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1. Introduction

In this paper, a method of periodic and almost periodic ordinary differential
equations development is considered. It is based on the ideas of functional analy-
sis. I.P. Natanson briefly outlined the theory of derived numbers [1]. Developing
this theory, several theorems of mathematical analysis are proved. Implemen-
tation of this theory let reducing the restrictions on smoothness degree of the
right-hand sides of the equations considered, which made it possible to extend
the scope of the results obtained [2-11]. In many problems of classical and ce-
lestial mechanics, robotics and mechatronics, there are processes which the time
dependence is not periodic in [12-21]. In this connection, the interest in derived
theory implementation to the study of periodic and almost periodic solutions of
differential equations and differential equations with almost periodic coefficients
has arisen [22-26].

∗. Corresponding author
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2. Basic definitions

Let f be a function defined on an open interval (a, b), taking values in the set
of real numbers R, i.e. f : (a, b) → R, a, b ∈ R, a < b. Consider an arbitrary
point x0 in (a, b).

Let a number λ be a derived number of function f at x0 if there exists a
sequence {xk}, such that xk → x0 as k → ∞ and

lim
k→∞

f(xk)− f(x0)

xk − x0
= λ.

The fact that λ is the derived number of function f at x0 is represented as
λ = λ[f ](x0).

The set of all derived numbers of function f at x0 is denoted by Λ[f ](x0)
If in the definition of a derived number it is required the sequence {xk} to

satisfy one more additional condition, which means that for all k the inequality
xk − x0 > 0 is fulfilled, then such derived number is determined as the right
derived number and denoted by λ+[f ](x0). If xk − x0 < 0 for all k, then such
derived number is determined as the left derived number of function f at x0 and
denoted by λ−[f ](x0)

Let the set of right derived number of function f at x0 be denoted by
Λ+[f ](x0), and the set of left derived number be denoted by Λ−[f ](x0).

It is clear that supλ∈Λ+[f ](x0) λ determines D+f(x0) that is the right upper
derived number of a Dini function at a point x0. Similarly, the remaining three
derived number of Dini function at a point x0 can be introduced.

Suppose

λα = lim
k→∞

f(xk)− f(x0)

(xk − x0)α
.

In this relation consider α such that for any ε > 0 the equalities λα−ε = 0 and
λα+ε = ∞ are realised. If the function f is defined in some neighborhood of the
point x0, then such α obviously exists. The magnitude can depend only on the
choice of convergence to x0 of the subsequence {xk}.

Let the number λ be called the derived number of a Hölder function at x0 if
there exist α ≤ 0 and a sequence {xk} converging to x0, such that

λ = lim
k→∞

f(xk)− f(x0)

(xk − x0)α
,

and for any ε > 0

lim
k→∞

f(xk)− f(x0)

(xk − x0)α−ε
= 0,

and

lim
k→∞

f(xk)− f(x0)

(xk − x0)α+ε
= ∞.

Let the number α appearing in the definition of the Hölder derived number be
called the exponent of this derived number.
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The fact that λ is a Hölder derived number of function f at x0 can be
represented as following:

λ = λH [f ](x0).

The set of Hölder derived number of function f at x0 is denoted by ΛH [f ](x0).

If in the definition of the Hölder derived number it is required that xk −
x0 > 0 for all k, then such a derived number is determined as the right Hölder
derived number and denoted by λ+

H [f ](x0). If xk − x0 < 0 for all k, then such
a derived number is determined as the left Hölder derived number and denoted
by λ−

H [f ](x0).

Let the set of all right Hölder derived numbers of function f at x0 be denoted
by Λ+

H [f ](x0), and the set of all left Hölder derived numbers at the same point
be denoted by Λ−

H [f ](x0).

Let α+ denote the minimal of the exponents of the derived numbers being
into Λ+

H [f ](x0), and Λα+

H [f ](x0) denote a set of derived numbers belonging to
the set Λ+

H [f ](x0) and having the exponent α+. Similarly, for a set Λ−
H [f ](x0),

a number α− and a set Λα−
H [f ](x0) are introduced.

Let the number

λ = sup
µ∈Λα+

H [f ](x0)

µ

be called the right upper derivative of Dini-Hölder function f at x0 and denoted
by DH+[f ](x0).

Let the number

λ = inf
µ∈Λα+

H [f ](x0)

µ

be called the right lower derivative of Dini-Hölder function f at x0.

Analogously, the notions of the left upper and left lower Dini-Hölder deriva-
tives of function f at x0 are introduced. These derivatives are denoted by
DH−[f ](x0) and DH−[f ](x0), respectively. Let DH∗f denote any of the four
Dini-Hölder derivatives of the function f .

Theorem 1. For the function f to be continuous from the right at x0, it is neces-
sary and sufficient that either the two right Dini-Hölder derivatives DH+[f ](x0)
and DH+[f ](x0) to be equal to zero or the exponent α+ from the definition of
Dini-Hölder derivative is greater than zero.

Proof. Necessity. Let the function f be continuous from the right at x0.
Consider the right Dini-Hölder derivatives at this point, and let at least one
of them, for example DH+[f ](x0), be non-zero. This means that there exist a
sequence {xk} converging to x0 and a number α+, such that

DH+[f ](x0) = lim
k→∞

f(xk)− f(x0)

(xk − x0)α
+ .
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If it turned out that in this expression α+ = 0, then the function f would
obviously discontinue at the point x0 which the assertion of this part of the
theorem follows from.

Sufficiency. Let the conditions of the theorem be satisfied, and let the function
f have discontinuity at a point x0 contrary to our assertion. Then there exist
ε > 0 and a sequence {xk} converging to x0, such that inequality

lim
k→∞

|f(xk)− f(x0)| ≥ ε.

It follows from this relation that the derived Hölder number realized on this
sequence has an exponent equal to zero, and that at least one of the right
Dini-Hölder derivatives at this point is nonzero. This contradiction proves the
continuity on the right of the function f at the point x0, and also the validity
of the theorem assertion.

Similarly, the continuity of the function f at the point x0 on the left is
proved.

Obviously, in order for the function f to be continuous at the point x0, it is
necessary and sufficient that it be continuous both on the right and on the left.

Comparing the definition of the Dini-Holder derivative with the definition
of the derived number of the function f or the derivative of a function f , it is
obvious that Theorem 1 implies the validity of the following assertion.

The function f is continuous at a point x0 if one of the following conditions
is satisfied:

1. The set Λ[f ](x0) is bounded;
2. Each of the Dini derivatives D∗f(x0) is bounded;
3. The derivative f

′
(x0) is bounded.

Theorem 2. Let the function f be defined in a neighborhood of the point x0,
and the function g be defined in a neighborhood of a point f(x0). Then, if sets
ΛH [g](f(x0)) and ΛH [f ](x0) are bounded, then every derived Hölder number of
a function h = g ◦ f at the point x0 can be represented in the form

λγ
H [h](x0) = λα

H [g](f(x0)) · λβ
H

α
[f ](x0),

where the exponent γ is equal to the product of exponents α and β, that is
γ = αβ, λα

H [g](f(x0)) and λβ
H [f ](x0) are some derived Hölder numbers from

sets ΛH [g](f(x0)) and ΛH [f ](x0), respectively.

Proof. Since the function f is defined in a neighborhood of the point x0 and g
in a neighborhood of the point f(x0), a function h is also defined in some neigh-
borhood of the point x0. Let {xk} be a sequence from the range of definition
of the function h, such that a certain Hölder number λγ

H [h](x0) with exponent
γ is realized on it. Without loss of generality, it can assumed that the derived
Hölder number λβ

H [f ](x0) of the function f with exponent β is realized on the
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sequence {xk}, and the derived Hölder number λα
H [g](f(x0)) with exponent α

of the function g is realized on the sequence {f(xk)}. Since h = g ◦ f , then

(1) lim
k→∞

h(xk)− h(x0)

(xk − x0)αβ
= lim

k→∞
(
g(f(xk))− g(f(x0))

(f(xk)− f(x0))α
· (f(xk)− f(x0))

α

(xk − x0)αβ
) .

It can be shown that the derived Hölder number of the function h with
exponent γ = αβ is realized on the sequence {xk}.

Consider an arbitrary positive number δ < γ and positive numbers α0 ≤ α
and β0 ≤ β, such that α0β0 = δ. Substituting α0 and β0 into (1) instead of α
and β, respectively, and taking into account the definition of the derived Hölder
number, it follows that for any

lim
k→∞

h(xk)− h(x0)

(xk − x0)δ
= 0.

Consider now ε > γ, α0 ≥ αand β0 ≥ β, such that α0β0 = ε and repeating the
arguments given above, it follows that for any ε > γ

lim
k→∞

h(xk)− h(x0)

(xk − x0)ε
= ∞.

The last two equalities imply that the exponent of the derived Hölder number
of the function h realizable on a sequence {xk} is equal to γ.

Now, let {xk} be a sequence such that f(xk) ̸= f(x0) for xk ̸= x0. With-
out loss of generality, it can assumed that the derived Hölder numbers λ1 =
λα
H [g](f(x0)) ∈ ΛH [g](f(x0)) and λ2 = λβ

H [f ](x0) ∈ ΛH [f ](x0) are realized on
the sequence {xk}. It follows from the boundedness of the sets ΛH [g](f(x0))
and ΛH [f ](x0) that λ1 and λ2 are finite numbers. Then, considering [3] the
following equality is realised:

λγ
H [h](x0) = lim

k→∞

h(xk)− h(x0)

(xk − x0)γ
= lim

k→∞

g(f(xk))− g(f(x0))

(f(xk)− f(x0))α

·
(

lim
k→∞

f(xk)− f(x0)

(xk − x0)β

)α

= λ1 · λα
2 ,

which is assirted by the theorem.
Finally, let {xk} be a sequence converging to x0 such that f(xk) = f(x0)

for xk ̸= x0. In this case for the function f the derived number equal to zero
is realised on the sequence {xk}. Then, taking into account the boundedness
of the set ΛH [g](f(x0)), it follows that for any λ1 ∈ ΛH [g](f(x0)) an equality
λ1 · 0 = 0 is true. But since for the function h {xk} the derived number equal
to zero is realized on a sequence, then in the considered case it can be assumed
that the theorem remains valid.

Theorem 3. Suppose that for some δ > 0 function f continuous at the point
x0 maps one-to-one interval (x0 − δ, x0 + δ) into interval (y0 − ε, y0 + ε), where
y0 = f(x0). Then

ΛH [f−1](y0) = (ΛH [f ](x0))
−1 ,
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where {ΛH [f ](x0)}−1 is obtained from the set ΛH [f ](x0) by substituting each

element λα
H ∈ ΛH [f ](x0) by an element µβ

H = 1
λα
H [f ](x0)β

, where β = 1/α.

Proof. Let {yk} be a sequence converging to {yk} on which a certain derived

Hölder number µβ
H [f−1](y0) of a function f−1 at a point y0 is realized, and let

{xk} be a sequence corresponding to {yk} given by equalities xk = f−1(yk).
Note that from the continuity at the point x0 and the one-to-one mapping of f
it follows that the sequence {xk} converges to x0 as k → ∞ and that if yk ̸= y0,
then xk ̸= x0. Then

µβ
H [f−1](y0) = lim

k→∞

f−1(yk)− f−1(y0)

(yk − y0)β
= lim

k→∞

xk − x0
(f(xk)− f(x0))β

=

(
lim
k→∞

f(xk)− f(x0)

(xk − x0)1/β

)−β

=
1

λα
H [f ](x0)β

∈ (ΛH [f ](x0))
−1 ,

where α = 1/β.
By virtue of the arbitrariness of the sequence {yk} choice, it follows from

this relation that ΛH [f−1](y0) ⊂ (ΛH [f ](x0))
−1. It can be shown in a similar

way that the reverse inclusion can also be realised. Combining these two results,
the validity of the theorem is clear.

Theorems 2 and 3 are not only a generalization of the well-known analysis
theorems on differentiation of a composite function and derivative of an inverse
function, but also show how the degree of a composite function smoothness
depends on the smoothness of the functions included in it.

3. Extremum of function

It is known that the derivative of a function allows to make a conclusion about
the behavior of the function itself. Similar conclusions can be made based
on the values of the derived numbers of function. In this section, considering
the question of extremal values of a function, some generalizations of Fermat’s
theorem are presented.

Theorem 4. Suppose for some δ > 0 there is a function f defined on (x0−δ, x0+
δ) taking an extremal value at x0. Then at this point the following inequalities
are true:

DH−f(x0) ≤ 0 ≤ DH+f(x0),

if x0 is a local minimum point of the function f , and

DH+f(x0) ≤ 0 ≤ DH−f(x0),

if x0 is a local maximum point of the function f .

Proof. Let x0 be a local minimum point. Then in some neighborhood of the
point x0 f(x) ≥ f(x0) for all x < x0. Let {xk} be a sequence on which the left
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upper Dini-Holder derivative with exponent α− is realised:

DH−f(x0) = lim
k→∞

f(xk)− f(x0)

−|xk − x0|α− .

Since for all k f(xk)−f(x0)

−|xk−x0|α− ≤ 0, then DH−f(x0) ≤ 0.

It can be shown in a similar way that if x0 is a local minimum point of the
function f , then at this point

0 ≤ DH+f(x0).

The case when x0 is a local maximum point of the function f can be shown
in the same way.

It is clear that such a statement is also valid for the Dini derivatives.
Analysis of Theorem 4 proof allows to formulate a theorem giving sufficient

conditions that x0 is an extremum point for the function f , in other words a
theorem being a kind of inverse to Theorem 4.

Theorem 5. Suppose that for some δ > 0 on (x0 − δ, x0 + δ) function f is
defined. Then, if

D−f(x0) < 0 < D+f(x0),

then x0 is a local minimum point of the function f , and if

D−f(x0) > 0 > D+f(x0),

then x0 is a local maximum point of the function f .

Proof. Suppose x0 is not an extremum of the function f . Then it follows
from the definition of an extremum that there are two sequences {xk} and {yk}
convergent to x0 such that f(xk) > f(x0) for all k, and f(yk) < f(x0). Besides,
without loss of generality, it can be assumed that on each of these sequences
some derived number of the function f at the point x0 is realised. Two cases are
possible here: either these sequences are monotonically increasing or decreasing,
or one of them is monotonically increasing and the other one is decreasing.

Consider the first case. Assume both sequences increase. Then immediately
for all k

f(xk)− f(x0)

xk − x0
< 0

and
f(yk)− f(x0)

yk − x0
> 0.

From the estimates obtained and the assumption that the derived numbers
of the function f are realizable on {xk}and {yk}, it follows that

λ1 = lim
k→∞

f(xk)− f(x0)

xk − x0
≤ 0,

λ2 = lim
k→∞

f(yk)− f(x0)

yk − x0
≥ 0.
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Since the sequences {xk} and {yk} are increasing by assumption, then λ1 ∈
Λ−[f ](x0)and λ2 ∈ Λ−[f ](x0). Given that

D−f(x0) ≤ λ1 ≤ 0 ≤ λ2 ≤ D−f(x0),

it follows that in the considered case 0 ∈ [D−f(x0), D
−f(x0)]. Therefore none

of the conditions of the theorem can be satisfied.
Consider now the second case Suppose the sequence {xk}to increase and the

sequence {yk} to decrease. Then for all k

f(xk)− f(x0)

xk − x0
< 0

and
f(yk)− f(x0)

yk − x0
< 0.

Repeating the arguments given in the first case analisis, it follows that
λ1 ≤ 0 and λ2 ≤ 0. Since by assumption the sequence {xk} is increasing
and the sequence {yk} is decreasing, then D−f(x0) ≤ λ1 ≤ 0 and D+f(x0) ≤
λ2 ≤ 0. Thus, in the second case the point 0 does not divide the intervals
[D−f(x0), D

−f(x0)] and [D+f(x0), D
+f(x0)], i.e. none of the conditions of the

theorem is satisfied.
So, if x0 is not an extremum point of the function f , then either point

0 is the derived number of the function f at the point x0, or both intervals
[D−f(x0), D

−f(x0)] and [D+f(x0), D
+f(x0)] are on one side of the point 0. If

the conditions of the theorem are satisfied, then neither of these two possibilities
is realized at the point x0, and, therefore, the point x0 is the extremum point
of the function f .

The points at which the function f can take extreme values can be selected
based on the behavior of any one-sided, for example, right-sided derivative. But
in this case it is no longer sufficient to know the value of this derivative only
at one point in order to relate this point to a set at which function f can take
extreme values or not. More precise representation on this phenomena is given
in the following theorem.

Theorem 6. Suppose for some δ > 0 on (x0 − δ, x0 + δ) there exists a con-
tinuous function f that reaches its extremal value at the point x0. If in some
neighborhood of the point x0 the function f has a continuous right derivative
f

′+, then it is necessary hatf
′+(x0) = 0.

Proof. Let the function f take a maximum value at the point x0 to be definite.
Then for all x > x0

f(x)− f(x0)

x− x0
≤ 0.

Transferring to the limit for x → x0 + 0 in this inequality which exists by
virtue of the assumption that there exists the right derivative at the point x0,
it follows that f

′+(x0) ≤ 0.
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Suppose f
′+(x0) < 0. By the continuity of the right derivative of the function

f in a neighborhood of the point x0, there exists δ
′
> 0, such that an inequality

f
′+(x) < 0 holds for all x ∈ [x0 − δ

′
, x0 + δ

′
].

Let us take an arbitrary point x1 in [x0 − δ
′
, x0). Since the function f is

continuous, it reaches its minimum at some point x2 on [x1, x0].

Let us show that x2 ̸= x0. Indeed, otherwise for all x ∈ [x1, x2] equality
f(x) = f(x0) must be realised by the fact that at the point x0 the function f
reaches its maximum. But such a conclusion is incompatible with the assump-
tion that f

′+(x) < 0 for all x ∈ [x1, x2].

So, now it is prooved that x2 ∈ (x1, x0). Then there exists a monotonically
decreasing sequence {yk} converging to x2, such that for all k

f(yk)− f(x2)

yk − x2
≥ 0.

But by assumption that f
′+(x2) < 0 and for all x > x2 and sufficiently close

to x2 the following is true
f(x)− f(x2)

x− x2
< 0.

Th arguments given above imply that a sequence {yk} with the properties
listed above does not exist.

Thus, the assumption that the inequality f
′+(x0) < 0 is satisfied leads to a

contradiction andf
′+(x0) = 0.

4. A theorem on a convex function

The function f is called convex if from condition x = αx1+(1−α)x2, α ∈ [0, 1],
the validity of inequality follows f(x) ≤ αf(x1)+(1−α)f(x2). If for all α ∈ (0, 1)
there is a strict inequality, i.e. f(x) < αf(x1) + (1−α)f(x2), then the function
f is called strictly convex.

The main purpose of this section is to prove a theorem giving necessary and
sufficient conditions for the function f to be convex. But before proceeding
with the proof of this theorem, let us first prove an auxiliary statement on the
reconstruction of a function from the values of its right derivative.

Theorem 7. Let a continuous function f have a right derivative f
′+(x) at each

point x ∈ [a, b]. If f
′+ is bounded on [a, b], then it is integrable on [a, b] and for

any x ∈ [a, b]

f(x) = f(a) +

∫ x

a
f

′+(y)dy.

Proof. Let us construct a function g by setting that

g(x) = f(x), x ∈ [a, b]f(b) + (x− b)f
′+(b), x > b.
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It is obvious that the function g is continuous and has a finite right derivative
on [a, b+ 1]. Let us introduce the following function for x ∈ [a, b] and n = 1, 2

ϕn(x) = n[g(x+
1

n
)− g(x)].

At each point x ∈ [a, b]

lim
n→∞

ϕn(x) = g
′+(x) = f

′+(x),

and since each of the continuous functions ϕn is measurable, then f
′+ is also

measurable, which implies the integrability of this function due to the condition
of boundedness. Further, by Theorem 6 [27]

g
′+(x+

θ′

n
) ≤ ϕn(x) = [g(x+

1

n
)− g(x)] ≤ g

′+(x+
θ
′′

n
), θ

′
, θ′′ ∈ (0, 1),

so that all of the functions ϕn are bounded by one number and, by the Lebesgue
theorem on the passage to the limit under the integral sign∫ b

a
f

′+(x)dx =

∫ b

a
g
′+(x)dx = lim

n→∞

∫ b

a
ϕn(x)dx.

But ∫ b

a
ϕn(x)dx = n

∫ b

a
g(x+

1

n
)dx− n

∫ b

a
g(x)dx

= n

∫ b+ 1
n

a+ 1
n

g(x)dx− n

∫ b

a
g(x)dx

= n

∫ b+ 1
n

b
g(x)dx− n

∫ a+ 1
n

a
g(x)dx.

Applying the mean-value theorem to each of the last two integrals, the following
is obtained: ∫ b

a
ϕn(x)dx = g(b+

θ
′
n

n
)− g(a+

θ
′′
n

n
), θ

′
n, θ

′′
n ∈ (0, 1),

which on the basis of the continuity of the function g implies the following

lim
n→∞

∫ b

a
ϕn(x)dx =

∫ b

a
g
′+(x)dx =

∫ b

a
f

′+(x)dx = g(b)− g(a) = f(b)− f(a).

Replacing b by an arbitrary x ∈ [a, b], the equality required in the condition of
the theorem is obtained.

In conclusion, note that substitution of variable in the integral and the ap-
plication of the mean-value theorem in the proof of the theorem are admissible,
since in both cases the continuous function are under integral.
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Theorem 8. In order for a function f bounded on (a, b) to be strictly convex,
it is necessary and sufficient that it be continuous and have a strictly increasing
right derivative f

′+ bounded at each point.

Proof. Necessity. If the function f is convex and bounded on (a, b), then it is
continuous on any interval [p, q] ⊂ (a, b), and hence it is continuous on (a, b),
too. Further, at each point of the open interval (a, b) the continuous convex
function has a bounded right derivative. Let us show that this derivative is
strictly increasing function, if f is strictly convex.

Consider two arbitrary points x and y > x. Assume α = 1
2(y − x) and let z

denote a point x + α = y − α. For the right derivative of a convex function at
each point x0 ∈ (a, b) the following the estimates are realised:

f(x0)− f(x0 − β)

β
≤ f

′+(x0) ≤
f(x0 + β)− f(x0)

β
,

where β > 0 so little that [x0 − β, x0 + β] ⊂ (a, b).
Applying these estimates to the function f at the points x and y for β = α, the
following two inequalities are obtained:

f
′+(x) ≤ α−1(f(z)− f(x)) = u,

f
′+(y) ≥ α−1(f(y)− f(z)) = v.

By assumption, f it is strictly convex, and by virtue of this fact the folowing
inequality is valid:

u− v = α−1(2f(z)− f(x)− f(y)) < 0,

i.e. this proves the inequality u < v. But, as noted above, f
′+(x) ≤ u and

v ≤ f
′+(y), which implies that f

′+(x) ≤ u < v ≤ f
′+(y), and therefore f

′+(x) <
f

′+(y), which proves a strict increase of the function fdue to the arbitrariness
of the points x and y.

Sufficiency. Suppose f is continuous on (a, b) and at each of its points has a
bounded right derivative, which is strictly a increasing function (a, b). First of
all, note that f

′+ is bounded on each interval [p, q] ⊂ (a, b). Indeed, consider an
arbitrary point x1 on (a, p), and an arbitrary point x2 on (q, b). Then, by the
monotonicity of the function f

′+, for any x ∈ [p, q] the following estimation is
true:

f
′+(x1) < f

′+(x) < f
′+(x2).

The note that the function f
′+ takes finite values at the points x1 and x2 proves

the validity of the assertion.
Thus, it is shown that all the conditions of Theorem 13 are satisfied on an

arbitrary interval [p, q] ⊂ (a, b), and therefore for any x ∈ [p, q] the followng
representation holds:

f(x) = f(p) +

∫ x

p
f

′+(y)dy.
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By condition, the function f
′+ is strictly increasing, and hence the function f is

strictly convex on [p, q]. Since [p, q] is an arbitrary interval belonging to (a, b),
it is strictly convex on (a, b).

Remark. The boundedness of the function f on (a, b) is used only to prove its
continuity. Thus, if it is known in advance that the function f is continuous on
(a, b), then the requirement of its boundedness on this interval can be omitted.

Conclusion. The method of derived numbers to study periodic and almost
periodic solutions of ordinary differential equations is developed. Necessary and
sufficient conditions for the convexity of one variable functions are presented.
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