A STUDY OF SECOND ORDER IMPULSIVE NEUTRAL DIFFERENTIAL EVOLUTION CONTROL SYSTEMS WITH AN INFINITE DELAY

P. Palani
Sri Vidya Mandir Arts & Science College
Uthangarai, Krishnagiri - 635307
Tamil Nadu
India
ppalanitamil@gmail.com

T. Gunasekar*
Department of Mathematics
Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
Chennai-600062
Tamil Nadu
India
tguna84@gmail.com

M. Angayarkanni
Department of Mathematics
Kandasamy Kandars College
P. Vellore, Namakkal-638182
Tamil Nadu
India
angarkanni66@rediffmail.com

D. Kesavan
Department of Mathematics
Padmavani Arts & Science College for Women
Salem - 636011
Tamil Nadu
INDIA
kesavan989@gmail.com

Abstract. In this article, we study sufficient conditions for the controllability of second-order impulsive partial neutral differential evolution systems with infinite delay in Banach spaces by using the theory of cosine families of bounded linear operators and fixed point theorem.

Keywords: Nonlinear ordinary differential operators, Impulsive optimal control problems; evolution equations.

*. Corresponding author
1. Introduction

The study of impulsive functional differential equations is related to their utility in simulating processes and phenomena subject to short-time perturbations during their evolution. The perturbations are executed discretely and their duration is negligible in comparison with the total duration of the processes. That is why the perturbations are considered to take place instantaneously in the form of impulses. The theory of impulsive systems provides a common framework for mathematical modeling of many real-world phenomena. Moreover, these impulsive phenomena can also be found in fields such as information science, electronics, fed-batch culture in fermentative production, robotics and telecommunications (see [1, 5, 13, 15, 17, 19] and references therein).

In recent years, the study of impulsive control systems has received increasing interest. Due to its importance several authors have investigated the controllability of impulsive systems (see [2, 6, 9, 18]).

Motivated by the effort of the after mentioned papers [2, 10], the primary inspiration driving this manuscript is mainly concerned with the study of controllability of second order impulsive partial neutral system of the form

\[
\frac{d}{d\bar{u}} \left[\vartheta'(\bar{u}) - \theta_1(\bar{u}, \vartheta_u) \right] = A(\bar{u})\vartheta(\bar{u}) + Bu(\bar{u}) + \theta_2(\bar{u}, \vartheta_u),
\]

(1) \(\bar{u} \in J = [0, a], \; \bar{u} \neq \bar{u}_k, \; k = 1, 2, \ldots, n, \)

(2) \(\vartheta_0 = \phi \in \mathcal{B}, \; \vartheta'(0) = \xi \in X, \)

(3) \(\Delta \theta(\bar{u}_k) = I_k(\vartheta_{\bar{u}_k}), \; k = 1, 2, \ldots, m, \)

(4) \(\Delta \vartheta'(\bar{u}_k) = J_k(\vartheta_{\bar{u}_k}), \; k = 1, 2, \ldots, m, \)

where \(\phi \in \mathcal{B} \) and \(\xi \in X \). The control function \(u(\cdot) \) is given in \(L^2(J, U) \), a Banach space of admissible control functions with \(U \) as a Banach space and \(B : U \to X \) as a bounded linear operator; For \(\bar{u} \in J \), \(x_{\bar{u}} \) represents the function \(\vartheta_{\bar{u}} : (-\infty, 0] \to X \) defined by \(\vartheta_{\bar{u}}(\theta) = \vartheta(\bar{u} + \theta), -\infty < \theta \leq 0 \) which belongs to some abstract phase space \(\mathcal{B} \) defined axiomatically, \(\theta_1, \theta_2 : J \times \mathcal{B} \to X, \)

\(I_k : \mathcal{B} \to X, J_k : \mathcal{B} \to X \) are appropriate functions and will be specified later.

In each text we will assume that \(A(\cdot) \) generates an evolution operator \(S(\bar{u}, s) \).

2. Preliminaries

This section we review some basic concepts, notation, and properties required to find our main results. Nowadays there has been an increasing interest in studying the theoretical non-autonomous second order initial value problem

\[
\vartheta''(\bar{u}) = A(\bar{u})\vartheta(\bar{u}) + f(\bar{u}), \quad 0 \leq s, \bar{u} \leq a,
\]

(5) \(\vartheta(s) = v, \; \vartheta'(s) = w, \)

(6)
where \(A(\dot{u}) : D(A(\dot{u})) \subseteq \theta \to X, \dot{u} \in J = [0, a] \) is a closed densely defined operator and \(f : J \to X \) is an suitable function. Equations of this form have been considered in several papers. We refer the reader to [14, 16] and the references therein. In the majority of works, the existence of results to the problem (5)-(6) is related to the existence of an evolution operator \(S(\dot{u}, s) \) for the homogeneous equation,

\[
(7) \quad \phi''(\dot{u}) = A(\dot{u})\phi(\dot{u}), \quad 0 \leq s, \dot{u} \leq a.
\]

Let us assume that the domain of \(A(\dot{u}) \) is a subspace of \(D \) dense in \(X \) and not dependent of \(\dot{u} \), and for each \(\theta \in D \) the function \(\dot{u} \mapsto A(\dot{u})\theta \) is continuous. The fundamental solution for the second-order evolution equation (7), has been developed by Kozak [12], and we will use the following concept of evolution operator.

Definition 2.1. A family \(S \) of a bounded linear operator \(S(\dot{u}, s) : J \times J \to L(\theta) \) is called an evolution operator for (7), if the following conditions are satisfied:

(Z1) For each \(\theta \in X \), the mappings \((\dot{u}, s) \in [0,a] \times [0,a] \to S(\dot{u}, s)\theta \in X \) of class \(C^1 \) and

\begin{itemize}

 \item[(i)] For each \(\dot{u} \in [0,a] \), \(S(\dot{u}, \dot{u}) = 0 \),

 \item[(ii)] For all \(\dot{u}, s \in [0,a] \), and for each \(\theta \in X \),
 \[
 \frac{\partial}{\partial \dot{u}} S(\dot{u}, s)\theta|_{\dot{u}=s} = \theta, \quad \frac{\partial}{\partial s} S(\dot{u}, s)\theta|_{s=0} = -\theta;
 \]
\end{itemize}

(Z2) For all \(\dot{u}, s \in [0,a] \) if \(\theta \in D(A) \), then \(S(\dot{u}, s)\theta \in D(A) \), the mappings \((\dot{u}, s) \in [0,a] \times [0,a] \to S(\dot{u}, s)\theta \in \theta \) is of class \(C^2 \) and

\begin{itemize}
 \item[(i)] \(\frac{\partial^2}{\partial \dot{u}^2} S(\dot{u}, s)\theta = A(\dot{u})S(\dot{u}, s)\theta, \)

 \item[(ii)] \(\frac{\partial^2}{\partial s^2} S(\dot{u}, s)\theta = S(\dot{u}, s)A(s)\theta, \)

 \item[(iii)] \(\frac{\partial}{\partial \dot{u}} \frac{\partial}{\partial s} S(\dot{u}, s)\theta|_{\dot{u}=s} = 0. \)
\end{itemize}

(Z3) For all \(\dot{u}, s \in [0,a] \) if \(\theta \in D(A) \), then \(\frac{\partial}{\partial s} S(\dot{u}, s)\theta \in D(A) \), there exists \(\frac{\partial^2}{\partial \dot{u}^2} \frac{\partial}{\partial s} S(\dot{u}, s)\theta = \frac{\partial^2}{\partial \dot{u}^2} S(\dot{u}, s)\theta \) and

\begin{itemize}
 \item[(i)] \(\frac{\partial^2}{\partial \dot{u}^2} \frac{\partial}{\partial s} S(\dot{u}, s)\theta = A(\dot{u}) \frac{\partial}{\partial s} S(\dot{u}, s)\theta, \)

 \item[(ii)] \(\frac{\partial^2}{\partial \dot{u}^2} \frac{\partial}{\partial s} S(\dot{u}, s)\theta = \frac{\partial}{\partial s} S(\dot{u}, s)A(s)\theta \) and the mapping \([0,a] \times [0,a] \ni (\dot{u}, s) \to A(\dot{u}) \frac{\partial}{\partial s} S(\dot{u}, s)\theta \) is continuous.
\end{itemize}

Throughout this problem we assume that there exists an evolution operator \(S(\dot{u}, s) \) associated to the operator \(A(\dot{u}) \). To abbreviate the text, we introduce the operator \(C(\dot{u}, s) = -\frac{\partial S(\dot{u}, s)}{\partial s} \). In addition, we set \(N \) and \(\bar{N} \) for positive
constants such that $\sup_{0 \leq s, \dot{u} \leq a} \|S(\dot{u}, s)\| \leq N$ and $\sup_{0 \leq s, \dot{u} \leq a} \|C(\dot{u}, s)\| \leq \tilde{N}$. In addition, we denote by N_1 a positive constant such that,

$$
\|S(\dot{u} + h, s) - S(\dot{u}, s)\| \leq N_1 |h|,
$$

for all $s, \dot{u}, \dot{u} + h \in [0, a]$. Assuming that $f : J \to X$ is an integrable function, the mild solution $\vartheta : [0, a] \to X$ of the problem (5)-(6) is given by,

$$
\vartheta(\dot{u}) = C(\dot{u}, s)v + S(\dot{u}, s)w + \int_{s}^{\dot{u}} S(\dot{u}, \tau)f(\tau)d\tau.
$$

In the literature a number of methods have been discussed to establish the existence of solutions for the second order abstract Cauchy problem, $\dot{u}'' = Au + h(u)$, $0 \leq \dot{u} \leq a$.

$$
\vartheta_{\vartheta}(\dot{u}) = A\vartheta(\dot{u}) + h(\dot{u}), \quad 0 \leq \dot{u} \leq a
$$

and

$$
\vartheta(s) = v, \vartheta'(s) = \omega,
$$

is of class $C(.)$ in X. From this, it follows that $S(\dot{u}) : X \to E$ is a bounded linear map such that the operator valued maps $S(.)$ is strongly continuous and $AS(\dot{u}) : E \to X$ is a bounded linear operator such that $A(S)\vartheta \to 0$ as $\dot{u} \to 0$, for each $\vartheta \in E$. Furthermore, if $\vartheta : [0, \infty) \to X$ is a locally integrable function, then the function $y(\dot{u}) = \int_{\tau}^{\dot{u}} S(\dot{u} - s)\vartheta(s)ds$ defines an E-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem,
where \(h: J \to X \) is an integrable function, has been discussed in [22]. Similarly the existence of solutions of semilinear second order abstract Cauchy problems has been treated in [23]. We only mention here that the function \(\vartheta(\cdot) \) given by

\[
(13) \quad \vartheta(\dot{u}) = C(\dot{u} - s)v + S(\dot{u} - s)\omega + \int_s^\dot{u} S(\dot{u} - \tau)h(\tau)d\tau, \quad 0 \leq \dot{u} \leq a,
\]

is called a mild solution of (7)-(8) and that when \(\vartheta(\cdot) \) is continuously differentiable and

\[
\vartheta'(\dot{u}) = AS(\dot{u} - s)v + C(\dot{u} - s)\omega + \int_s^\dot{u} C(\dot{u} - \tau)h(\tau)d\tau \quad 0 \leq \dot{u} \leq a.
\]

In addition, if \(\vartheta(\cdot) \) is a solution of the initial value problem (11)-(12), then the function \(\vartheta'(\cdot) \) is continuously differentiable in \(E \) for each \(\vartheta \in E \).

It has been established by Serizawa [20] that for each \((v, \omega) \in D(A) \times E \) the non-autonomous abstract Cauchy problem

\[
(14) \quad \vartheta''(\dot{u}) = (A + \dot{B}(\dot{u}))\vartheta(\dot{u}), \quad \dot{u} \in R,
\]

\[
(15) \quad \vartheta(0) = v, \quad \vartheta'(0) = \omega,
\]

has a unique solution \(\vartheta(\cdot) \) such that the function \(\dot{u} \mapsto \vartheta(\dot{u}) \) is continuously differentiable in \(E \). It is clear that the same argument allows us to conclude that Eq.(14), with the initial condition (12) has a unique solution \(\vartheta(\cdot, s) \) such that the function \(\dot{u} \mapsto \vartheta(\dot{u}, s) \) is continuously differentiable in \(E \). It follows from (13) that

\[
\vartheta(\dot{u}, s) = C(\dot{u} - s)v + S(\dot{u} - s)\omega + \int_s^\dot{u} S(\dot{u} - \tau)\dot{B}(\tau)\vartheta(\tau, s)d\tau.
\]

In particular, for \(v = 0 \) we have

\[
(16) \quad \vartheta(\dot{u}, s) = S(\dot{u} - s)\omega + \int_s^\dot{u} S(\dot{u} - \tau)\dot{B}(\tau)\vartheta(\tau, s)d\tau.
\]

Consequently,

\[
\|\vartheta(\dot{u}, s)\|_1 \leq \|S(\dot{u} - s)\|_{L(\vartheta, E)} \|\omega\| + \int_s^\dot{u} \|S(\dot{u}, \tau)\|_{L(\vartheta, E)} \|\dot{B}(\tau)\|_{L(\vartheta, E)} \|\vartheta(\tau, s)\|_1 d\tau
\]

and, applying the Gronwall - Bellman lemma we infer that

\[
(17) \quad \|\vartheta(\dot{u}, s)\|_1 \leq \tilde{M} \|\omega\|, \quad s, \dot{u} \in J.
\]

We define the operator \(S(\dot{u}, s)\omega = \vartheta(\dot{u}, s) \). It follows from the previous estimate that \(S(\dot{u}, s) \) is a bounded linear map on \(E \). Since \(E \) is dense in \(X \), we can
extend $S(\dot{u}, s)$ to X. We keep the notation $S(\dot{u}, s)$ for this extension. It is well known that, exception the case $\text{dim}(X) < \infty$, the cosine function $C(\dot{u})$ cannot be compact for all $\dot{u} \in \mathbb{R}$. By contrast, for the cosine functions that arise in specific applications, the sine function $S(\dot{u})$ is very often a compact operator for all $\dot{u} \in \mathbb{R}$. This motivates the result [[7], Theorem 1.2].

We now consider some notations and definitions concerning impulsive differential equations. A function $\vartheta : [\sigma, \tau] \to X$ is said to be a normalized piecewise continuous function on $[\sigma, \tau]$ if ϑ is piecewise continuous and left continuous on $(\sigma, \tau]$. We denote by $\mathcal{PC}([\sigma, \tau], X)$ the space of normalized piecewise continuous functions from $[\sigma, \tau]$ into X. In particular, we introduce the space \mathcal{PC} formed by all normalized piecewise continuous functions $\vartheta : [0, a] \to X$ such that $\vartheta(\cdot)$ is continuous at $\dot{u} \neq \dot{u}_k$, $\vartheta(\dot{u}_{k-}) = \vartheta(\dot{u}_k)$ and $\vartheta(\dot{u}_k^+) \in X$ exists, for $k = 1, 2, \ldots, m$. In this paper, we always assume that \mathcal{PC} is endowed with the norm $\|\vartheta\|_{\mathcal{PC}} = \sup_{s \in I} \|\vartheta(s)\|$. It is clear that $(\mathcal{PC}, \|\cdot\|_{\mathcal{PC}})$ is a Banach space.

In what follows, we put $\hat{u}_0 = 0, \hat{u}_{m+1} = a$ and, for $\vartheta \in \mathcal{PC}$, we denote by $\hat{\vartheta}_k$, for $k = 0, 1, \ldots, m$, the function $\hat{\vartheta}_k \in C(\hat{\mathcal{C}})\cap C(\hat{\mathcal{D}})\cap C(\hat{\mathcal{S}})$ given by $\hat{\vartheta}_k(\dot{u}) = \vartheta(\dot{u})$ for $\dot{u} \in (\hat{u}_k, \hat{u}_{k+1})$ and $\hat{\vartheta}_k(\hat{u}_k) = \lim_{\dot{u} \to \hat{u}_k^-} \vartheta(\dot{u})$. Moreover, for a set $E \subseteq \mathcal{PC}$, we denote by \hat{E}_k, for $k = 0, 1, \ldots, m$, the set $\hat{E}_k = \hat{\vartheta}_k : \vartheta \in E$.

Lemma 2.1. A set $E \subseteq \mathcal{PC}$ is relatively compact in \mathcal{PC} if and only if each $\hat{E}_k, k = 0, 1, \ldots, m$, is relatively compact in $C(\hat{\mathcal{C}})\cap C(\hat{\mathcal{D}})\cap C(\hat{\mathcal{S}})$.

In this work we will employ an axiomatic definition of the phase space \mathcal{B}, similar to the one used in [8] and suitably modify to treat retarded impulsive differential equations. More precisely, \mathcal{B} will denote the vector space of functions defined from $(-\infty, 0]$ into ϑ endowed with a seminorm denoted $\|\cdot\|_B$ and such that the following axioms are hold:

(A) If $\vartheta : (-\infty, \mu + b] \to \vartheta, b > 0$, is such that $\vartheta_{\mu} \in \mathcal{B}$ and $\vartheta|_{[\mu, \mu + b]} \in \mathcal{PC}([\mu, \mu + b], X)$ then, for every $\dot{u} \in [\mu, \mu + b]$, the following conditions are hold: and

1. $\vartheta_{\dot{u}}$ is in \mathcal{B},
2. $\|\vartheta(\dot{u})\| \leq H \|\vartheta(\dot{u})\|_B$,
3. $\|\vartheta(\dot{u})\|_B \leq K(\dot{u} - \mu) \sup\{\|\vartheta(s)\| : s \leq \dot{u}\} + M(\dot{u} - \mu)\|\vartheta(\dot{u})\|_B$.

where $H > 0$ is a constant; $K, M : [0, \infty) \to [1, \infty)$, K is continuous, M is locally bounded and H, K, M are independent of $\vartheta(\cdot)$.

(B) The space \mathcal{B} is complete.

Remark 2.1. In impulsive functional differential systems, the map $[\mu, \mu + b] \to \mathcal{B}, \dot{u} \to \vartheta$, is in general discontinuous. For this reason, this property has been excluded from our description of the phase space \mathcal{B}.

Now we include that some of our proofs are based on the following well-known result [[4], Theroem 6.5.4].
Lemma 2.2 (Leray-Schauder Alternative). Let D be a closed convex subsets of a normed lined space ϑ such that $0 \in D$. Let $F : D \to D$ be a completely continuous map. Then the set $\{ \vartheta \in D : \vartheta = \lambda F(\vartheta), \text{ for some } 0 < \lambda < 1 \}$ is unbounded or the map F has a fixed point in D.

The terminology and notations are generally used in functional analysis. In particular, for Banach spaces $(Z, \|\cdot\|), (W, \|\cdot\|_w)$, the notation $L(Z, W)$ stands for the Banach space of bounded linear operators from Z into W and we abbreviate to $L(Z)$ whenever $Z = W$. By $\sigma(A)$ (respectively $\rho(A)$) we denote the spectrum (respectively the resolvent set) of a linear operator A. Moreover $B_r(\vartheta, Z)$ denotes the closed ball with center at ϑ and radius $r > 0$ in the space Z.

Remark 2.2. In what follows the notation $g(a)$ stands for the space $
 \theta_1(a) = \{ y : (\infty, a) \to \vartheta : y|_J \in PC, y_0 = 0 \}$.

endowed with the sup norm. In addition, we denote by $\tilde{\phi} : (\infty, a] \to \vartheta$ the function defined by $\tilde{\phi}(0) = \phi$ and $\tilde{\phi}(\hat{u}) = C(\hat{u}, 0)\phi(0) + S(\hat{u}, 0)\zeta$, for $\hat{u} \geq 0$.

Definition 2.2. A function $\vartheta : (\infty, a] \to X$ is called a mild solution of the abstract Cauchy problem (1)-(4), if $\vartheta_0 = \phi \in B, \vartheta|_J \in PC$, the impulsive conditions $\Delta \vartheta(\hat{u}_k) = I_k(\vartheta_{\hat{u}_k}), \Delta \hat{\vartheta}(\hat{u}_k) = J_k(\vartheta_{\hat{u}_k}), k = 1, 2, \ldots, m$, are satisfied and the following integral equation

$$
\vartheta(\hat{u}) = C(\hat{u}, 0)\phi(0) + S(\hat{u}, 0)\left(\vartheta - \theta_1(0, \phi, 0) \right) + \int_0^{\hat{u}} C(\hat{u}, s)\theta_1(s, \vartheta_s)ds \\
+ \int_0^{\hat{u}} S(\hat{u}, s)[Bu(s) + \theta_2(s, \vartheta_s)]ds \\
+ \sum_{0 < \hat{u}_k < \hat{u}} C(\hat{u}, \hat{u}_k)I_k(\vartheta_{\hat{u}_k}) + \sum_{0 < \hat{u}_k < \hat{u}} S(\hat{u}, \hat{u}_k)J_k(\vartheta_{\hat{u}_k}), \quad 0 < \hat{u} < a.
$$

is verified.

3. Controllability result

To establish our result, we introduce the following assumptions on system (1)-(4):

(H1) The function $\theta_i : J \times B \to X$ is continuous and there exist constants $L_{\theta_1} > 0, L_{\theta_2} > 0$ for $\psi_1, \psi_2 \in B$, such that

$$
\|\theta_i(\hat{u}, \psi_1) - \theta_i(\hat{u}, \psi_2)\| \leq L_{\theta_i} \|\psi_1 - \psi_2\|_B
$$

and $\tilde{L}_{\theta_i} = \sup_{\hat{u} \in J} \|\theta_i(\hat{u}, 0)\|, \quad i = 1, 2$. We have $\|\theta_i(t, \psi)\| \leq L_{\theta_i} \|\psi\|_B$.

$$
\tilde{L}_{\theta_i}, \quad i = 1, 2.
$$
\[W u = \int_0^a S(a,s)Bu(s)ds, \]

has a bounded invertible operator \(W^{-1} \) which takes values in \(L^2(J,U)/\text{ker}W \) and there exist positive constant \(M \) such that \(\|BW^{-1}\| \leq M_1. \)

(H3) The impulsive functions satisfy the following conditions:

(i) The maps \(I_k : B \to X, k = 1, 2, \ldots, m \) is continuous and there exist constants \(L_1 > 0, \tilde{L}_1 > 0 \) for \(\psi_1, \psi_2 \in B \) such that
\[\|I_k(\psi_1) - I_k(\psi_2)\| \leq L_1\|\psi_1 - \psi_2\| \]
and \(\tilde{L}_1 = \|I_k(0)\|. \)

(ii) The maps \(J_k : B \to X, k = 1, 2, \ldots, m \) is continuous and there exists constants \(L_j > 0, \tilde{L}_j > 0 \) for \(\psi_1, \psi_2 \in B \) such that
\[\|J_k(\psi_1) - J_k(\psi_2)\| \leq L_j\|\psi_1 - \psi_2\| \]
and \(\tilde{L}_j = \|J_k(0)\|. \)

(H4) Let \(aN \left[L_{\theta_1} (K_a r + c_1) + \tilde{L}_{\theta_1} \right] + aNA_0 + \sum_{k=1}^m \left(\tilde{N}L_1 + NL_j \right) \left[K_a r + \| \tilde{\phi}_{u_k} \| \right] + \sum_{k=1}^m (\tilde{N}\tilde{L}_1 + N\tilde{L}_j) \leq r, \) for some \(r > 0. \)

(H5) Let \(\mu = k_a(1 + aNM_1)\left[a\tilde{N}L_d + aNL_{\theta_1} + \sum_{k=1}^m (\tilde{N}L_1 + NL_j) \right]) < 1 \) be such that \(0 < \mu < 1. \)

Definition 3.3. The system (14-17) is said to be controllable on the interval \(J, \)
if for every \(\vartheta_0 = \phi \in B, \vartheta'(0) = \zeta, \) and \(z_1 \in X, \)
there exists a control \(u \in L^2(J,U) \)
such that the mild solution \(\vartheta(\cdot) \) of (1)-(4) satisfies \(\vartheta(a) = z_1. \)

The following results is an immediate application of the contraction principle of Banach. To simplify the text, we denote \(K_a = \sup_{0 \leq \phi \leq a} K(\hat{\phi}). \)

Since \(\| \tilde{\phi}_{u_k} \| B = \tilde{N}\| \phi(0) \| + \tilde{N}\| \zeta \| + M\phi \| B \leq K a, \)
\(0 \leq t \leq a, \)
we denote, \(c_1 = \sup_{0 \leq \phi \leq a} \| \tilde{\phi}_{u_k} \| B \) and \(\| y_\phi + \tilde{\phi}_{u_k} \| \leq K_a\| y_\phi \| + \| \tilde{\phi}_{u_k} \| \leq K_a r + c_1 = \rho. \)

Theorem 3.1. If the hypothesis \((H1)-(H5) \) are satisfied, then the impulsive second order system (1)-(4) is controllable on \(J. \)

Proof. Using the assumption \((H2), \)
we define the control function
\[u(\hat{u}) = W^{-1}[z_1 - C(a,0)\phi(0) - S(a,0)[\zeta - \theta_1(0,\phi)] + \int_0^a C(a,s)\theta_1(s,\phi)ds \]
\[- \int_0^a S(a,s)\theta_1(s,\phi)ds - \sum_{k=1}^m C(a,\hat{u}_k)I_k(\hat{\phi}_{u_k}) - \sum_{k=1}^m S(a,\hat{u}_k)J_k(\hat{\phi}_{u_k})](\hat{u}). \]
Let $B_r = \{ \vartheta \in X, \| \vartheta \| \leq r \}$ for some $r > 0$. Now we show that when using this control the operator Γ on the space $\theta_2(a)$ defined by $(\Gamma y)_0 = 0$ and

$$(\Gamma y)(\dot{u}) = S(\dot{u}, 0)[\zeta - \theta_1(0, \phi)] - \int_{0}^{a} C(\dot{u}, s)\theta_1(s, y_s)
+ \tilde{\phi}_s)ds + \int_{0}^{a} S(\dot{u}, s)\theta_2(s, y_s + \tilde{\phi}_s)ds
+ \int_{0}^{a} S(\dot{u}, \eta)BW^{-1}\left[z_1 - C(a, 0)\phi(0) - S(a, 0)[\zeta - \theta_2(0, \phi)]\right]
+ \int_{0}^{a} C(a, s)\theta_1(s, y_s + \tilde{\phi}_s)ds
- \int_{0}^{a} S(a, s)\theta_2(s, y_s + \tilde{\phi}_s)ds - \sum_{k=1}^{m} C(a, \dot{u}_k)I_k(y_{u_k} + \tilde{\phi}_{\dot{u}_k})
- \sum_{k=1}^{m} S(a, \dot{u}_k)J_k(y_{u_k} + \tilde{\phi}_{\dot{u}_k})\right](\eta)d\eta
+ \sum_{0 < \dot{u}_k < \dot{u}} C(\dot{u}, \dot{u}_k)I_k(y_{\dot{u}_k} + \tilde{\phi}_{\dot{u}_k}) + \sum_{0 < \dot{u}_k < \dot{u}} S(\dot{u}, \dot{u}_k)J_k(y_{\dot{u}_k} + \tilde{\phi}_{\dot{u}_k}), \dot{u} \in J,$

has a fixed point $\vartheta(\cdot)$. This fixed point is then a mild solution of the system (1)-(4). Clearly $(\Gamma \vartheta)(a) = z_1$ which means that the control u steers the system from the initial state ϕ to z_1 in time a, provided we can obtain a fixed point of the operator Γ which implies that the system is controllable. From the assumptions, it is easy to see that Γ is well defined and continuous. For convenience let us take,

$$
\|Bu(s)\| \leq M_1[\|z_1\| + \tilde{N}\|\phi(0)\|] + N[\|\zeta\| + L_{\theta_2}\|\phi\| + \tilde{L}_{\theta_2} + \tilde{N}a[L_{\theta_2}(K_ar + c_1)\tilde{L}_{\theta_2}] \\
+ aN[L_{\theta_1}(K_ar + c_1) + \tilde{L}_{\theta_1}] + \tilde{N}\sum_{k=1}^{m} [L_I(K_ar + \|\tilde{\phi}_{\dot{u}_k}\|) + \tilde{L}_I] \\
+ N\sum_{k=1}^{m} [L_{\theta_1}(K_ar + \|\tilde{\phi}\|) + \tilde{L}_I] = A_0.
$$

First we show that Γ maps $B_r(0, \theta_2(a))$ into $B_r(0, \theta_2(a))$. To this end, from the definition of the operator Γ in (18) and our hypotheses, we obtain

$$
\|(\Gamma y)(\dot{u})\| \leq N[\|\zeta\| + L_{\theta_2}\|\phi\| + \tilde{L}_{y}] + \tilde{N}a[L_{\theta_2}(K_ar + c_1)\tilde{L}_{\theta_2}] \\
+ aN[L_{\theta_1}(K_ar + c_1) + \tilde{L}_{\theta_1}] + aNA_0 + \sum_{k=1}^{m} (N\tilde{L}_I + \tilde{N}\tilde{L}_I) \\
+ \sum_{k=1}^{M} (N\tilde{L}_I)[K_ar + \|\tilde{\phi}_{\dot{u}_k}\|] \leq r.
$$
for \(y \in \theta_2(a) \) and \(\dot{u} \in J \). Hence \(\| \Gamma y \|_a \leq r \). Therefore, \(\Gamma \) maps \(B_r(0, \theta_2(a)) \) into itself. Now for \(y, z \in B_r(0, \theta_2(a)) \), we have

\[
\| (\Gamma y)(\dot{u}) - (\Gamma z)(\dot{u}) \| \leq K_a(1 + aNM_1) \left[a(\widetilde{N}L_{\theta_2} + aNL_{\theta_1}) + \sum + k = 1 \cdot m(\widetilde{N}L_1 + NL_J) \right] \| y - z \| \leq \mu \| y - z \|_a.
\]

Which implies that \(\Gamma \) is a contraction on \(B_r(0, \theta_2(a)) \). Hence by the Banach fixed point theorem, \(\Gamma \) has a unique fixed point \(y \) in \(\theta_2(a) \). Defining \(\vartheta(\check{u}) = y(\check{u}) + \hat{\varrho}(\check{u}), -\infty < \check{u} \leq a \), we obtain that \(\vartheta(\cdot) \) is a mild solution of the problem (1)-(4) and the proof is complete.

We use the below condition instead of (H1) to avoid the Lipschitz continuity of f used in Theorem 3.1.

(A1) The function \(\theta_1 : J \times \mathcal{B} \to X \) satisfies the following conditions:

\((i) \) For each \(\dot{u} \in J \), the function \(\theta_1(\dot{u}, \cdot) : \mathcal{B} \to X \) is continuous and the function \(\dot{u} \to \theta_1(\dot{u}, \vartheta_{\dot{u}}) \) is strongly measurable.

\((ii) \) There exist an integrable function \(p : J \to [0, \infty) \) and a continuous non-decreasing function \(\Omega : [0, \infty) \to (0, \infty) \) such that

\[
\| \theta_1(\dot{u}, \psi) \| \leq p(\dot{u})\Omega(\| \psi \|_B), (\dot{u}, \psi) \in J \times \mathcal{B}.
\]

Also, we have the following condition.

(A2)

\[
\left[\| z_1 \| + N\| \phi(0) \| + \widetilde{N}|||\lambda|| + L_{\theta_2}|| \phi \| + L_{\theta_2} \right] + Na(L_{\theta_2} + L_{\theta_2}) + N \int_0^a p(s)\Omega(\rho)ds + \widetilde{N} \sum_{k=1}^m (\alpha_k^1(\rho) + \alpha_k^2) + N \sum_{k=1}^m (\beta_k^1(\rho) + \beta_k^2(\rho)) \right] = M^*.
\]

Theorem 3.2. Assume that \(\theta_1 \) verify condition (A1) and condition (A2), (H2) are satisfied. Also, the following condition hold:

(a) For every \(\dot{u} \in J \) and every \(r > 0 \), the set \(U(r, \dot{u}) = \{ S(\dot{u}, s)\theta_1(s, \psi) : s \in [0, a], \psi \in B_r(0, \mathcal{B}) \} \) is relatively compact in \(X \).

(b) The maps \(I_k, J_k : \mathcal{B} \to X \) are completely continuous and there exist positive constants \(\alpha_k^1, \beta_k^1, i = 1, 2, k = 1, 2, \ldots, m \), such that \(\| I_k(\psi) \| \leq \alpha_k^1 \| \psi \|_B + \alpha_k^2 \) and \(\| J_k(\psi) \| \leq \beta_k^1 \| \psi \|_B + \beta_k^2, \) for all \(\psi \in \mathcal{B} \).

(c) The constant \(\mu = \widetilde{N}aK_aL_\theta + K_a \sum_{k=1}^m (\widetilde{N}a^2_k + N\beta_k^3) \) < 1 and \(\int_0^\infty \frac{ds}{(s+c)^{\mu}} > \frac{K_aN}{1-\mu} \int_0^a p(s)ds \) where \(c = \frac{1}{1-\mu} \left[N\| | | + L_{\theta_2} \| \phi \| + L_{\theta_2} \right] + \widetilde{N}aK_aL_{\theta_2} + aNM_1M^* + c_1 + K_a \sum_{k=1}^m (\widetilde{N}\alpha_k^2 + N\beta_k^2) \). Then the (1)-(4) is controllable on \(J \).
Proof. we define the map Γ on the space $\theta_2(a)$ as in eq (18). To prove the controllability of the problem (1)-(4), we must show that the operator Γ has a fixed point. This fixed point is then a mild solution of the system (1)-(4). From the assumptions, it is easy to see that Γ is well defined and continuous.

In order to apply Lemma 2.2, we need to obtain a priori bound for the solutions of the integral equation $y = \lambda \Gamma(y)$, $\lambda \in (0, 1)$. To this end, let y^λ be a solution of $\lambda \Gamma(y) = y$, $\lambda \in (0, 1)$. Using the notation $\nu^\lambda = \sup_{0 \leq s \leq \check{u}} |y^\lambda_s| + \phi_s \|B\| \leq K_a \|y^\lambda\|_s + \|\phi_s\|_{B,a} \leq K_a r + c_1 = \rho$, we observe that

$$||y^\lambda(\bar{u})|| \leq N \|l\| + L_{\theta_2} \|\phi\| + \tilde{N} a K_a \|L_{\theta_2} v^\lambda(s) + \tilde{L}_{\theta_2}^s + N \int_0^a p(s) \Omega(\nu^\lambda(s))ds$$

$$+ a N M_1 [M^*] + \sum_{0 < \check{u}_k < \bar{u}} (\tilde{N} a K_a^2 + N \beta_k^2) v^\lambda(\check{u}_k) + \sum_{0 < \check{u}_k < \bar{u}} (\tilde{N} a K_a^2 + N \beta_k^2).$$

Hence follows that

$$v^\lambda(\bar{u}) \leq N \|l\| + L_{\theta_2} \|\phi\| + \tilde{L}_{\theta_2} + \tilde{N} a K_a L_{\theta_2} + K_a N \int_0^t p(s) \Omega(\nu^\lambda(s))ds$$

$$+ a N M_1 [M^*] + \sup_{0 \leq s \leq t} \|\phi_s\|_{B,a} + K_a \sum_{k=1}^m (\tilde{N} a K_a^2 + N \beta_k^2) + \mu \nu^\lambda(t)$$

which yields

$$v^\lambda(\bar{u}) \leq c + \frac{K_a N}{1 - \mu} \int_0^\bar{u} p(s) \Omega(\nu^\lambda(s))ds.$$

Denoting by $\omega^\lambda(t)$ the right-hand side of the previous inequality, we see that

$$\omega^\lambda(\bar{u}) \leq \frac{K_a N}{1 - \mu} [p(\bar{u}) \Omega(\omega^\lambda(\bar{u}))],$$

and subsequently, upon integrating over $[0, \bar{u}]$, we obtain

$$\int_c^\omega \frac{\omega^\lambda(s)}{\Omega(s)} ds \leq \frac{K_a N}{1 - \mu} \int_0^\bar{u} p(s)ds \leq \frac{K_a N}{1 - \mu} \int_0^a p(s)ds < \int_c^\infty \frac{ds}{\Omega(s)}.$$

This estimate permits us to conclude that the set of functions $\{y^\lambda : \lambda \in (0, 1)\}$ is bounded and, in turn, that $\{y^\lambda : \lambda \in (0, 1)\}$ is bounded in $\theta_2(a)$. Next we show that Γ is completely continuous. To clarify this proof, we decompose Γ in the form $\Gamma_1 + \Gamma_2$, where

$$\Gamma_1 y(\bar{u}) = \int_0^\bar{u} S(\check{u}, s)[\theta_2(s, y_s + \tilde{\phi}_s) + Bu(s)]ds,$$

$$\Gamma_2 y(\bar{u}) = S(\bar{u}, 0)[\zeta - \theta_1(0, \phi)] - \int_0^\bar{u} C(\check{u}, s)\theta_1(s, y_s + \tilde{\phi}_s)ds$$

$$+ \sum_{0 < \check{u}_k < \bar{u}} C(\check{u}, \check{u}_k) J_k(y_{\check{u}_k} + \tilde{\phi}_{\check{u}_k}) + \sum_{0 < \check{u}_k < \bar{u}} S(\check{u}, \check{u}_k) J_k(y_{\check{u}_k} + \tilde{\phi}_{\check{u}_k}), \check{u} \in J.$$
Using the hypotheses, condition (b) and Lemma 2.1, we obtain that \(\Gamma_1 \) is continuous and that \(\Gamma_2 \) is completely continuous. In order to use the Ascoli-Arzela theorem we prove that \(\Gamma_1 \) takes bounded sets into relatively compact ones. As above, \(B_r = B_r(0, \theta_2(a)) \) and \(\|y_0 + \varphi_0\|_B \leq K_0r + c_1 = \rho \) for \(\dot{u} \in J \). And also, \(\|(Bu)(s)\| \leq B_0 \).

From the mean value theorem, we see that
\[
\Gamma_1 y(\dot{u}) \in \overline{\text{co}} \{ S(\dot{u}, s)\theta_1(s, \psi) : s \in [0, a], \|\psi\|_B \leq \rho \}
\]
which implies that the set \(\{ \Gamma_1 y(\dot{u}) : y \in B_r(0, \theta_2(a)) \} \) is relatively compact for each \(\dot{u} \in J \). Moreover, from
\[
\begin{align*}
\Gamma_1 y(\dot{u} + h) - \Gamma_1 y(\dot{u}) & = \int_{0}^{\dot{u}} [S(\dot{u} + h, s) - S(\dot{u}, s)]\theta_2(s, y_s + \tilde{\varphi}) + (Bu)(s)ds \\
& \quad + \int_{\dot{u}}^{\dot{u} + h} S(\dot{u} + h, s)\theta_2(s, y_s + \tilde{\varphi}) + (Bu)(s)ds
\end{align*}
\]
and using that \(S(\cdot, s) \) verifies a Lipschitz condition, we obtain that
\[
\|\Gamma_1 y(\dot{u} + h) - \Gamma_1 y(\dot{u})\| \leq |h| N_1 \int_{0}^{a} [p(s)\Omega(\rho) + B_0]ds + N \int_{\dot{u}}^{\dot{u} + h} [p(s)\Omega(\rho) + B_0]ds
\]
which implies that \(\|\Gamma_1 y(t + h) - \Gamma_1 y(t)\| \to 0 \) as \(h \to 0 \) uniformly for \(y \in B_r(0, g(a)) \). From this we infer that \(\Gamma_1 y(\dot{u}) : y \in B_r(0, \theta_2(a)) \) is relatively compact in \(G(a) \) and consequently that \(\Gamma_1 \) is completely continuous. This completes the proof of the assertion that the map \(\Gamma \) is completely continuous.

By an application of Lemma 2.1, we conclude that there exists a fixed point \(y \) of \(\Gamma \). It is clear that the function \(\vartheta = y + \tilde{\varphi} \) is a mild solution of the system (1)-(4). This completes the proof.

References

Accepted: 3.09.2018