g resulting in a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated. For $f(z)$ defined by (1) and $g(z)$ defined by $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ the Hadamard product is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Polya and Schoenberg [12] conjectured that the class of convex functions C_1 is preserved under convolution with convex functions: $f, g \in C \Rightarrow f * g \in C$. In 1973, Ruscheweyh and Sheil-Small [14] see also [12] proved the Polya-Schoenberg conjecture. They also proved that the classes of starlike [13] functions and close-to-convex [7] functions are closed under convolution with convex functions. Also it is to be noted that the convolution of two univalent (or starlike) functions need not be univalent.

If $f(z) \in S$ and its inverse has an analytic continuation to $|w| < 1$, then the function $f(z) \in A$ is said to be bi-univalent in U. Let Σ represent the class of all bi-univalent functions.

The concept of bi-univalent functions was introduced by Lewin [8] who proved that if $f(z)$ is bi-univalent, then $|a_2| < 1.51$. Brannan and Clunie [4] improved Lewin’s [8] result to $|a_2| \leq \sqrt{2}$. There is a rich literature on the estimates of the initial coefficients of bi-univalence. However not much is known about the estimates of higher coefficients.

The classes $S_{\Sigma}^\alpha(\alpha)$ of bi-starlike functions and $C_{\Sigma}^\alpha(\alpha)$ of bi-convex functions of order α, where $0 \leq \alpha < 1$ were discussed by Brannan and Taha [5].

A function $f(z)$ defined by (1) is in the class $S_{\Sigma}^\alpha(\alpha)$, $0 \leq \alpha < 1$ if

$$Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, |z| < 1$$

and

$$Re\left(\frac{wg'(w)}{g(w)}\right) > \alpha, |w| < 1$$

The class $C_{\Sigma}(\alpha)$, $0 \leq \alpha < 1$ is the class of all functions of the form (1) satisfying the following conditions:

$$Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, |z| < 1$$
and

\[\text{Re} \left(1 + \frac{wg''(w)}{g'(w)} \right) > \alpha, |w| < 1 \]

where \(g(w) = (f^{-1})(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - \ldots \)

Let \(C^* \) (see [10], [11]) denote the class of Quasi-convex functions in \(U \), that is if \(f(z) \in C^* \), then there exists a function \(g \in C \) so that \(\text{Re}\{\frac{(zf'(z))^2}{g'(z)}\} > 0 \) in \(U \).

It is possible to approximate an analytic function \(h \) on \(K \) by polynomials uniformly on \(K \), where \(K \) is a simply connected compact set in the Complex plane.

Faber polynomials can be viewed as a.r. (almost regular) formal Laurent series over the Field \(L_{\infty}(u) \), the set of Formal Laurent series over \(F \) with an indeterminate \(u \). Faber polynomials introduced by Faber play an important role in various areas of mathematical sciences, especially in geometric function theory. The advantage of using Faber polynomials over the other methods is that we find the \(n^{th} \) coefficient that is the general term and use it for our computations.

Using the Faber polynomial expansion for functions \(f \in S \) of the form (1), the coefficients of its inverse map \(F = f^{-1} \) may be expressed as (e.g. see [3], Eq.(1.33), page 185)

\[
F(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n} (a_2, a_3, \ldots) w^n
\]

(2)

\[
K_{n-1}^{-n} = \frac{(-n)!}{(-2n+1)!(n-1)!} a_2^{n-1} + \frac{(-n)!}{(2(-n+1))!(n-3)!} a_2^{n-3} a_3
\]

\[
+ \frac{(-n)!}{(-2n+3)!(n-4)!} a_2^{n-4} a_4
\]

\[
+ \frac{(-n)!}{(2(-n+2))!(n-5)!} a_2^{n-5}[a_5 + (-n+2)a_3^2]
\]

\[
+ \frac{(-n)!}{(-2n+5)!(n-6)!} a_2^{n-6}[a_6 + (-2n+5)a_3 a_4] + \sum_{j \geq 7} a_2^{n-j} V_j,
\]

where \(V_j \) is a homogeneous polynomial in the variables \(a_2, a_3, \ldots, a_n \) (see [12] and [6]). In particular, the first few terms of \(K_{n-1}^{-n} \) are \(K_1^{-2} = -2a_2 \), \(K_2^{-3} = 3(2a_2^2 - a_3) \) and \(K_3^{-4} = -4(5a_2^3 - 5a_2a_3 + a_4) \). In general, an expansion of \(K_{n-1}^{-n}(a_2, a_3, \ldots, a_n) \) is given by

\[
K_{n-1}^p = pa_n + \frac{p(p-1)}{2} D_{n-1}^2 + \frac{p!}{(p-3)!} D_{n-1}^3 + \cdots + \frac{p!}{(p-n+1)!(n-1)!} D_{n-1}^{n-1},
\]
where \(D^n_{n-1} = D^n_{n-1}(a_2, a_3, \ldots, a_n) \),
\[
D^n_{n-1}(a_2, \ldots, a_n) = \sum_{n=2}^{\infty} \frac{m!(a_2)^{\mu_1} \cdots (a_n)^{\mu_{n-1}}}{\mu_1! \cdots \mu_{n-1}!} \quad \text{for } m \leq n,
\]
and the sum is taken over all non-negative integers \(\mu_1, \ldots, \mu_{n-1} \) satisfying \(\mu_1 + \mu_2 + \cdots + \mu_{n-1} = m \) and \(\mu_1 + 2\mu_2 + \cdots + (n-1)\mu_{n-1} = n-1 \). Evidently:
\[
D^{n-1}_{n-1}(a_2, \ldots, a_n) = a_2^{n-1} \quad \text{(see [1], [2]).}
\]

An analytic function \(p \) of the form \(p(z) = 1 + p_1z + p_2z^2 + \ldots \) is called a function with positive real part in \(U \) if \(\Re[p(z)] > 0 \) for all \(z \in U \). The class of all functions with positive real part is denoted by \(\wp \).

Lemma 1.1 ([6]). The coefficient \(p_n \) of a function \(p \in \wp \) satisfies the sharp inequality \(|p_n| \leq 2, n \geq 1 \).

Motivated by the definition of the class \(C^* \) of Quasi-convex functions investigated by Noor and Thomas ([10], [11]), In this paper we introduce the class \(Q^*_\Sigma^*(\alpha, \phi), 0 \leq \alpha < 1 \) and obtain the coefficient bounds using Faber polynomial techniques.

2. Main result

Coefficient bounds for functions in the class \(Q^*_\Sigma^*(\alpha, \phi), 0 \leq \alpha < 1 \).

Definition 2.1. Let \(f \in A \). Then \(f \in Q^*_\Sigma^*(\alpha, \phi), 0 \leq \alpha < 1 \) if \(f \in \Sigma \),
\[
\Re\left(\frac{(z(f*\phi)'(z))'}{(h*\phi)'(z)} \right) > \alpha
\]
and
\[
\Re\left(\frac{(w((f*\phi)^{-1})'(w))'}{((h*\phi)^{-1})'(w)} \right) > \alpha,
\]
where \(h(z) = z + \sum_{n=2}^{\infty} b_nz^n \) and \(\phi(z) = z + \sum_{n=2}^{\infty} \phi_nz^n \) are convex.

Theorem 2.1. For \(0 \leq \alpha < 1 \), let the function \(f \in Q^*_\Sigma^*(\alpha, \phi) \) in \(U \). If \(a_k = b_k = B_k = 0; 2 \leq k \leq n - 1 \) then
\[
|a_n| \leq \frac{1}{n} + \frac{2(1 - \alpha)}{n^2}.
\]

Proof. The Faber polynomial expansions are
\[
\frac{(z(f*\phi)'(z))'}{(h*\phi)'(z)} = 1 + \sum_{n=2}^{\infty} ((n^2a_n\phi_n - nb_n\phi_n)
\]
\[
+ \sum_{r=1}^{n-2} k_r^{-1}(2b_2\phi_2, 3b_3\phi_3, \ldots, (r + 1)b_{r+1}\phi_{r+1})
\]
\[
\times ((n - r)^2a_{n-r}\phi_{n-r} - (n - r)b_{n-r}\phi_{n-r})]z^{n-1},
\]
from (3) and (5), we obtain for
\[n \]
and \[a \]
But under the assumption
Similarly, from (4) and (6), we obtain:
\begin{align*}
\left(w((f \ast \phi)^{-1})'(w) \right)' &= 1 + \sum_{n=2}^{\infty} \left[(n^2 A_n \Phi_n - n B_n \Phi_n) \
&\quad + \sum_{r=1}^{n-2} K_r^{-1} (2B_2 \Phi_2, \ldots, (r+1)B_{r+1} \Phi_{n-r}) \
&\quad \times ((n-r)^2 A_{n-r} \Phi_{n-r} - (n-r)B_{n-r} \Phi_{n-r}) \right] w^{n-1}.
\end{align*}

On the other hand, since
\begin{align*}
\frac{(z(f \ast \phi)'(z))'}{(h \ast \phi)'(z)} &= \alpha + (1 - \alpha)p(z) = 1 + (1 - \alpha)\sum_{n=1}^{\infty} c_n z^n.
\end{align*}
Also as
\begin{align*}
\frac{(w((f \ast \phi)^{-1})'(w))'}{((h \ast \phi)^{-1})'(w)} &= \alpha + (1 - \alpha)q(w) = 1 + (1 - \alpha)\sum_{n=1}^{\infty} d_n w^n.
\end{align*}
By the Caratheodory lemma, \(|c_n| \leq 2\) and \(|d_n| \leq 2\). Comparing the coefficients from (3) and (5), we obtain for \(n \geq 2 \),
\begin{align*}
\sum_{n=2}^{\infty} \left[(n^2 a_n \phi_n - n b_n \phi_n) + \sum_{r=1}^{n-2} K_r^{-1} (2b_2 \phi_2, 3b_3 \phi_3, \ldots, (r+1) b_{r+1} \phi_{r+1}) \
&\quad \times ((n-r)^2 a_{n-r} \phi_{n-r} - (n-r) b_{n-r} \phi_{n-r}) \right] = (1 - \alpha)c_{n-1}.
\end{align*}
Similarly, from (4) and (6), we obtain:
\begin{align*}
\sum_{n=2}^{\infty} \left[(n^2 A_n \Phi_n - n B_n \Phi_n) + \sum_{r=1}^{n-2} K_r^{-1} (2B_2 \Phi_2, \ldots, (r+1) B_{r+1} \Phi_{n-r}) \
&\quad \times ((n-r)^2 A_{n-r} \Phi_{n-r} - (n-r)B_{n-r} \Phi_{n-r}) \right] = (1 - \alpha)d_{n-1}.
\end{align*}
But under the assumption \(a_k = b_k = B_k = 0 \), \(2 \leq k \leq n-1 \) and \(\phi_k = 0 \), \(2 \leq k \leq n-1 \), equation (7) and (8), respectively yield:
\begin{align*}
\sum_{n=2}^{\infty} \left[n^2 a_n \phi_n - n b_n \phi_n \right] &= (1 - \alpha)c_{n-1}.
\end{align*}
and
\begin{align*}
\sum_{n=2}^{\infty} \left[-n^2 A_n \Phi_n - n B_n \Phi_n \right] &= (1 - \alpha)d_{n-1}.
\end{align*}
By the definition of $K_n^p, A_n = -a_n$, Thus

\begin{equation}
-n^2a_n\Phi_n - nB_n\Phi_n = (1 - \alpha)d_{n-1}.
\end{equation}

Solving either of equations (9) or (10), we obtain

$$|a_n| \leq \frac{1}{n} + \frac{2(1 - \alpha)}{n^2}$$

upon noticing that $|b_n| \leq 1$ and $|B_n| \leq 1$.

Remark 2.1. For $n = 2$ equations (9) and (11) yield

$$4a_2\phi_2 - 2b_2\phi_2 = (1 - \alpha)c_1,$$

$$-4a_2\Phi_2 - 2B_2\Phi_2 = (1 - \alpha)d_1.$$

Solving these two equations, we have $|a_2| \leq \frac{2-\alpha}{2}$.

Remark 2.2. When $\phi(z) = \frac{1}{1-z}$, this class $Q_{\Sigma}^+(\alpha, \phi)$ will reduce to the class of all bi-quasi-convex functions of order α [16] .

Remark 2.3. When $\phi(z) = \frac{1}{1-z}$, as every convex function is starlike, immediate replacements of $(f * \phi)'$ and $(h * \phi)'$ by $(f * \phi)$ and $(h * \phi)$ respectively in a result of Libera [9], the class $Q_{\Sigma}^+(\alpha, \phi)$ will reduce to the class of bi-close-to-convex functions of order α studied by Hamidi and Jahangiri[15].

Remark 2.4. Replacing $\phi(z)$ by $\frac{1}{1-z}$ and f by h, the class $Q_{\Sigma}^+(\alpha, \phi)$ reduces to the class of bi-convex functions of order α discussed by Brannan and Taha [5]. When $n=2$ and $\alpha = 0$, $|a_2| \leq 1$, which is an improvement of the corresponding estimate of Brannan and Taha [5].

Remark 2.5. Replacing h by f in Remark 2.3, we notice that the class $Q_{\Sigma}^+(\alpha, \phi)$ reduces to the class of bi-starlike functions α discussed by Brannan and Taha [5]. When $n=2$ and $\alpha = 0$, $|a_2| \leq 1$, which is an improvement of the corresponding estimate of Brannan and Taha [5].

References

Accepted: 23.10.2017