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Abstract. We apply the notion of bipolar fuzzy translations of a bipolar-valued fuzzy
set to UP-algebras. For any bipolar-valued fuzzy set ¢ = (4;¢~,¢™) in a UP-algebra
A, the notions of bipolar fuzzy (a, 3)-translations of ¢ = (A4;¢~,¢™) of type I and of
type II are introduced, their basic properties are investigated and some useful examples
are discussed. The notions of extensions and of intensions of a bipolar-valued fuzzy
set are also studied. Moreover, we discuss the relation between the complement of a
bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and
bipolar fuzzy strongly UP-ideal) and its level cuts.
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1. Introduction

Among many algebraic structures, algebras of logic form important class of alge-
bras. Examples of these are BCK-algebras [5], BCI-algebras [6], BCH-algebras
[3], K-algebras [1], KU-algebras [16], SU-algebras [12], UP-algebras [4] and oth-
ers. They are strongly connected with logic. For example, BCl-algebras intro-
duced by Iséki [6] in 1966 have connections with BCI-logic being the BCI-system
in combinatory logic which has application in the language of functional pro-
gramming. BCK and BCl-algebras are two classes of logical algebras. They
were introduced by Imai and Iséki [5, 6] in 1966 and have been extensively in-
vestigated by many researchers. It is known that the class of BCK-algebras is
a proper subclass of the class of BCI-algebras.

The notion of fuzzy sets of a set was first considered by Zadeh [22] in 1965.
The fuzzy set theories developed by Zadeh and others have found many appli-
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cations in the domain of mathematics and elsewhere. There are several kinds
of fuzzy set extensions in the fuzzy set theory, for example, intuitionistic fuzzy
sets, interval-valued fuzzy sets, vague sets, bipolar-valued fuzzy sets etc. The
notion of bipolar-valued fuzzy sets was first introduced by Lee [14] in 2000, is
an extension of fuzzy sets whose membership degree range is enlarged from the
interval [0,1] to [—1,0]. After the introduction of the notion of bipolar-valued
fuzzy sets by Lee [14], several researches were conducted on the generalizations
of the notion of bipolar-valued fuzzy sets and application to many logical al-
gebras such as: In 2008, Jun and Song [10] introduced the notions of bipolar
fuzzy subalgebras and bipolar fuzzy closed ideals in BCH-algebras. In 2009, Jun
and Park [9] introduced the notions of bipolar fuzzy regularities, bipolar fuzzy
regular subalgebras, bipolar fuzzy filters, and bipolar fuzzy closed quasi filters in
BCH-algebras. In 2011, Lee and Jun [13] introduced the notion of bipolar fuzzy
a-ideals of BCl-algebras. In 2012, Jun et al. [8] introduced the notions of bipo-
lar fuzzy Cl-subalgebras, bipolar fuzzy ideals and (closed) bipolar fuzzy filters
in Cl-algebras. In 2014, Muhiuddin [15] introduced the notions of bipolar fuzzy
KU-subalgebras and bipolar fuzzy KU-ideals in KU-algebras. In 2015, Senapati
[20] introduced the notion of bipolar fuzzy BG-subalgebras in BG-algebras. In
2016, Sabarinathan et al. [17] introduced the notion of bipolar valued fuzzy
ideals of BF-algebras. In 2017, Sabarinathan et al. [18] introduced the notion
of bipolar valued fuzzy H-ideals of BF-algebras.

Moreover, bipolar-valued fuzzy sets were extended to bipolar fuzzy transla-
tions in many algebras such as: In 2009, Jun et al. [7] introduced the notions
of bipolar fuzzy translations and bipolar fuzzy S-extensions of a bipolar fuzzy
subalgebra in BCK/BCl-algebras. In 2012, Sardar et al. [19] introduced the no-
tions of bipolar valued fuzzy translations and bipolar valued fuzzy S-extensions
of a bipolar valued fuzzy subsemigroup (bi-ideal) in semigroups.

In this paper, we apply the notion of bipolar fuzzy translations of a bipolar-
valued fuzzy set to UP-algebras. For any bipolar-valued fuzzy set ¢ = (A; 07, p™)
in a UP-algebra A, the notions of bipolar fuzzy («,f)-translations of ¢ =
(A;07,¢T) of type I and of type II are introduced, their basic properties are
investigated and some useful examples are discussed. The notions of extensions
and of intensions of a bipolar-valued fuzzy set are also studied. Moreover, we
discuss the relation between the complement of a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and bipolar fuzzy strongly
UP-ideal) and its level cuts.

2. Basic results on UP-algebras

Before we begin our study, we will introduce the definition of a UP-algebra.

An algebra A = (A, -,0) of type (2,0) is called a UP-algebra [4] where A is a
nonempty set, - is a binary operation on A, and 0 is a fixed element of A (i.e.,
a nullary operation) if it satisfies the following axioms: for any z,y,z € A,

(UP-1) (y-2)-((z-y)-(z-2)) =0,
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(UP-2) 0z ==z,
(UP-3) z-0=0, and
(UP-4) z-y=0and y-2z =0 imply z = y.

From [4], we know that the notion of UP-algebras is a generalization of
KU-algebras.

Example 2.1 ([4]). Let X be a universal set. Define two binary operations -
and * on the power set of X by putting A- B=BNA and Ax B=BUA for
all A, B € P(X). Then (P(X),-,0) and (P(X), x, X) are UP-algebras and we
shall call it the power UP-algebra of type 1 and the power UP-algebra of type 2,
respectively.

In what follows, let A denote a UP-algebra unless otherwise specified. The
following proposition is very important for the study of UP-algebras.

Proposition 2.2 ([4]). In a UP-algebra A, the following properties hold: for
any SU’ y’ z 6 A’

(1) z-z =0,

(2) - y=0andy-z=0 implyz-2=0,
(3) -y =0 implies (z- ) - (z-y) = 0,

(4) x -y =0 implies (y - 2) - (x - z) = 0,

(5) z-(y-z) =0,

(6) (y-z)-x=0if and only if x =y - x, and
(7) z-(y-y)=0.

Definition 2.3 ([4]). A subset S of A is called a UP-subalgebra of A if the
constant 0 of A is in S, and (S, -, 0) itself forms a UP-algebra.

Tampan [4] proved the useful criteria that a nonempty subset S of a UP-
algebra A = (A, -,0) is a UP-subalgebra of A if and only if S is closed under the
- multiplication on A.

Definition 2.4 ([4, 21]). A subset S of A is called
(1) a UP-filter of A if

(i) the constant 0 of A is in S, and
(ii) for any z,y € A,x-y€ S and z € S imply y € S.

(2) a UP-ideal of A if
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(i) the constant 0 of A is in S, and
(ii) for any z,y,z € A,x-(y-z) € Sand y € S imply z -z € S.

(3) a strongly UP-ideal of A if
(i) the constant 0 of A is in S, and
(ii) for any z,y,z € A,(z-y)-(z-2z) € Sand y € S imply = € S.

Guntasow et al. [2] proved the generalization that the notion of UP-subalgebras
is a generalization of UP-filters, the notion of UP-filters is a generalization of
UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals.
Moreover, they also proved that a UP-algebra A is the only one strongly UP-
ideal of itself.

3. Bipolar fuzzy («, §)-translations in UP-algebras

Let X be the universe of discourse. A bipolar-valued fuzzy set [13] ¢ in X is an
object having the form

p={(r, o7 (x),¢"(2)) |z € X}

where ¢~ : X — [-1,0] and ¢ : X — [0,1] are mappings. For the sake of
simplicity, we shall use the symbol ¢ = (X; o, ™) for the bipolar-valued fuzzy
set o = {(z,¢"(z),¢T(x)) | * € X}, and use the notion of bipolar fuzzy sets
instead of the notion of bipolar-valued fuzzy sets.

We recall the definitions of bipolar fuzzy UP-subalgebras, bipolar fuzzy UP-
filters, bipolar fuzzy UP-ideals, and bipolar fuzzy strongly UP-ideals.

Definition 3.1 ([11]). A bipolar fuzzy set ¢ = (A;p~, ") in A is called a
bipolar fuzzy UP-subalgebra of A if it satisfies the following properties: for any
r,y € A,

(1) ¢~ (z-y) <max{yp~(2),9 (y)}, and
(2) ¢t (z-y) >min{et(z), o1 (y)}.

Definition 3.2 ([11]). A bipolar fuzzy set ¢ = (A;p ™, ") in A is called a
bipolar fuzzy UP-filter of A if it satisfies the following properties: for any x,y €

(1) ¢7(0) < ¢~ (2),

(2) ¢7(0) = ™ (),

(3) ¢~ (y) < max{p~(z-y),¢ (z)}, and
(4) ¢*(y) > min{e™ (2 - y), " (2)}.
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Definition 3.3 ([11]). A bipolar fuzzy set ¢ = (A;p~, ") in A is called a
bipolar fuzzy UP-ideal of A if it satisfies the following properties: for any x,y, z €

(1) ¢~ (0) < ¢~ (=),
(2) ¢7(0) > pT (=),
(3) ¢ (z-2) <max{y~(z-(y-2)),¢ (y)}, and

(@) 9* (@ 2) 2 minfe* (@ (5 2), 9 W)},
Definition 3.4 ([11]). A bipolar fuzzy set ¢ = (A;p~, ") in A is called a
bipolar fuzzy strongly UP-ideal of A if it satisfies the following properties: for
any z,y,z € A,

(1) () < ¢~ (@)

) ¢~ (0
(2) ¢7(0) = ¢™ (),
(3) ¢~ (2) <max{y~((2-y) - (2 2)),¢" (y)}, and
(4) ¢*(z) =2 min{p*((z-y) - (2 2)), 0" (y)}-

Kawila et al. [11] proved the generalization that the notion of bipolar UP-
subalgebras is a generalization of bipolar UP-filters, the notion of bipolar UP-
filters is a generalization of bipolar UP-ideals, and the notion of bipolar UP-
ideals is a generalization of bipolar strongly UP-ideals. Moreover, they also
proved that a bipolar fuzzy set ¢ = (A;0~, ") in A is constant if and only if
it is a bipolar fuzzy strongly UP-ideal of A.

3.1 Bipolar fuzzy («, 5)-translations of a bipolar fuzzy set of type I
Definition 3.5. The inclusion “C” is defined by setting, for any bipolar fuzzy
sets p = (A; 07, ¢") and P = (A;97,9T) in A4,
e C e o (z) =Y (z) and pt(z) <t (z) for all z € A.
We say that 1 = (A;9~,¢™) is a bipolar fuzzy extension of ¢ = (A;¢0~, "),
and ¢ = (A; ™, ¢™T) is a bipolar fuzzy intension of ¢ = (A;¢~, ™).
Definition 3.6. For any bipolar fuzzy set o = (A;¢~, ") in A, we denote
1:=—-1—inf{p (x) |z € A},
T:=1-sup{pt(z) |z € A}

Let ¢ = (A;¢7,¢™) be a bipolar fuzzy set in A and («, 3) € [L,0] x [0, T].
By a bipolar fuzzy (a, 8)-translation of ¢ = (A;¢0~,¢") of type I, we mean a
bipolar fuzzy set ¢! (@) = (A9 (a1y) 9T (51,)) Where

Y (a,Ty) - A— [—1,0],33 — (,0_(13) + a,
ety A= 0,17 9T () + B
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Theorem 3.7. If a bipolar fuzzy set ¢ = (A;07,9") in A is a bipolar fuzzy
UP-subalgebra of A, then for all (o, 5) € [L,0] x [0, T], a bipolar fuzzy («, 5)-
translation @™ (o 5 = (A0 (a11), ¢ (811)) of © = (A, ") is a bipolar
fuzzy UP-subalgebra of A.

Proof. Assume that ¢ = (A;07, ") is a bipolar fuzzy UP-subalgebra of A.
For any (o, 3) € [L,0] x [0, T] and for all 2,y € A, we have

Plory@-y) =9 (z-y) +a
<max{p (), (y)} +

=max{¢ (z)+a,¢ (y) +a}
= max{go (@ T1)( x), 80(_%T1)(y)}

and
plary@ ) =9 (z-y)+ 8
> min{p"(z),¢"(y)} + 8
= min{p ™" () " (y) + B}

+ 8,
= min{p{; r.y(x), {50,y W)}

Hence, go(Talﬂ) = (4; <p(_a,T1), w&jl)) is a bipolar fuzzy UP-subalgebra of A. [

Theorem 3.8. If there exists (a, 5) € [L, ] [0, T] such that the bipolar fuzzy
(o, B)-translation @™ (o 5 = (A7 (@10), 9" (5, ) of o = (A7, 9") is a
bipolar fuzzy UP-subalgebra of A, then ¢ = (A;p~,¢") is a bipolar fuzzy UP-

subalgebra of A.

Proof. Assume that <p( 5 = (4; PlaT1) SOEFB Tl)) is a bipolar fuzzy UP-subalgebra
of A for (e, ) € [L,0] x [0, T] and for all z,y € A, we have

e (@ y)+a=pq )Ty
< max{e, 1y(@), 0, 1, ¥)}
= max{y™ (z) + o, " (y) + o}
= max{p™(z),¢" (y)} +a
and
(@ y)+B =0l (@ y)
> {p{sr (@), 030 ®)}
=min{p " (z) + 8, 0" (y) + B}
= min{¢" (2),9" ()} + 6.

Thus ¢~ (2 - y) < max{y™(z),¢"(y)} and ©¥(z - y) > min{p" (), " (y)}.
Hence, o = (A;07, ™) is a bipolar fuzzy UP-subalgebra of A. O
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Theorem 3.9. If a bipolar fuzzy set o = (A; 9™, 9™) in A is a bipolar fuzzy UP-
filter of A then for all (o, B) € [L,0] x [0, T], a bipolar fuzzy («, B)-translation
P ap) = (A0 (ar) ¥ am) of = (A7, 9T) is a bipolar fuzzy UP-filter
of A.

Proof. Assume that ¢ = (A;0,p™") is a bipolar fuzzy UP-filter of A. For any
(a,8) € [L,0] x [0, T] and let z € A. Then ¢~ (0) < ¢~ (x) and 1 (0) > ¢* ().
Thus

(0 = ¢ (0) +a < o~ (@) +a = v, 1. (@)

and
Pl (0) =@t (0) + 8 2 ¢T(2) + 8= ¢y 1, (2).
Next, let z,y € A. Then ¢~ (y) < max{p~ (z-y), ¢ (z)} and o1 (y) > min{p™ (x-
y):¢"(2)}. Thus
PlarnW) =¥ () +
< max{p”(z-y),¢ (2)} + o

=max{y (z-y)+a,¢ (2))+a}
= max{cp(_a,Tl)(ﬂU ), 90(_057T1)(x)}

and
Py =0 () + 58
> min{p*(z-y),¢" ()} + 8
= min{p"(z-y) + B, ¢" () + B}
= min{p{; 0y (@ ¥), 037, (@)}
Hence, go(j;lﬂ) = (4; P (o T1)’ gozg’Tl)) is a bipolar fuzzy UP-filter of A. O

Theorem 3.10. If there exists (a, ) € [L,0] x [0, T] such that the bipolar
fuzzy (v, B)-translation o1t (a,8) = (Ai97( ot

a,T1) P (ﬁ,Tl)) of o = (AHP_,SDJr) is
a bipolar fuzzy UP-filter of A, then ¢ = (A;0~,0") is a bipolar fuzzy UP-filter
of A.

Proof. Assume that go(TOj 5 = (A; P(a,T1) 90(+B T1)) is a bipolar fuzzy UP-filter of
A for (o, B) € [L,0] x [0, T] and let z € A. Then

e (0) +a= ‘P(_Q,Tl)(o) < ‘P(_a,Tl)(m) =9 (z) +a

and

et (0) + 8= 031, (0) = 051 (@) = H (@) + 5.
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Thus ¢~ (0) < ¢~ (z) and ¢ (0) > ¢ T (x). Next, let z,y € A. Then

o (y) +a=e )W)

max{, (T Y), o1, 1,y (®)}
=max{¢ (z-y) + o9 () + a}
=max{y™ (z-y),¢ (2)} +a

IA

and

¢ (y) + B =0l30,)
> min{g {1,y (@ - Y), (51, (@)}
=min{y (z-y) + 5,9 (z) + B}
=min{y™ (z-y), ¢ (2)} + 5.
Thus ¢~ (y) < max{e™(z - y),¢ ()} and ¢~ (y) = min{e~(z - y),¢ (2)}.
Hence, ¢~ = (A; 07, ") is a bipolar fuzzy UP-filter of A. O

Theorem 3.11. If a bipolar fuzzy set p = (A;0,0") in A is a bipolar fuzzy
UP-ideal of A, then for all (a, ) 6 [L,0] x [0, T], a bipolar fuzzy (o, fB)-
translation @Tl(aﬁ) = (A9 (ar): P amy) of ¢ = (A97,9T) ids a bipolar
fuzzy UP-ideal of A.

Proof. Assume that ¢ = (A;¢ ™, ¢™") is a bipolar fuzzy UP-ideal of A. For any
(a, B) € [L,0] x [0, T] and let z € A. Then ¢~ (0) < ¢~ (x) and ¢ (0) > pT ().
Thus

Por)(0) =9 () +a<e (2)+a=yp, 1))
and

() = 07 (0) + B2 (@) + B = 97y ()
Next, let z,y,2 € A. Then ¢~ (z-2) < max{yp ™ (z-(y-2)),¢ (y)} and T (x-2) >
min{e™(z - (y - 2)), " (y)}. Thus

Plory(T-2) =9 (z-2) +a
<max{yp™(z-(y-2)),¢ (W)} +a
=max{p~(z-(y-2)) + @, ¢ (y) + o}

@ (- 2)e0m) W)}

= max{<p

and

(y-2), 9 (W)} +8
=min{et(z- (y-2))+ 8,9 (y) + B}
i (z-(y-2)), @E,%’,Tl)(y)}'
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Hence, 902:11,@ = (4; P T1)’ @&,Tl)) is a bipolar fuzzy UP-ideal of A. O

Theorem 3.12. If there exists (o, ) € [L,0] x [0, T] such that the bipolar

fuzzy (o, B)-translation ¢ o 5) = (4 0™ (a/11), ¢ (5,11)) of 0 = (A7, ") is
a bipolar fuzzy UP-ideal of A, then ¢ = (A;¢~,¢™) is a bipolar fuzzy UP-ideal
of A.

Proof. Assume that gp(a 5 = = (4; P(a,T1) <p(+/3 T1)) is a bipolar fuzzy UP-ideal of
A for (o, 8) € [L,0] x [0, T] and let z € A. Then

7 (0) + o=, 1,)(0) <@g ry@) =9 (2)+a
and

o 0) + B = gly1(0) = 6y, () = 9" (@) + B.
Thus ¢~ (0) < ¢~ (x) and ¢ (0) > o™ (x). Next, let z,y,z € A. Then

o (x-2)ta=p g, (z-2)
<max{o, (@ (Y- 2),¢01,)®)}
=max{y (z-(y-2)) + ¢ (y) +a}
=max{y (z-(y-2)),¢ (¥} + o

and

otz 2)+ 8= ,B,T1)<m z)

> min{oy (@ (Y- 2)), 0051, W)}
=min{p™(z - (y- 2)) + 6, ¢" (y) + B}
=min{p™(z - (y-2)),¢" ()} + 5.

Thus ¢~ (2 - 2) < max{y™ (v (y-2)),¢ (y)} and ™ (z - 2) > min{p™(z - (y -
2)), 7 (y)}. Hence, ¢ = (A;¢~,¢™") is a bipolar fuzzy UP-ideal of A. O

Theorem 3.13. If a bipolar fuzzy set p = (A;07,0T) in A is a bipolar fuzzy
strongly UP- zdeal of A, then for all (« B) [L,0] %[0, T], a bipolar fuzzy (o, B)-
)

translation @™ @p) = A9 () ¢ (a1y)) of ¢ = (A597,9T) is a bipolar
fuzzy strongly UP-ideal of A.

Proof. Assume that ¢ = (4;¢p~, ") is a bipolar fuzzy strongly UP-ideal of
A. For any (o, ) € [L,0] x [0, T] and let z € A. Then ¢ (0) < ¢ (x) and
©T(0) > ¢t (z). Thus

Por)0) =9 () +a<e (2)+a=gg,

and
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Next, let z,y,z € A. Then ¢~ (z) < max{e ((z-y) - (z-2)),¢ (y)} and
" () 2 min{p*((z-y) - (z- 2)), " (y)}. Thus
Pt (®) = ¢ (@) +
<max{e~((z-y) - (2-7)),9" (y)} +
=max{p~((z-y) - (2-2))) + @, ¢ (y) + a}
— el (2 9) - (2 2), 9y ()

and

(@) = ot (@) + 5
> min{ot((z-y)- (2 2)), 9T (y)} + B
=min{p"((z-y) - (z-2)) + 6,07 (y) + B}
= min{p p) (2 9) - (2 ), 0051, (W)}

Hence, 4,0(Ta1,5) = (4; P (a1’ @&’Tl)) is a bipolar fuzzy strongly UP-ideal of /é]

Theorem 3.14. If there exists (o, ) € [L,0] x [0, T] such that the bipolar

]
fuzzy (v, B)-translation @™, 5y = (A; 07 (amy), @ (811)) of ¢ = (A7, 07) is
a bipolar fuzzy strongly UP-ideal of A, then ¢ = (A, 0,01 is a bipolar fuzzy
strongly UP-ideal of A.

Proof. Assume that gog;j 5 = (A; Pla Tl),go?b Tl)) is a bipolar fuzzy strongly
UP-ideal of A for (o, 8) € [L,0] x [0, T] and let x € A. Then

o (0) + = g g0 (0) < 9o gy () = (@) +
and

p(0)+ 8= ‘P&,Tl)(o) 2 @&,Tl)(x) = ¢T(z) + B.
Thus ¢~ (0) < ¢~ (z) and ¢ (0) > ¢ (z). Next, let z,y,z € A. Then

o (@) + o =g, @)
< max{g 1) ((2-9) - (- ). 0y (W)}
= max{p™((z-y) - (- ) + a0 (y) + o}
= max{p™((z-3) - (z-)).0"(4)} +o

and

Pt (2) + B =9, (@)
> min{p (8,1 )((z cy) - (z- x))aSOZ%,Tl)(?/)}

=min{o"((2-y) (2 2)) + 8,97 (y) + B}
=min{p"((z-y) (2 2)), 0" ()} + 8-
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Thus ¢~ (z) < max{e~((z-y) - (z- 1)), (y)} and ¢*(2) > min{e*((z-y) -
(2-x)),9"(y)}. Hence, o = (A; 0, ¢") is a bipolar fuzzy strongly UP-ideal of

A. O

Remark 3.15. If ¢ = (4;¢p 7, ") is a bipolar fuzzy set in A, then for all
(@8) € [L.0] X 0T, ¢ ar(a) = ¢ (2) +0 < o () and ¥y (a) =
o (z) + B > ¢ (x) for all x € A. Hence, the bipolar fuzzy («, 3)-translation

" s = (A0 (1), @ (511)) Of 0 = (4507, ) is a bipolar fuzzy extension
of o= (A4;07,¢") for all (o, 8) € [L,0] x [0, T].

Lemma 3.16. Let ¢ = (A;07, ") and v = (A;9~,¢™) be bipolar fuzzy sets
in A. If(p (on,p1) S ¥ for all (a1, 1) € [L,0] x [0, T], then there exists (c, B2) €
[L,0] x [0,T] wzth (a1, 1) < (e, B2), that is, oy > ag and By < [y such that
S0(0¢11ﬁl) < S0(1:1127/32) <9
Proof. Assume that (‘O(Tall,m) C ¢ for all (a1, 1) € [L,0]x[0, T]. Then ¢~ (x) <
90(_a1,T1)($) and ¢t (z) > ('0&31,T1)(x) for all x € A. Put ae = oy +sup{¢p~(x) —
go(;th)(x)}. Then
SUp{ () — ¢, ) (@)} = sUp{Y () — (¢ () + )}

sup{—1 — (¢~ (z) + 1)}
= —1l+sup{—¢ (z) -}

—1+sup{—¢~(2)} —
=—1—inf{e (z)} —

=1 —a,

s0 aig = a1 +sup{y~(x) — go(_mTl)(x)} >a1+L—a;=_1L. Thus ap € [L,0] and
as < aq, SO go(o%Tl)( x) < (o Tl)(x) for all x € A. Now for all x € A, we have

v

©

o (2) + on +sup{er(2) — ¢, oy (@)
Zw(lT (2) + 9™ () ~ 0, 1) (@)

v

Thus go(oél’Tl)(x) > cp(o%Tl)(x) >~ (x) forallz € A. Put By = By +inf{y" (z)—
(’0(+61,T1)($)}‘ Then
inf{v " (2) — @l 7,y (@)} = inf{y" (@) — (o7 (=) + B1)}
< inf{l - (¢"(z) + 1)}
=1+inf{—¢"(2) - p1}
= 1+inf{—¢"(2)} - B
= —1—sup{¢"(z)} - B
=T-7,

X
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so B2 = 1+ inf{ypt(z) — (pzrﬁth)(:):)} <p1+T—p1=T. Thus B2 € [0, T] and
B2 > 1, so @&2,1,1)(:17) > gaE%th)(x) for all z € A. Now for all z € A, we have

@Z};Q,Tl)(l’) = ¢" () + B2
= ¢t (@) + B+ inf{vH (2) — ol 1, (@)}
< @30 (@) + 9T (@) = 05, 1, (@)
=7 (2).
T?us Pl (@) < 95,1 (@) < wH() for all z € A Hence, o) 5 C
Plazpn) S V- -

Definition 3.17. Let ¢ = (4;0,9") and ¥ = (A;9~,4™) be bipolar fuzzy
sets in A with o C 9. If ¢ = (A;¢7,¢™") is a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly
UP-ideal) of A, then ¢ = (A;1~,%™") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, and we say that ¢ = (A;4~,4™) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
extension of ¢ = (A;07,T).

Theorem 3.18. If ¢ = (A;0,0") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, then the bipolar fuzzy (v, B)-translation @11 (@) = (A0 (a1 T (311)
of o = (A;07, ") is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension of ¢ =
(A7, 07).

Proof. It follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13) and Remark 3.15. O

Theorem 3.19. If ¢ = (A;¢ ,¢") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A, then the bipolar fuzzy (aq, £1)-translation @Tl(al,ﬂl) = (49 (1) P (5 T1))
of o = (A;07, ") is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension of the
bipolar fuzzy (ag, Ba)-translation goTl(aQﬁz) = (A9 (ap,11), ¢ (Bay) Of ¢ =
(4507, ™) with (a1, B1) > (a2, f2).

Proof. It follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13). O

Theorem 3.20. Let ¢ = (A;¢7,¢") be a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A. For every bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar
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fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension 1 = (A;4~,9") of the
bipolar fuzzy (o, B)-translation (p(TOiB) = (4; PlaT1) go?b7T1)) of o = (A;07, ™)
there exists (k=, k™) € [L,0] x [0, T] such that (k= , k™) > (a, 8), that is, k= < «
and kT > B, and ¢ = (A;¢~,%") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bzpolar fuzzy strongly UP-ideal)
extension of bipolar fuzzy (k~, k™ )-translation go(k B = (4; Pk~ 1) ¢?}€+7T1))
of o= (A;9™,0").

Proof. Tt follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13) and Lemma 3.16. O

3.2 Bipolar fuzzy (o, 5)-translations of a bipolar fuzzy set of type II

Definition 3.21. For any bipolar fuzzy set ¢ = (A4;p~,¢") in A, we denote
£ :=sup{y(z) |z € A},
=inf{p™*(z) |z € A}.

Let ¢ = (A;¢7,¢™") be a bipolar fuzzy set in A and («, 8) € [£,0] x [0, F].
By a bipolar fuzzy (o, 8)-translation of o = (A;¢~,¢™") of type II, we mean a
bipolar fuzzy set @TQ((M) = (4907 (a,12) " (8,15)) Where

P (a1s) P A= [F1,0,z = o7 (z) —

et A= 0,1,z ot (2) - ﬁ
Theorem 3.22. If a bipolar fuzzy set o = (A;0,01) in A is a bipolar fuzzy
UP-subalgebra of A, then for all (o, B) € [+, ] [0,F], a bipolar fuzzy («, )-

translation @™, 5 = (A0 (a12), 9 (812)) of © = (A;¢~, ™) is a bipolar
fuzzy UP-subalgebra of A.

Proof. Assume that ¢ = (A;¢0, ") is a bipolar fuzzy UP-subalgebra of A.
For any (o, B) € [%,0] x [0,F] and for all z,y € A, we have

Plary) (T y) =9 (z-y) -
<max{y ()¢ (¥)} -«
=max{y (z) —a, ¢ (y) — a}
= max{@, 1,)(), ¢, 1,)¥)}
and

Py (@ y) =¢ (@-y) - B

> min{o™ (), o1 (y)} — B
= min{p"(z) — B,¢T (y) — B}
= min{¢?‘B7T2)($), SOZTB’TQ)(ZJ)}'

Hence, @12 (@,8) = (4 @f(asz),go*(ﬁvTQ)) is a bipolar fuzzy UP-subalgebra of
A. O
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Theorem 3.23. If there exists (o, ) € [£,0] x [0,F] such that the bipolar

fuzzy («, B)-translation cpTQ(a”B) = (A§90_(a,T2)790+(,8,T2)) of o = (A;07, ™)
is a bipolar fuzzy UP-subalgebra of A, then ¢ = (A;¢0~, o) is a bipolar fuzzy
UP-subalgebra of A.

Proof. Assume that go(of 5 = ((70(_a,T2)’ go&TQ)) is a bipolar fuzzy UP-subalgebra
of A for (o, B) € [£,0] x [0,F]. Then for all z,y € A, we have

o (z-y) —a=p, (T Y)
< max{¢, 1,)(%), ¢, 1, (¥)}
= max{¢™ (z) -, (y) — a}
= max{¢™ (z),¢" (y)} —

and

e (x-y) = B=pfyp, (@)
>m1n{g0ﬁT2)( T), ¢ (5T2)( y)}
= min{p*(z) — 8,97 (y) — B}
= min{p*(z),¢" (y)} - 6.

Thus ¢~ (2 - y) < max{p~(2),¢” (y)} and ¢*(z - y) > min{e™ (), ¢™(y)}.
Hence, ¢ = (A;¢~,¢™") is a bipolar fuzzy UP-subalgebra of A. O

Theorem 3.24. If a bipolar fuzzy set o = (A;0, 1) in A is a bipolar fuzzy
UP-filter of A, then for all (o,B) € [£,0] x [0,F], a bipolar fuzzy (a,)-
translation @™, 5 = (A0 (a1s), € (812)) of © = (A;¢~, ") is a bipolar
fuzzy UP-filter of A.

Proof. Assume that ¢ = (A;¢~,¢™") is a bipolar fuzzy UP-filter of A. For any
(a, B) € [%,0] x [0,F] and let z € A. Then ¢~ (0) < ¢~ (x) and 1 (0) > p™(x).
Thus

Gy () = ¢(0) — @ < o(2) — o = o7 g, (2)
and
Pl (0) =9t (0) = 82 ¢T(2) = 8= ¢ 1, (@)
Next, let 7,y € A. Then ¢~ (y) < max{p ™ (z-y), ¢ (z)} and o (y) > min{p™ (x-
y), ¢t (x)}. Thus
Loty W) =9 (y) —

<max{y~(z-y),¢ (2)} —a

— max{p™ (¢ y) — @™ (x) - )

= max{p, 1) (€ ¥), 01, (@)}
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and
Py W) =0 () — B
> min{p"(z - y),¢" ()} — B
= min{p" (z-y) - B,¢" (2) - B}
= min{@?ﬁ’fpz)('x : y)> 80?237’1*2)('%)}'
Hence, go(a 5 = = (4; P(a,Ts) cp(J/rB’TQ)) is a bipolar fuzzy UP-filter of A. O

Theorem 3.25. If there exists (o, ) € [£,0] x [0, F] such that the bipolar

fuzzy (e, B)-translation ©™2 (4 5y = (A; 07 (a1, ¥ (5, 1)) of = (A7, 0") is
a bipolar fuzzy UP-filter of A, then ¢ = (A;¢~,¢™") is a bipolar fuzzy UP-filter
of A.

Proof. Assume that cp(j;f 5 = (4; P (0, Ts) cp?'ﬁ T2)) is a bipolar fuzzy UP-filter of
A for (a, B) € [£,0] x [0,F] and let € A. Then

0= (0) —a =9, 1,)(0) <@ 1, (@) =¢ (2) —a
and

o(0) = B = plym) (0) 2 gym, () = 9™ (2) — B
Thus ¢~ (0) < ¢~ (z) and ¢T(0) > p*(z). Next, let z,y € A. Then

" (y) — = @7, W)
S max{@, 7,y (T Y), ¢4 1, ()}
=max{¢ (z-y) —a, ¢ (z) -}
= max{¢™ (2 -y),¢ ()} -«

and

v (y) — B =0l1,)W)
> min{¢, (3, Tz)@ ), ‘P?rﬁ,TQ)(ﬂl)}
=min{p" (z-y) — 8,0 (x) — B}
= min{p*(z-y), 9" (2)} - 5.

Thus ¢~ (y) < max{y~(z),¢ (z - y)} and ¢*(y) > min{e™(z), 0" (z - y)}.
Hence, ¢ = (A; ¢, ¢™") is a bipolar fuzzy UP-filter of A. O

Theorem 3.26. If a bipolar fuzzy set p = (A;0,0") in A is a bipolar fuzzy
UP-ideal of A, then for all (a,B) € [£,0] x [0,F], a bipolar fuzzy (a,f)-

translation ngQ(aﬁ) = (A9 (r) ¢ (81a) of ¢ = (4597, 9T) ids a bipolar
fuzzy UP-ideal of A.
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Proof. Assume that ¢ =
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(A; 07, ¢™T) is a bipolar fuzzy UP-ideal of A. For any

(a, B) € [£,0] x [0,F] and let z € A. Then ¢~ (0) < ¢~ (z) and 1 (0) > o™ ().
Thus
SD(_Q,TQ)(O) = 90_(0) —a< SO_(‘T) —a= ‘p(_a,TQ)(x)
and
Pl (0) =91 (0) = 82 ¢T(2) = 8= ¢ p, (@)
Next, let z,y,z € A. Then ¢ 2)(ac cz) < max{cp ( (y - ))"P(_a,Tg)(y)}
and ‘P(@T )(x z) > mln{‘P BTz)( : (y : Z))?@?_Q7T2)( )} Thus
Caryle-2) = ¢ (a2) —a

< max{p~(@- (y-2)).¢~ (1)} ~

=max{y (z-(y-2)) —a,¢ (y) —a}

= max{p, 1) (@ (¥ 2)), 0,1, ®)}
and

ety (@ 2) = (@ 2) —

> min{e" (- (y-2), 9" (y)} - B

=min{y" (z - (y-2)) = B,¢" (y) — B}

= min{p{; r,\ (€ (- 2)), 031, )}
Hence, go(j;iﬁ) = (4; P (0, T2)’ (‘OEZ,Tz)) is a bipolar fuzzy UP-ideal of A. O
Theorem 3.27. If there exists (o, ) € [£,0] x [0,F] such that the bipolar
fuzzy (o, B)-translation 92, 5y = (A; 07 (15 ¥ (5, T2)) of ¢ = (A 9" is
a bipolar fuzzy UP-ideal of A, then ¢ = (A;0~, ™) is a bipolar fuzzy UP-ideal

of A.
Proof. Assume that go(TOf 5 =

(4; @@7T2), @&7T2)) is a bipolar fuzzy UP-ideal of

A for (o, B) € [£,0] x [0,F] and let z € A. Then

7 (0) —a =9, 1,)(0) <@ 1, (@) = ¢ (2) —a
and

o (0) = B = 0ly0) (0) > 9y (@) = & (@) = B.

Thus ¢~ (0) < ¢~ () and ¢*(0)

P (02) — a = G, @-2)

< max{cp(_a’TQ) (z

> T (x). Next, x,y,2z € A. Then

(- 2) ey W)}

=max{y (z-(y-2)) —a,¢ (y) —a}
=max{y (z-(y-2)),¢ (¥} -«
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and
¢z 2) = B=pfyp, (T 2)
> mln{gp(ﬁ Ty) (- (y-2)), (‘D(ﬁ TQ)(?J)}
=min{p"(z- (y-2)) = B,9¢" (y) - B}
=min{p™(z- (y-2)), 9" (y)} - 5.
Thus ¢~ (2 - 2) < max{p~(z- (y-2)),¢ (y)} and p*(z - 2) > min{p™(z - (y -
2)), 7 (y)}. Hence, ¢ = (A;¢~,¢™") is a bipolar fuzzy UP-ideal of A. O

Theorem 3.28. If a bipolar fuzzy set p = (A;07,0T) in A is a bipolar fuzzy
strongly UP- zdeal of A, then for all (« 5) [£,0] x [0, F], a bipolar fuzzy (o, B)-
translation @12 @) = A9 (ams) ¢ (812) of ¢ = (A597,9T) is a bipolar
fuzzy strongly UP-ideal of A.

Proof. Assume that ¢ = (A4;¢p~, ") is a bipolar fuzzy strongly UP-ideal of
A. For any (o, ) € [+,0] x [0,F] and let z € A. Then ¢~ (0) < ¢ (x) and
©T(0) > ¢t (z). Thus

and

Next, let z,y,z € A. Then ¢~ (z
¢*(z) = min{p™((z - y) - (2~ 2)), ¢"(y)}. Thus

Pty (@) = ¢ (@) —a
<max{p ((z-9) - (= 2)).¢" (1)}~
= max{p™((-9) - (= 2)) — a9 (y) — a)
= max{py, 1)z 9) - (2 2)). 9, ()}

—~~

and

P (@) = ot (@) — B
> min{ot((z-y)- (2 2)), 9T (y)} — B
=min{eT((z-y)- (z-2)) — B, ¢ (y) — B}
= min{p( ) (2 9) - (2 ), 0051 (W)}

Hence, go(TaQ 5 = (4; gp(_a,,b), @E%’T2)) is a bipolar fuzzy strongly UP-ideal of é
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Theorem 3.29. If there exists (o, B) € [+,
fuzzy (v, B)-translation p*2 (a,8)

strongly UP-ideal of A.

= (407 (a,T2), ¢T (8T5)
a bipolar fuzzy strongly UP-ideal of A, then ¢ = (A; ¢~
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0] x [0,F] such that the bipolar

]
) of p = (Ao~ ") is
, ) is a bipolar fuzzy

* (8,12)) 1 a bipolar fuzzy strongly

[0,F] and let z € A. Then

*(x). Next, let x,9,2 € A. Then

(z-)), 001}
) —a,¢ (y) —a}
), (y)} —

Proof. Assume that <,0T2(aﬁ) = (4507 (a,T0): ¥
UP-ideal of A for (o, 8) € [£,0] x
0 (0) —a =9, 1,)(0) <@ 1, (@) =¢ (2) —a
and
o (0) = B = 0lyp (0) = 9y (@) = & (&) — B
Thus ¢~ (0) < ¢~ () and ™ (0) > ¢
o (@) = a = ¢ (@)
< max{yp, 1, ((z-y)-
=max{p~((2-y) - (z-
= max{p~((z-y) - (z-
and

Pt (2) = B =9, (@)

> min{if; ) (2 9)

: (Z ’ l‘)), SO?—B,TQ)(Z/)}

=min{" ((z-y) (2 2)) = B,¢" (y) — B}

= min{p" ((z-y) - (2 2)), 0" (y)} - B.
Thus ¢~ (2) < max{e™((z-y) - (- 7)), (y)} and ™ (z) > min{e™((z - y) -
(z-1)),9T(y)}. Hence, ¢ = (A;9, ") is a bipolar fuzzy strongly UP-ideal of
A. O
Remark 3.30. If ¢ = (A4;¢p 7, ") is a bipolar fuzzy set in A and («a,3) €
[+, 0] x [0, F], then ¢~ (5 1,y (2) = ¢~ () —a = ¢~ (z) and ¢ (5 1,y (x) = ¢ (2) -

B < BT (x) for all z € A. Hence, the bipolar fuzzy («

, B)-translation @12 (a,B8) =

(A597 (0120 P (310)) Of ¥ = (A;97,9T) is a bipolar fuzzy intension of ¢ =

(A;07,0T) for all (o, B) € [+£,0] x [0, F].

Lemma 3.31. Let ¢ = (A;07, ") and ¢ =
[0,F], then there exists (ag,B2) €

in A If C o2 5 for (a1, 1) € [£,0] %
[+, 0] x [0, F] with (a1, 1) <

Proof. Assume that 1) C go(Tan

51) for (a1, 1) €

(A;9p~ ") be bipolar fuzzy sets

(g, B2) such that 1 C cp( a2,82) - 90(1;21,51)-

[£,0]%[0,F]. Then cp(_alyTl)(az) <

1~ (x) and 90(+61,T1)(x) >t (z) for all z € A. Put as = a1 + sup{@(ahTz)(a:) —
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1~ (x)}. Then

sup{® ., 1,y (@) =¥~ (2)} = sup{e, 1,)(2)}
= sup{¢™ (z) — o}

=sup{y” (2)} — a1
=+ —a,

SO a9 = 1 + s.up{gp(a1 Tg)( x) =Y (x)} > a1 ++ —a1 = +. Thus ay € [£,0]
and ap < ai, 80 @, T2)( x) > 90(_041,T2)( x) for all x € A. Now for all x € A, we
have
Py (@) = 5 (@) —

— (@) — (0 + suplgpy, ) () — ¥ (@)))

= ¢ (x) —a1 —sup{y,, 1, (2) =¥~ (2)}

= (@) — o+ (Y (@) — 9, ) (@)

S(P_alT ( )+w ( ) (P(_ahT2)<$)

=y ().
Thus gp( T)( x) < cp(asz( z) < ¢ (z) for all x € A. Put B2 = f1 +
1nf{<p ( ) — 4t (x)}. Then

inf (g, ) (@) — 0 (@) < inf{e, ) (@)
= inf{p" (z) - f1}
= inf{p"()} - By
=F - i,
so By = B —|—1nf{g0f3 T )( z)— YT (z)} < By +F—B1 =F. Thus B € [0,F] and
B2 > S, soapﬁ ™) (z) < '% )(x) for all z € A. Now for all z € A, we have

0Tt (@) = & (@) — B
=" (2) — (B +inf{e s 7, (2) — ¥ (2)})
=" (2) = B —inf{ofy 1, () — T (2)}
=" (2) = B +sup{v " () — ¢y, 1,)(2)}
> ot 0 (@) @) — o, ) (@)
=" ().

T’}Flus w+(13) < @&27T2)($) < <‘0(+,31,T )( ) for all z € A. Hence, ¢ < QO(OQ B2) =
SD(0¢21751)' -
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Definition 3.32. Let ¢ = (4;07,¢") and ¥ = (A;9~,%™) be bipolar fuzzy
sets in A with ¢ C . If ¢ = (A;¢7,¢™") is a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly
UP-ideal) of A, then ¢ = (A;v~,9™) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, and we say that ¢ = (A;4~, ™) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
intension of ¢ = (A;p~,p™).

Theorem 3.33. If ¢ = (A;¢ ,¢") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, then the bipolar fuzzy («, 8)-translation cpTQ(a’B) = (A0 (a,Ty) @+(57T2))
of o = (A;07, ") is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension of ¢ =
(4507, 07).

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28) and Remark 3.30. O

Theorem 3.34. If p = (A;97,9") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A, then the bipolar fuzzy (aq, £1)-translation ‘PTQ(al,Bl) = (A0 (a1,12) ‘p+(61,T2))
of o = (A;07, ") is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension of the
bipolar fuzzy (o, B2)-translation ©*2 o, 5,) = (A9 (asT2) @7 (8a12)) Of ¥ =
(A;QO_, 90+) with (alvﬁl) < (O‘?aﬁ2)'

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28). O

Theorem 3.35. Let ¢ = (A;¢7,¢") be a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A. For every bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar
fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension ¢ = (A;¢~, ™) of the
bipolar fuzzy (o, B)-translation (p?oiﬁ) = (4; PlaTs)’ go?rﬁﬂb)) of o = (A;07, ™)
there exists (k= , k™) € [£,0] x [0, F] such that (k= , k") < (a, 8), that is, k= > «
and kT < B, and ¢ = (A;¢~,%™") is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
intension of bipolar fuzzy (k~, k™)-translation 30?13—,1#) = (4; Pk~ Ta)’ ¢&+7T2))

of o = (A;07, 7).

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28) and Lemma 3.31. O
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3.3 Complement of a bipolar fuzzy set

In this part, we discuss the relation between the complement of a bipolar fuzzy
UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and bipolar
fuzzy strongly UP-ideal) and its level cuts.

Definition 3.36. Let p = (A; ¢, ©T) be a bipolar fuzzy set in A. The bipolar
fuzzy set = (A; p~, pt1) defined by: for all z € A,

E(‘T) = —1—(,0_(.%),
@) = 1-¢* (),

is called the complement of ¢ = (A;p~, ™) in A.

S

Definition 3.37. Let ¢ = (A;¢~,¢™") be a bipolar fuzzy set in A and for any
(t=,tT) € [-1,0] x [0,1]. The sets

Np(pst)={z e Al (z) <t}
and
Nu(pit™)={z €Al (z) >t}

are called the negative lower t7-cut and the negative upper t~-cut of ¢ =
(A; 07, 1), respectively. The sets

Pr(pitt) ={z e Al pT(z) <t}
and
Py(pitT) ={z € Al p*(z) > 1"}

are called the positive lower t*-cut and the positive upper t*-cut of o = (A; 07, p™),
respectively.

Lemma 3.38. Let a,b,c € R. Then the following statements hold:
(1) a —min{b,c} = max{a — b,a — ¢}, and
(2) a — max{b,c} = min{a — b,a — c}.

Proof. (1) If min{b,c} = b, then ¢ > b. Thus a—c < a—b, so max{a—b,a—c} =
a —b=a—min{b,c}. Similarly, if min{b, c} = ¢, then

max{a — b,a — ¢} = a — ¢ = a— min{b, c}.

(2) If max{b,c} = b, then b > ¢. Thus a —b < a — ¢, so min{a — b,a — ¢} =
a —b=a—max{b,c}. Similarly, if max{b,c} = ¢, then

min{a — b,a — ¢} = a — ¢ = a — max{b, c}.
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Theorem 3.39. Let ¢ = (A;¢~,¢") be a bipolar fuzzy set in A. Then @ =
(A; 07, pT) is a bipolar fuzzy UP-subalgebra of A if and only if for all (t—, 1) €
[—1,0] x [0,1], Nu(p;t~) and Pp(p;tT) are UP-subalgebras of A if Ny(p;t™)
and Pr(p;tT) are nonempty.

Proof. Assume that @ = (A;p—,pT) is a bipolar fuzzy UP-subalgebra of A.
Let (t—,tT) € [-1,0] x [0, 1] be such that Ny (p;t~) and Pr(p;th) are nonempty.
(i) Let =,y € Ny(p;t~). Then p~(z) > ¢t~ and ¢~ (y) > t7, so t~ i
a lower bound of {¢~(x),o (y)}. Since B = (A;¢—, ") is a bipolar fuzzy
UP-subalgebra of A, we have ¢~ (z - y) < max{y~(z),o (y)}. By Lemma
3.38 (1), we have —1 — o7 (z - y) < max{—1— ¢ (z),—-1 — ¢ (y)} = —1 —
min{y~(x),¢ (y)}. Thus ¢~ (z-y) > min{tp*(m) “(y)} >t  andsox-y €

Ny (p;t™). Therefore, Ny (p;t~) is a UP-subalgebra of A.

(i) Let =,y € Pr(y; t*). Then pt(z) < ¢F and T (y) < ¢, so tT is an
upper bound of {p*(z),¢" (y)}. Since = (A;¢ ©~, 1) is a bipolar fuzzy UP-
subalgebra of A, we have <p+(;1: y) > mln{go+( ), ¢t (y)}. By Lemma 3.38 (2),
we have 1 — o (z - y) > min{l — p*(z),1 — pt(y)} = 1 — max{p™(x), 0" (y)}.
Thus ot (x - y) < max{pT(z),pt(y)} <t* and sox -y € Pp(p;tT). Therefore,
Pr(p;tT) is a UP-subalgebra of A.

Conversely, assume that for all (¢7,¢t7) € [—1,0] x [0,1], Ny(p;t~) and
Pr(p;t") are UP-subalgebras of A if Ny (¢;t~) and PL(go, t*) are nonempty.
(i) Let z,y € A. Then ¢~ (x), ¢~ (y) € [—1,0]. Choose t~ = min{¢~ (z), ¢ (y)}.

Thus ¢~ (z) >t~ and ¢ (y) > t, so z,y € Ny(p;t~) # 0. By assumption,
we have Ny(p;t7) is a UP-subalgebra of A and so x -y € Ny(gp;t~). Thus
¢ (x-y) >t~ =min{p~ (z),¢ (y)}. By Lemma 3.38 (1), we have

e (zy) = —1—¢ (z-y)
< —1—min{p~ (), ¢~ (y)}
= max{—1— ¢~ (), -1 -9 (y)}
= max{~(x),¢~(y)}-
(ii) Let z,y € A. Then ¢ (z), o™ (y) € [0,1]. Choose tT = max{¢™(z), p*(y)}.

Thus pt(z) < tT and ¢t (y) < ¢, so z,y € Pr(p;tt) # 0. By assumption,
we have Pp(p;t") is a UP-subalgebra of A and so z -y € Pr(p;tT). Thus
e (z-y) <tT =max{eT(x),¢T(y)}. By Lemma 3.38 (2), we have

1—pt(z-y)
1—maX{90 (), 0T (y)}
1—

min{l — o™ (z),1 - 9" (y)}
= min{yp™(2), " (y)}-

Hence, 3 = (A; p—, pT) is a bipolar fuzzy UP-subalgebra of A. O

ot (z-y)

vl

Theorem 3.40. Let ¢ = (A;¢0~,¢") be a bipolar fuzzy set in A. Then @ =
(A; 0=, pT) is a bipolar fuzzy UP-filter of A if and only if for all (t~,t%) €
[—1,0] x [0,1], Nu(¢;t™) and Pp(p;tt) are UP-filters of A if Ny(p;t~) and
Pr(p;tT) are nonempty.
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Proof. Assume that % = (A4;¢—, ") is a bipolar fuzzy UP-filter of A. Let
(t—,t") € [-1,0] x [0,1] be such that Ny (¢;t~) and Pr(p;t") are nonempty.

(i) Let a € Ny(p;t7). Then ¢~ (a) > t~. Since = (A; p—,¢™) is a bipolar
fuzzy UP-filter of A, we have p—(0) < ¢~ (a). Thus —1 — ¢~ (0) < —1 — ¢~ (a),
so ¢~ (0) > ¢ (a) > t~. Hence, 0 € Ny(p;t~). Next, let z,y € A be such that
x-y € Ny(p;t™) and = € Ny(p;t7). Then ¢~ (z-y) >t~ and ¢ (z) > t7, so
t~ is a lower bound of {p~(z -y), o (z)}. Since = (A;¢—, @) is a bipolar
fuzzy UP-filter of A, we have ¢~ (y) < max{p—(z - y), »—(2)}. By Lemma 3.38
(1), we have —1 — ¢~ (y) < max{—1—¢ (z-y),—1—¢ ()} = =1 —min{p~ (z-
y). ¢~ (2)}. Thus ¢~ (y) > min{e~(z - y),¢ (z)} >t~ and so y € Nuy(p;t7).
Therefore, Ny (p;t~) is a UP-filter of A.

(ii) Let b € Pr(p;tT). Then ¢t (b) < t*. Since § = (A; ¢, pT) is bipolar
fuzzy UP-filter of A, we have ¢ (0) > ¢+ (b). Thus 1 — ¢+ (0) > 1 o™ (b), so
©T(0) < pt(b) < t*. Hence, 0 € Pr(y; t*). Next, let x,y € A be such that
z-y € Pr(p;tT) and z € Pr(e; t+) Then ot (z-y) <t* and ot (z) <t*, sot™
is an upper bound of {¢* (z-y), o™ (2)}. Since g = (A; o=, 1) is a bipolar fuzzy
UP-filter of A, we have o (y ) > min{p* (- y) ©T(z)}. By Lemma 3.38 (2), we
have 1 — ¢*(y) > min{l — ¢™(z - y),1 —¢*(2)} = 1 —max{p™(z - y), 9" (z)}.
Thus ¢t (y) < max{e™(z - y),g0+(a:)} < t+ and so y € Pr(p;tT). Therefore,
Pr(p;t1) is a UP-filter of A.

Conversely, assume that for all (¢7,t7) € [—1,0] x [0,1], Ny(p;t~) and
Pr(p;t1) are UP-filters of A if Ny(p;¢~) and Pr(p;¢") are nonempty.

(i) Let x € A. Then ¢~ (z) € [-1,0]. Choose t~ = ¢~ (z). Thus p~(z) >t~
so x € Ny(p;t~) # 0. By assumption, we have Ny (p;t7) is a UP-filter of A
and s0 0 € Ny (p;t7). Thus o= (0) >t~ = ¢~ (x) and so o= (0) = =1 —~(0) <
- (x) = o (@),

(ii) Let z,y € A. Then ¢~ (- y),¢ (z) € [-1,0]. Choose ¢t~ = min{p~(x -
y), ¢~ (¥)}. Thus p~(z-y) >t~ and ¢~ (z) > t7, 50 v -y, v € Ny(p;t7) # 0.
By assumption, we have Ny (p;t~) is a UP-filter of A and so y € Ny(p;t7).
Thus ¢~ (y) >t~ =min{y (- y),¢ (z)}. By Lemma 3.38 (1), we have

ey = -1-¢ (v
< —l-minfp™(z-y), ¢ (2)}
= max{-1-¢ (2 y),-1-¢ ()}
= max{p~(z-y),p~(2)}.
(iii) Let z € A. Then ¢ (z) € [0,1]. Choose t* = ¢ (). Thus ¢*(z) < t*,

). T
so x € Pp(p;tT) # 0. By assumption, we have Pp(p;t") is a UP-filter of A
and so 0 € Pr(p;th). Thus ¢ (0) < tT = ¢ (z) and so j(O) =1-—¢"(0) >
1—¢*(2) = ¢t (2).

(iv) Let z,y € A. Then ¢t (z-y), ¢t (z) € [0,1]. Choose tT = max{p*(z
y), " (2)}. Thus p*(z-y) <t and p*(2) < t¥,s0z-y,2 € Prp;t™) # 0. By
assumption, we have Pr(¢;t") is a UP-filter of A and so y € Pr(¢;t"). Thus
e (y) <tT =max{pT(z-y),p"(z)}. By Lemma 3.38 (2), we have
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ety) = 1-¢"(y)
> 1—max{p*(z-y),¢" ()}
= min{l — ™ (z-y),1 - 9" (2)}
= min{p*(z - y), ¢t (z)}.
Hence, @ = (A; p—, pT) is a bipolar fuzzy UP-filter of A. O

Theorem 3.41. Let ¢ = (A;0, 1) be a bipolar fuzzy set in A. Then @ =
(A; 0=, 0T) is a bipolar fuzzy UP-ideal of A if and only if for all (t—,t%) €
[—1,0] x [0,1], Nu(p;t™) and Pp(p;tt) are UP-ideals of A if Ny(p;t™) and
Pr(p;th) are nonempty.

Proof. Assume that » = (A;¢~, ") is a bipolar fuzzy UP-ideal of A. Let
(t,tT) € [-1,0] x [0,1] be such that Ny (p;t~) and Pp(p;tT) are nonempty.

(i) Let a € Ny (p;t7). Then ¢~ (a) >t~ Since = (A;p—,¢™) is a bipolar
fuzzy UP-ideal of A, we have p—(0) < ¢~ (a). Thus —1 — ¢~ (0) < —1 — ¢ (a),
50 ¢~ (0) > ¢~ (a) > t~. Hence, 0 € Ny(p;t™).

(ii) Let x,y,2z € A be such that = - (y - z) € Ny(e;t7) and y € Ny(e;t7).
Then o~ (- (y-2)) >t~ and ¢~ (y) >t~, so ¢t~ is a lower bound of {¢p~ (- (y-
2)), ¢ (y)}. Since = (A;0~,¢") is a bipolar fuzzy UP-ideal of A, we have
o (z-2) <max{p=(z-(y-2)),o (y)}. By Lemma 3.38 (1), we have —1 — ¢~ (z-
z) Smax{-1-¢ (z-(y-2)),-1—¢ (y)} = -1 —min{e~(z- (y-2)), ¢~ (¥}
Thus ¢ (z-2) > min{e (z- (y-2)),¢ (y)} >t~ and so z -z € Ny(p;t7).
Therefore, Ny (p;t7) is a UP-ideal of A.

(iii) Let b € Pr(p;t). Then ¢+ (b) < t*. Since p = (A; 0™,
fuzzy UP-ideal of A, we have ¢+(0) > ¢+ (b). Thus 1 — ¢1(0)
0T (0) < pt(b) < tt. Hence, 0 € Pr(p;t).

(iv) Let z,y,2z € A be such that z - (y - z) € Pr(p;t") and y € Pr(p;tT).
Then T (x - (y-2)) <tT and p*(y) < tT, so tT is an upper bound of {p™(x -
(y-2), 0 (y)}. Since = (A;0—, ") is a bipolar fuzzy UP-ideal of A, we
have ¢t (z - z) > min{pT(z - (y - 2)), 97 (y)}. By Lemma 3.38 (2), we have
1—p*(z-2) 2 min{l—p™(z-(y-2)), 1 —¢" (y)} = L—max{p™ (z-(y-2)),¢™ () }-
Thus 1 (z-2) < max{pt(z-(y-2)),0"(y)} < tT and so x -2z € Pr(p;th).
Therefore, Pr(p;t1) is a UP-ideal of A.

Conversely, assume that for all (¢7,t7) € [—1,0] x [0,1], Ny(p;t~) and
Pr(p;tT) are UP-ideals of A if Ny (p;t~) and Pr(p;tT) are nonempty.

(i) Let x € A. Then ¢~ (z) € [-1,0]. Choose t™ = ¢~ (z). Thus ¢~ (z) > 7,
so x € Ny(p;t~) # 0. By assumption, we have Ny (p;t7) is a UP-ideal of A
and s0 0 € Ny (p;t7). Thus o= (0) >t~ = ¢~ (z) and so ¢~ (0) = =1 —¢~(0) <
- (x) = o (@),

(ii) Let z,y,z € A. Then ¢ (z - (y - 2)),¢ (y) € [-1,0]. Choose t~ =
min{e™(z - (y - 2)),¢" (y)}. Thus ¢~ (z-(y-2)) = ¢ and ¢~ (y) = 7, so
x-(y-2),y € Ny(p;t~) # 0. By assumption, we have Ny (p;t~) is a UP-ideal
of Aandsoz-z € Ny(p;t™). Thus ¢ (z-2) >t~ =min{p (z-(y-2)), ¢ (y)}.
By Lemma 3.38 (1), we have

©*) is a bipolar
>

)isa
1— ¢t (b), so
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o (x-2) —1—p (z-2)

—1—min{p~(z- (y-2)),¢" (v)}
max{—1—¢ (z-(y-2)), -1 —¢ (y)}
= max{p~(z-(y-2)),9 (y)}.

(iii) Let x € A. Then o™ (z) € [0,1]. Choose tT = ¢ ( ). Thus o™ (z) < tF,
so z € Pr(p;tt) # 0. By assumption, we have Pp(p;t") is a UP-ideal of A
and so 0 € Pr(p;tT). Thus o7 (0) < tt = ¢ (x) and so pT(0) = 1 — 1 (0) >
1— g (x) = g (2).

(iv) Let z,y,z € A. Then ¢t (z - (y - 2)),¢"(y) € [0,1]. Choose t+ =
max{o*(z - (y - 2)),9"(y)}. Thus e*(z - (y-2)) < 7 and p¥(y) < ¢, so
x-(y-2),y € PL(p;tT) # 0. By assumption, we have Pr(¢p;t") is a UP-ideal of
Aand so x-z € Pr(p;th). Thus ot (z-2) <tT =max{pT(x- (y-2)),o"(y)}.
By Lemma 3.38 (2), we have

IIA

pH(z-2) = 1-¢*(x-2)
> 1—-max{et(z-(y-2)),¢"(y)}
= min{l — T (z-(y-2)),1-¢"(y)}
= min{pT(z-(y-2),¢T ()}
Hence, @ = (A; ¢~,¢T) is a bipolar fuzzy UP-ideal of A. O

Theorem 3.42. Let ¢ = (A;¢7,¢") be a bipolar fuzzy set in A. Then @ =
(A; 0=, pT) is a bipolar fuzzy strongly UP-ideal of A if and only if for all
(t,tT) € [-1,0] x [0, 1], Nu(p; t™) and Pp(p;tt) are strongly UP-ideals of A if
Ny(p;t™) and Pp(p;t™) are nonempty.

Proof. Assume that @ = (A4;¢—, pT) is a bipolar fuzzy strongly UP-ideal of A.
Let (t7,t") € [-1,0] x [0, 1] be such that Ny (p; ¢ ) and Pr(p;t") are nonempty.

(i) Let a € Ny(p;t~). Then ¢~ (a) > t~. Since B = (A; o—,¢™) is a bipolar
fuzzy strongly UP-ideal of A, we have ¢~ (0) < ¢~ (a). Thus —1 — ¢ (0) <
—1—¢ (a),so ¢ (0) > ¢~ (a) > t~. Hence, 0 € Ny(p;t7).

(i) Let x,y, z € A be such that (z-y)-(z-2) € Ny(p;t~) and y € Ny(e;t7).
Then ¢~ ((z-y) - (2-x)) >t~ and ¢~ (y) > ¢, so t~ is a lower bound of
{7 ((z-y) - (2-7)),¢" (y)}. Since p = (A;p~, ™) is a bipolar fuzzy strongly
UP-ideal of A, we have p—(z) < max{o~((z-y)-(z-x)), o (y)}. By Lemma 3.38
(1), we have —1 — ¢~ (2) < max{—1 — g~ ((z3) - (2~ 1)), ~1 — ¢~ (5)} = ~1 -
min{¢~((z-y)-(2-)), ¢~ (y)}. Thus ¢~ (z) = min{e™((2-y)-(z-2)), ¢~ (y)} = 1~
and so x € Ny (¢;t~). Therefore, Niy(p;t7) is a strongly UP-ideal of A.

(iii) Let b € Pr(p;t). Then ¢+ (b) < tT. Since @ = (A;p—, 1) is a bipolar
fuzzy strongly UP-ideal of A, we have ot(0) > @t (b). Thus 1 — ¢*(0) >
1 — T (b), so ¢1(0) < o (b) < tt. Hence, 0 € Pr(p;tT).

(iv) Let z,y, z € A be such that (z- y) x) € Pp(p;tT) and y € Pr(p;th).
Then ¢*((z-y) - (z-2)) < t* and ¢t (y t*, so tT is an upper bound of
{¢"((z-y) - (z-2)), ¢ (y)}. Since P E

= o ,?) is aiblpolar fuzzy strongly
UP-ideal of A, we have <p+( ) > min{p* y)-(z-2)), o7 (y)}. By Lemma 3.38

(=
) <
A;
(=
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(2), we have 1— () > min{1— ™ ((-y)- (2-2)), 1—p* (4)} = 1—max{*((2-
y) - (2-2)), ¢ (9)}. Thus o* () < max{p*((z-9) - (2 2)), 9" (4)} < ¢ and s0
x € Pp(p;tT). Therefore, Pp(p;t") is a strongly UP-ideal of A.

Conversely, assume that for all (¢t7,¢7) € [-1,0] x [0,1], Ny(p;t~) and
Pr(p;tT) are strongly UP-ideals of A if Ny (p;t~) and Pr(¢p;th) are nonempty.

(i) Let x € A. Then ¢~ (z) € [-1,0]. Chooset™ = ¢~ (z). Thus ¢~ (z) > ¢,
so z € Ny(p;t~) # 0. By assumption, we have Ny (p;t7) is a strongly UP-
ideal of A and so 0 € Ny(p;t~). Thus ¢~ (0) >t~ = ¢~ (z) and so »=(0) =
- (0) < —1— ¢ (2) = 9= ().

(ii) Let x,y,z € A. Then e ((z-y) - (z-2)),
t7 = min{p~ ((Z y) - (z-2)),07(y)}. Thus o= ((z-y) - (z-x)) > ¢~ and
0 (y) >t ,s0 (z2-y) - (2-x),y € Ny(p;t~) # 0. By assumption, we have
Ny(p;t™) is a strongly UP-ideal of A and so z € Ny(p;t~). Thus ¢~ (z) >
t —mm{cp ((z-y)-(z2-2)),¢ (y)}. By Lemma 3.38 (1)

¢~ (x) —1—¢ (2)

—1 —min{e"((z-y) - (z-2)),¢ ()}

max{—1 - ((z-y) (z-2)),—1 -9~ (y)}
= max{p~((z-y) (2 7)), ¢ (¥)}.

(iii) Let x € A. Then o™ (z) € [0,1]. Choose tT = @' (x). Thus ¢*(z) < tT,
so x € Pr(p;tT) # 0. By assumption, we have Pp(p;tT) is a strongly UP-
ideal of A and so 0 € Pr(p;tt). Thus ¢1(0) < t+ = o1 (z) and so ¢+(0) =
1—¢7(0) 21 - ¢"(z) = o (x).

(iv) Let z,y,2z € A. Then ¢ ((2-y) - (z-2)),¢"(y) € [0,1]. Choose t* =
max{p™ ((z-y) - (z-2)), 9" (y)}. Thus ™ ((z-y) - (z-2))) < t* and o™ (y) < T,

o(2-y) - (z-x2),y € P(p;tT) # (. By assumption, we have Pp(p;t1) is a
strongly UP-ideal of A and so xz € Pr(¢;t"). Thus ¢t (z) < tT = max{p™((z -
y)-(z-2)),9o"(y)}. By Lemma 3.38 (2), we have

¢ (y) € [-1,0]. Choose
y) -

, we have

IHIA

pH) = 1-¢*(2)
> 1-—max{eT((z-y) (z-2)),o"(y)}
= min{l = ¢*((z-9) - (2-2)), 1 - ¢ (y)}
= min{et((z-y)  (z-2)),¢T(y)}.
Hence, © = (A;cpT, <p7+) is a bipolar fuzzy strongly UP-ideal of A. O

4. Conclusions and future work

In the present paper, we have introduced the notions of bipolar fuzzy (a, 3)-
translations of ¢ = (A4;p 7, 1) of type I and of type II for a bipolar-valued
fuzzy set ¢ = (A;¢0,0") in a UP-algebra A. The notions of extensions and
of intensions of a bipolar-valued fuzzy set are also studied. We think this work
would enhance the scope for further study in UP-algebras and related algebraic
systems. It is our hope that this work would serve as a foundation for the further
study in a new concept of UP-algebras.
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In our future study of UP-algebras, may be the following topics should be
considered:

e To get more results in bipolar fuzzy translations of a bipolar-valued fuzzy
set in UP-algebras.

e To define bipolar-valued fuzzy sets with thresholds in UP-algebras.

e To define bipolar-valued fuzzy soft sets in UP-algebras.
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