WEAKLY θ_r -PREOPEN SETS AND DECOMPOSITION OF CONTINUITY

Manisha Shrivastava*

Department of Mathematics Govt. J.Y. Chhattisgarh College Raipur, Chhattisgarh India-492001 shrivastavamanisha9@qmail.com

Takashi Noiri

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken 869-5142 JAPAN t.noiri@nifty.com

Purushottam Jha

Department of Mathematics Govt. D.K.P.G. College Baloda Bazar-493332 Raipur, Chhattisgarh India-494661 purush.jha@gmail.com

Abstract. In this paper we introduce and study the notion of weakly θ_I -preopen sets and weakly θ_I -precontinuous functions to obtain a decomposition of continuity. We also investigate their fundamental properties.

Keywords: ideal,ideal topological spaces, θ_I -pre open sets, weakly θ_I -pre open sets, weakly θ_I -precontinuous functions.

1. Introduction

The concept of ideals in general topological spaces was introduced and studied by Hamlett and Jankovic [9] (see also [10], [11]) and Vaidyanathaswamy [33] and other papers. Newcomb [27], Rancin [29], Samuels [31] and Hamlet et al. ([9], [10], [11]) motivated the research by applying topological ideals to generalize the most basic properties in general topology. Jankovic and Hamlet [18] introduced the notion of *I*-open sets in ideal topological space. El-Monsef et al. [25] further investigated *I*-open sets and *I*-continuous functions in ideal topological space. Some new forms of *I*-open sets are introduced in [7] (see [15]) and other papers. Yuksel et al. [35] and Acikgoz et al. [1] have investigated some new classes of functions in ideal topological spaces. Hatir and Noiri [15] introduced the

^{*.} Corresponding author

notions of weakly semi-I-open sets and weakly semi-I-continuous functions in ideal topological space. Q.L.Shi [30] initiated and elaborated the notion of weakly α -I-open sets, weakly α -I-continuous, weakly α -I-open, weakly α -I-closed functions and weakly α -I-paracompact spaces in ideal topological spaces. In 2013 Mustafa and Al-Ghour [26] defined the notion of weakly b-I-open sets, weakly b-I-continuous, weakly b-I-open and weakly b-I-closed functions in ideal topological spaces. Quite recently in [4]some new forms of θ_I -open sets have introduced and studied and a new decomposition of continuity is obtained by Al-Omari and Noiri. The concept of θ_I -open sets is based on θ -open sets due to Veličko [34]. A set A is said to be θ -open [34], if every point of A has an open neighborhood whose closure is contained in A.

This new concept of θ_I -preopen sets motivated me to generalize this notion as weakly θ_I -preopen sets. The main theme of the present paper is to devise and elaborate the concept of weakly θ_I -preopen sets and to obtain new decomposition of continuity in ideal topological spaces. This paper is organized as follows, in section 3 we define weakly θ_I -preopen sets and establish its interrelationships with some other generalized open sets and also study its characterizations. In section 4 we define and study strong θ_{pre} -t-I sets, strong θ_{pre} -B-I sets and θ^B -sets. In section 5 we introduce and investigate weakly θ_I -precontinuous and weakly θ_I -preirresolute functions in ideal topological spaces.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) will denote topological spaces with no separation properties assumed. Cl(V) and Int(V) will denote the closure and the interior of V in X, respectively, for a subset V of a topological space (X, τ) . C(X) denotes the collection of closed subsets of X. An ideal I on a nonempty set X is a nonempty collection of subsets of X which satisfies the following:

- 1. $V \in I$ and $U \subset V$ implies $U \in I$,
- 2. $V \in I$ and $U \in I$ implies $V \cup U \in I$.

The pair (X, τ, I) of a topological space (X, τ) and an ideal I on X is called an ideal topological space or simply an ideal space. It is important that a family of sets is a filter if and only if the family of the complements of these sets is an ideal. One connection between an ideal and the topology on a given ideal space arises through the concept of the local function on a subset. Given a topological space (X, τ) with an ideal I on X and if P(X) is the collection of all subsets of X, a set operator $(.):P(X) \to P(X)$ called a local function of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I,\tau) = \{x \in X: (U \cap A) \notin I$, for every $U \in \tau(x)$, where $\tau(x) = \{U \in \tau: x \in U\}$ [33] (c.f. [18], [19]). A Kuratowski closure operator $Cl^*(A) = A \cup A^*(I,\tau)$ induces a topology $\tau^*(I,\tau)$ called the *-topology which is finer than τ . It is generated by the base $\beta(I,\tau) = \{U \mid I: U \in \tau \text{ and } I \in I\}$. In general $\beta(I,\tau)$ is not always a topology as

shown in [18]. We will write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. In general X^* is a proper subset of X. Hayashi [17] used the hypothesis $X = X^*$ and Samuels [31] used the hypothesis $\tau \cap I = \phi$.

Although these two conditions are equivalent due to [18] and therefore the ideal topological spaces satisfying this hypothesis are called as Hayashi-Samuels spaces ([19], [33], [17]).

Now we recall some definitions and results which are used in this paper.

Definition 1. A subset A of a topological space (X, τ) is said to be

- 1. preopen [22] if $A \subset Int(Cl(A))$,
- 2. semi-open [20] if $A \subset Cl(Int(A))$,
- 3. α -open [23] if $A \subset Int(Cl(Int(A)))$,
- 4. β -open [24] if $A \subset Cl(Int(Cl(A)))$,
- 5. b-open [5] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,
- 6. a t-set [32] if Int(A) = Int(Cl(A)),
- 7. a B-set [32] if $A = U \cap V$, where $U \in \tau$ and V is a t-set,
- 8. a t-*I*-set [12] if $Int(A) = Int(Cl^*(A))$,
- 9. a B_I -set [12] if $A = U \cap V$, where $U \in \tau$ and V is a t-I-set,
- 10. a strong t-I-set [14] if $Int(A) = sCl(Int(Cl^*(A)))$,
- 11. a strong B_I -set [14] if $A = U \cap V$, where U is an open set and V is a strong t-I-set.

The θ -interior [34] of A in X is the union of all θ -open subsets contained in A and is denoted by $Int_{\theta}(A)$. The complement of a θ -open set is said to be θ -closed. The θ -closure of A is defined as $Cl_{\theta}(A) = \{x \in X: (Cl(U) \cap A) \neq \phi$, for all $U \in \tau(x)\}$ and a set A is θ -closed if and only if $A = Cl_{\theta}(A)$. All θ -open sets form a topology on X which is coarser than τ and denoted by τ_{θ} . A topological space (X, τ_{θ}) is regular if and only if $\tau = \tau_{\theta}$. The θ -closure of a given set need not be a θ -closed set. A point $x \in X$ is called a θ -I-closure point of A if $(Cl^*(U) \cap A) \neq \phi$ for each open set U containing x. The set of all θ_I -closure points of A is called the θ_I -closure of A and denoted by $Cl_{\theta_I}(A) = \{x \in X: (Cl^*(U) \cap A) \neq \phi \text{ for all } U \in \tau(x) \}$. A subset A is said to be θ_I -closed if $Cl_{\theta_I}(A) = A$. The complement of a θ_I -closed set is called a θ_I -open set. In other words A is said to be θ_I -open if $Cl_{\theta_I}(X \setminus A) = X \setminus A$.

Definition 2 ([3]). Let (X, τ, I) be an ideal topological space. A point $x \in X$ is called a θ_I -interior point of A if there exists an open set containing x such that $U \subseteq Cl^*(U) \subseteq A$. The set of all θ_I -interior points of A is called the θ_I -interior of A and denoted by $Int_{\theta_I}(A)$. A is θ_I -open if and only if $A=Int_{\theta_I}(A)$.

The following results are useful in the sequel:

Lemma 1 ([18]). Let (X, τ, I) be an ideal topological space and A, B be any two subsets of X. Then the following properties hold:

- 1. If $A \subseteq B$, then $A^* \subseteq B^*$;
- 2. If $A^* = Cl(A^*) \subseteq Cl(A)$;
- 3. $(A^*)^* \subseteq A^*$;
- 4. $(A \cup B)^* = A^* \cup B^*$.
- 5. If $U \in \tau$, then $U \cap A^* \subset (U \cap A)^*$.

Lemma 2 ([4]). Let (X, τ, I) be an ideal topological space and A be a subset of X. Then the following properties hold.

- 1. If A is open, then $Cl(A) = Cl_{\theta_I}(A) = Cl_{\theta}(A)$.
- 2. If A is closed, then $Int(A) = Int_{\theta_I}(A) = Int_{\theta}(A)$.

Definition 3. A subset A of an ideal topological space (X, τ, I) is said to be

- 1. I-open [25] if $A \subset Int(A^*)$.
- 2. α -I-open [12] if $A \subseteq Int(Cl^*(Int(A)))$
- 3. pre-*I*-open [7] if $A \subseteq Int(Cl^*(A))$.
- 4. semi-I-open,[12] if $A \subseteq Cl^*(Int(A))$.
- 5. β -I-open [15] if $A \subseteq Cl(Int(Cl^*(A)))$.
- 6. θ_I -preopen [4] if $A \subseteq Int(Cl_{\theta_I}(A))$.
- 7. θ_I -semi-open [4] if $A \subseteq Cl(Int_{\theta_I}(A))$,
- 8. θ_I - β -open [4] if $A \subseteq Cl(Int(Cl_{\theta_I}(A)))$.
- 9. θ_{I} - α -open [4] if $A \subseteq Int(Cl(Int_{\theta_{I}}(A)))$.
- 10. weakly semi-*I*-open [16] if $A \subset Cl^*(Int(Cl(A)))$.
- 11. weakly pre-*I*-open [14] if $A \subset sCl(Int(Cl^*(A)))$.
- 12. weakly b-I-open [26] if $A \subset Cl^*(Int(Cl(A))) \cup Cl(Int(Cl^*(A)))$.

Lemma 3 ([13]). For a subset A of a topological space (X, τ) , the following properties hold:

- 1. $sCl(A) = A \cup Int(Cl(A)),$
- 2. If A is open then sCl(A) = Int(Cl(A)).

3. Weakly θ_I -preopen sets

Definition 4. A subset A of an ideal topological space (X, τ, I) is said to be weakly θ_I -preopen if $A \subseteq sCl(Int(Cl_{\theta_I}(A)))$.

The family of all weakly θ_I -preopen sets of the space (X, τ, I) will be denoted by $W\theta_I PO(X, \tau)$.

Theorem 1. For any subset A of an ideal topological space (X, τ, I) , the following properties hold:

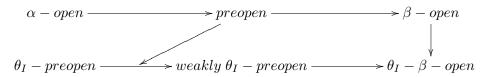
- 1. Every θ_I -preopen set is weakly θ_I -preopen.
- 2. Every weakly θ_I -preopen set is θ_I - β -open.
- 3. Every preopen set is θ_I -preopen and hence weakly θ_I -preopen .

Proof. Let A be any subset of an ideal topological space (X, τ, I) .

- 1. Suppose A is θ_I -preopen. By using the definition of a θ_I -preopen set, we have $A \subseteq Int(Cl_{\theta_I}(A)) \subseteq sCl(Int(Cl_{\theta_I}(A)))$. This shows that A is weakly θ_I -preopen. This shows that A is weakly θ_I -preopen.
- 2. Suppose A is weakly θ_I -preopen then we have $A \subseteq sCl(Int(Cl_{\theta_I}(A))) \subseteq Cl(Int(Cl_{\theta_I}(A)))$. This implies that A is θ_I - β -open.
- 3. Suppose A is preopen then we have $A \subseteq Int(Cl(A)) \subseteq Int(Cl_{\theta_I}(A))$) and therefore A is θ_I -preopen and hence A is weakly θ_I -preopen.

3.1 Interrelationship

The following diagram will describe the interrelations among a weakly θ_I -preopen set and some other existing open sets in an ideal topological space. None of these implications is reversible as shown by examples given below.



Example 1. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b\}, \{b, c, d\}\}$ and I = P(X), then (X, τ, I) is an ideal topological space.

 $C(X) = \{X, \phi, \{c, d\}, \{a, d\}, \{d\}, \{a, c, d\}, \{a\}\}\}$. Let $A = \{b, d\}$ be any subset of X, then $Cl_{\theta_I}(\{b, d\}) = \{b, d\}$ and $Int(\{b, d\}) = \{b\}$ and $A = \{b, d\} \subsetneq \{b\}$. This implies that A is not a θ_I -preopen set. But $sCl(\{b\}) = \{b\} \cup X = X$, consequently $A = \{b, d\} \subseteq X$. This shows that A is weakly θ_I -preopen.

Example 2. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{b, c, d\}, \{c, d\}\}$ and I = P(X), then (X, τ, I) is an ideal topological space. $C(X) = \{X, \phi, \{a, c, d\}, \{a, b\}, \{a\}\}$. Let $A = \{a, b\}$ is β -open and hence θ_I - β -open. Because $cl(int(cl(A))) = int(cl(A)) = Cl(Int(Cl_{\theta_I}(\{a, b\}))) = \{a, b\} = A$. But $A = \{a, b\}$ is not weakly θ_I -preopen, since $sCl(Int(Cl_{\theta_I}(\{a, b\}))) = \{b\}$, which is not containing $\{a, b\}$.

Example 3. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a, b, c\}, \{a, c, d\}, \{a\}, \{a, b\}, \{a, c\}\}\}$ and $I = \{\phi, \{d\}\}$, then (X, τ, I) is an ideal topological space.

 $C(X) = \{X, \phi, \{d\}, \{c, d\}, \{b, c, d\}, \{b\}, \{b, d\}\}$. Let $A = \{c\}$ be any subset of X, which is weakly θ_I -preopen, as $Cl_{\theta_I}(\{c\}) = X$ and $sCl(Int(Cl_{\theta_I}(\{c\})) = X$, which contains $\{c\}$. But it is not preopen, since $A \nsubseteq Int(Cl(\{c\})) = \phi$.

Theorem 2. Let (X, τ, I) be an ideal topological space. Let V, A and A_{α} be the subsets of X. Then

- 1. If A_{α} is weakly θ_I -preopen for each $\alpha \in \wedge$, then $\cup_{\alpha \in \wedge} A_{\alpha}$ is weakly θ_I -preopen.
- 2. If A is weakly θ_I -preopen and V is α -open, then $A \cap V$ is weakly θ_I -preopen.

Proof. 1. Since A_{α} is weakly θ_I -preopen for each $\alpha \in \wedge$, $A_{\alpha} \subseteq sCl(Int(Cl_{\theta_I}(A_{\alpha})))$ for each $\alpha \in \wedge$. Therefore $A_{\alpha} \subseteq sCl(Int(Cl_{\theta_I}(\cup_{\alpha \in \wedge} A_{\alpha})))$ for each $\alpha \in \wedge$ and $\cup_{\alpha \in \wedge} A_{\alpha} \subseteq sCl(Int(Cl_{\theta_I}(\cup_{\alpha \in \wedge} A_{\alpha})))$.

Hence $\cup_{\alpha \in \wedge} A_{\alpha}$ is weakly θ_I -preopen.

- 2. $A \cap V \subseteq sCl(Int(Cl_{\theta_I}(A))) \cap Int(Cl(Int(V)))$
- $= Int(Cl(Int(Cl_{\theta_I}(A))) \cap Int(Cl(Int(V)))$
- $= Int[Cl(Int(Cl_{\theta_I}(A)) \cap Cl(Int(V))]$
- $= Int[Cl[Int(Cl_{\theta_I}(A)) \cap (Int(V))]]$
- $= sCl[Int(Cl_{\theta_I}(A) \cap Int(V))]$
- $\subseteq sCl[Int(Cl_{\theta_I}(A \cap Int(V)))] \subseteq sCl[Int(Cl_{\theta_I}(A \cap V))].$

Therefore $(A \cap V) \subseteq sCl(Int(Cl_{\theta_I}(A \cap V)))$. This shows that $A \cap V$ is weakly θ_I -preopen.

Theorem 3. For an ideal topological space (X, τ, I) and $A \subseteq X$, we have:

- 1. If $I = \phi$, then A is θ_I -open if and only if A is θ -open.
- 2. If I = P(X), then A is θ_I -preopen if and only if A is preopen.

Proof. 1. Sufficiency- It follows directly from [4].

Necessity-If $I = \phi$, then $A^* = Cl(A)$ and therefore $Cl_{\theta_I}(A) = Cl_{\theta_I}(A)$

2. Sufficiency- It follows from the Theorem 1.

Necessity-If I = P(X), then $A^* = \phi$, therefore $Cl_{\theta_I}(A) = Cl(A)$, which implies the preopeness of A.

Definition 5. A subset of an ideal topological space (X, τ, I) is said to be weakly θ_I -preclosed if its complement is weakly θ_I -preopen.

Theorem 4. A subset A of an ideal topological space (X, τ, I) is said to be weakly θ_I -preclosed if and only if $sInt(Cl(Int_{\theta_I}(A))) \subset A$.

Proof. Let A be a weakly θ_I -preclosed subset of the ideal topological space (X, τ, I) , then $X \setminus A$ is weakly θ_I -preopen and hence $(X \setminus A) \subseteq sCl(Int(Cl_{\theta_I}(X \setminus A))) = X \setminus sInt(Cl(Int_{\theta_I}(A)))$. This implies $(X \setminus A) \subseteq (X \setminus (sInt(Cl(Int_{\theta_I}(A))))$.

Hence we have $sInt(Cl(Int_{\theta_I}(A))) \subseteq A$. Conversely, suppose $sInt(Cl(Int_{\theta_I}(A))) \subseteq A$, then $X \setminus A \subseteq X \setminus sInt(Cl(Int_{\theta_I}(A))) = sCl(Int(Cl_{\theta_I}(X \setminus A)))$ and hence $(X \setminus A)$ is weakly θ_I -preopen. Therefore A is weakly θ_I -preclosed.

Remark 1. The finite intersection of weakly θ_I -preopen sets need not be weakly θ_I -preopen.

Example 4. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a, b, c\}, \{a, b\}\}$ and

 $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}\$ then (X, τ, I) is an ideal topological space. The family of closed subsets of X, $C(X) = \{X, \phi, \{d\}, \{c, d\}\}\$. Then $A = \{a, d\}$ and $B = \{b, d\}$ are weakly θ_I -preopen, but their intersection $A \cap B = \{d\}$ is not weakly θ_I -preopen. Since $A \nsubseteq sCl(Int(Cl_{\theta_I}(\{d\}))) = \phi$.

Lemma 4. For two subsets A and U of an ideal topological space (X, τ, I) , the following is true: $U \cap Cl_{\theta_I}(A) \subseteq Cl_{\theta_I}(U \cap A)$ if U is θ_I -open.

Proof. Let $x \in U \cap Cl_{\theta_I}(A)$. Then for every θ_I -open set V containing $x, V \cap U$ is a θ_I -open set containing x and hence $(V \cap U) \cap A \neq \phi$. This implies that $x \in Cl_{\theta_I}(U \cap A)$ and therefore we get the desired result.

Lemma 5 ([18]). Let (X, τ, I) be an ideal topological space and B be any subset of X such that $B \subset A \subset X$. Then $B^*(\tau | A, I | A) = B^*(\tau, I) \cap A$.

If (X, τ, I) is an ideal topological space and A is subset of X; we denote by $\tau | A$ the relative topology on A and $I | A = \{A \cap I : I \in I\}$ is an ideal on A.

Lemma 6 ([16]). Let (X, τ, I) be an ideal topological space, $A \subset X$ and $U \in \tau$. Then $Cl^*(A) \cap U = Cl_U^*(A \cap U)$.

Theorem 5. Let (X, τ, I) be an ideal topological space and $A \subseteq U \in \tau$ then A is weakly θ_I -preopen in (X, τ, I) if and only if A is weakly θ_I -preopen in $(U, \tau|U, I|U)$.

Proof. Necessity. Let A be any weakly θ_I -preopen set in (X, τ, I) , then we have $A \subseteq sCl(Int(Cl_{\theta_I}(A))) = Int(Cl(Int(Cl_{\theta_I}(A))))$ as $Int(Cl_{\theta_I}(A))$ is an open set. Now $A = U \cap A \subseteq U \cap Int(Cl(Int(Cl_{\theta_I}(A))))$

- $= Int(U \cap Int(Cl(Int(Cl_{\theta_I}(A)))))$, being an open set.
- $= Int_U(U \cap Int(Cl(Int(Cl_{\theta_I}(A)))))$
- $\subset Int_U(U \cap Cl(U \cap Int(Cl_{\theta_I}(A))))$
- $\subseteq Int_U(Cl_U(U \cap Int(Cl_{\theta_I}(A))))$
- $= sCl_U(Int(U \cap (Cl_{\theta_I}(A))))$
- $\subset sCl_U(Int_U(U \cap (Cl_{\theta_I}(A))))$
- = $sCl_U(Int_U((Cl_{\theta_I})_U)(A))))$ by Lemma 6. This shows that A is weakly θ_I -preopen in $(U, \tau \mid U, I \mid U)$.

Sufficiency. Let A be weakly θ_I -preopen in $(U, \tau \mid U, I \mid U)$. Then we have $A \subset sCl_U(Int_U((Cl_{\theta_I})_U)(A)))$

 $= sCl_U(Int_U(Cl_{\theta_I}(A) \cap U)))$

```
= sCl_{U}(U \cap Int(Cl_{\theta_{I}}(A) \cap U))), \text{ by Lemma 6}
= sCl_{U}(Int(Cl_{\theta_{I}}(A) \cap U))) = Int_{U}(Cl_{U}(Int(U \cap (Cl_{\theta_{I}}(A))))
= Int_{U}(U \cap Cl(Int(U \cap (Cl_{\theta_{I}}(A))))
= U \cap Int(Cl(Int(Cl_{\theta_{I}}(A))))
\subseteq Int(Cl(Int(Cl_{\theta_{I}}(A))))
= sCl(Int(Cl_{\theta_{I}}(A))).
This implies that A is weakly \theta_{I}-preopen in (X, \tau, I)
```

Corollary 1. Let(X, τ , I) be an ideal topological space. If $U \in \tau$ and A is weakly θ_I -preopen, then $U \cap A$ is weakly θ_I -preopen in $(U, \tau | U, I | U)$.

Proof. Since $U \in \tau$ and A is weakly θ_I -preopen in (X, τ, I) .

Since every open set is alpha-open, therefore by by Theorem 2, $U \cap A$ is weakly θ_I -preopen in (X, τ, I) . Since $U \in \tau$ and by Theorem 5, $U \cap A$ is weakly θ_I -preopen in $(U, \tau | U, I | U)$.

Definition 6. [8] A space (X, τ) is called submaximal if every dense subset of X is open.

Lemma 7. [21] If (X, τ) is submaximal, then $PO(X, \tau) = \tau$.

Corollary 2. If (X, τ) is submaximal, then for any ideal I on X, $\theta_I PO(X) = \tau$.

Proof. It follows directly from the fact that every preopen set is θ_I -preopen. \square

Remark 2. If (X, τ) is submaximal, then for any ideal I on X, $W\theta_I PO(X) = \tau$.

Theorem 6 ([4]). Let (X, τ, I) be an ideal topological space. The following are equivalent;

- 1. The θ_I -closure of every θ_I -open subset of X is θ_I -open;
- 2. $Cl(Int_{\theta_I}(A)) \subseteq Int(Cl_{\theta_I}(A))$ for every subset A of X;
- 3. $\theta_I PO(X) \subseteq \theta_I SO(X)$;
- 4. The θ_I -closure of every θ_I - β -open subset of X is θ_I -open;
- 5. $\theta_I \beta O(X) \subseteq \theta_I PO(X)$.

Definition 7. A subset A of an ideal topological space (X, τ, I) is called θ_I -dense if $Cl_{\theta_I}(A) = X$.

Remark 3. Every θ_I -dense subset of an ideal topological space (X, τ, I) is θ_I -preopen.

Proof. It is obvious. \Box

Theorem 7. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- 1. $\theta_I PO(X) \subseteq \theta_I SO(X)$,
- 2. Every θ_I -dense subset of X is θ_I -semiopen,
- 3. $Int_{\theta_I}(A)$ is θ_I -dense for every θ_I -dense subset A,
- 4. $Int_{\theta_I}[\theta_I F_r(A)] = \phi$ for every subset A,
- 5. $\theta_I \beta O(X) \subset \theta_I SO(X)$,

Proof. $(1) \Rightarrow (2)$ It follows directly from the Remark 3.

- $(2) \Rightarrow (3)$ Let A be θ_I -dense, then A is θ_I -semiopen. Therefore $A \subseteq Cl(Int_{\theta_I}(A)) \subseteq Cl_{\theta_I}(Int_{\theta_I}(A)) \subseteq Cl_{\theta_I}(Cl_{\theta_I})(A) = Cl_{\theta_I}(A) = X$, as A is θ_I -dense, we have $Cl_{\theta_I}(Int_{\theta_I}(A)) = X$. Thus $Int_{\theta_I}(A)$ is θ_I -dense.
- (3) \Rightarrow (4) Suppose A be any subset of X, we have $X = Cl_{\theta_I}(A) \cup (X \setminus Cl_{\theta_I}(A)) = Cl_{\theta_I}(A) \cup Int_{\theta_I}(X \setminus A) \subseteq Cl_{\theta_I}(A) \cup Cl_{\theta_I}(Int_{\theta_I}(X \setminus A)) = Cl_{\theta_I}(A \cup Int_{\theta_I}(X \setminus A))$. This shows that $A \cup Int_{\theta_I}(X \setminus A)$ is θ_I -dense and therefore $Int_{\theta_I}(A \cup Int_{\theta_I}(X \setminus A))$ is θ_I -dense. $Int_{\theta_I}(A \cup Int_{\theta_I}(X \setminus A)) \cap ((X \setminus A) \cup Int_{\theta_I}(A))$] $= X \setminus \theta_I$ - $F_r(A)$. Since $X \setminus (\theta_I$ - $F_r(A)$ is the intersection of the two θ_I -dense sets therefore $X \setminus (\theta_I$ - $F_r(A)$ is θ_I -dense.
- $(4) \Rightarrow (5)$ Let $A \in \theta_I \beta O(X)$. Then by (4) and Theorem 3.15 of [4] $A \in \theta_I SO(X)$.
 - $(5) \Rightarrow (1)$ It is obvious.

Definition 8. A space (X, τ) is extremally disconnected [36] if the closure of every open set in X is open.

Theorem 8. If a topological space (X, τ) is extremally disconnected and $A \in \theta_I SO(X)$, then $A \in \theta_I \alpha O(X)$.

Proof. Let $A \in \theta_I SO(X)$, then we have $A \subseteq Cl(Int_{\theta_I}(A))$. Since X is extremally disconnected, we have $Cl(Int_{\theta_I}(A)) = Int(Cl(Int_{\theta_I}(A)))$. Hence $A \subseteq Cl(Int_{\theta_I}(A)) = Int(Cl(Int_{\theta_I}(A)))$.

Theorem 9. If a topological space (X, τ) is extremally disconnected and $A \in \theta_I \beta O(X)$, then $A \in W \theta_I PO(X)$.

Proof. Let $A \in \theta_I \beta O(X)$, then we have $A \subseteq Cl(Int(Cl_{\theta_I}(A)))$. Since X is extremally disconnected, we have $Cl(Int(Cl_{\theta_I}(A))) = Int[Cl(Int(Cl_{\theta_I}(A)))]$. Therefore $A \subseteq Cl(Int(Cl_{\theta_I}(A))) = Int[Cl(Int(Cl_{\theta_I}(A)))] = sCl(Int(Cl_{\theta_I}(A)))$. This implies that $A \in W\theta_I PO(X)$.

4. Strong θ_{pre} -t-I-sets

Definition 9. A subset of an ideal topological space is called a

- 1. Strong θ_{pre} -t-I-set if $sCl(sInt(Cl_{\theta_I}(A))) = Int(A)$.
- 2. θ_{pre} -t-I-set [4] if $Int(Cl_{\theta_I}(A)) = Int(A)$.

Theorem 10. Let A and B be subsets of an ideal topological space (X, τ, I) . If A and B are strong θ_{pre} -t-I-sets, then $A \cap B$ is a strong θ_{pre} -t-I-set.

Proof. Since A and B are strong θ_{pre} -t-I-sets, then we have $sCl(sInt(Cl_{\theta_I}(A))) = Int(A)$ and $sCl(sInt(Cl_{\theta_I}(B))) = Int(B)$.

```
Now Int(A \cap B) \subseteq Int(Cl_{\theta_I}(A \cap B))
```

- $\subseteq sInt(Cl_{\theta_I}(A \cap B)))$
- $\subseteq sCl(sInt(Cl_{\theta_I}(A \cap B)))$
- $\subseteq sCl(sInt[(Cl_{\theta_I}(A)) \cap (Cl_{\theta_I}(B))]))$
- $\subseteq sCl[(sInt(Cl_{\theta_I}(A)))) \cap (sInt(Cl_{\theta_I}(B)))]$
- $\subseteq sCl(sInt(Cl_{\theta_I}(A)))) \cap sCl(sInt(Cl_{\theta_I}(B)))$
- $= Int(A) \cap Int(B) = Int(A \cap B).$

Therefore $sCl(sInt(Cl_{\theta_I}(A \cap B))) = Int(A \cap B)$ and hence $A \cap B$ is a strong θ_{pre} -t-*I*-set.

Theorem 11. Every strong θ_{pre} -t-I-set is a θ_{pre} -t-I-set.

Proof. Let A be any strong θ_{pre} -t-I-set, then we have $sCl(sInt(Cl_{\theta_I}(A)))) = Int(A)$.

```
Therefore Int(Cl_{\theta_I}(A))) \subseteq sCl(sInt(Cl_{\theta_I}(A)))) = Int(A) \subseteq Int(Cl_{\theta_I}(A))) and hence Int(Cl_{\theta_I}(A))) = Int(A).
```

Theorem 12. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- 1. A is regular open.
- 2. $sCl(Int(Cl_{\theta_I}(A))) = A$ and A is open.
- 3. A is a strong θ_{pre} -t-I-set and weakly θ_{I} -preopen.

Proof. (1) \Rightarrow (2) Since A is regular open, we have Int(Cl(A)) = A and A is open. Therefore by Lemma 2, we have $Cl_{\theta_I}(A) = Cl(A)$.

Hence $sCl(Int(Cl_{\theta_I}(A))) = sCl(Int(Cl(A))) = sCl(A) = A \cup Int(Cl(A)) = A \cup A = A$.

- $(2) \Rightarrow (3)$ It is direct from the definition.
- (3) \Rightarrow (1) Let A be strong θ_{pre} -t-I-set and weakly θ_{I} -preopen, then we have $A \subseteq sCl(Int(Cl_{\theta_{I}}(A)))$ and $sCl(Int(Cl_{\theta_{I}}(A))) = Int(A)$. We have $A \subseteq sCl(Int(Cl_{\theta_{I}}(A))) = Int(A) \subseteq A$, then A is open. Therefore by Lemma 3, A = sCl(Int(Cl(A))) = Int(Cl(Int(Cl(A)))) = Int(Cl(A)). Hence A is regular open.

5. Strong θ_{pre} -B-I-sets and θ^B sets

Definition 10. A subset A of an ideal topological space (X, τ, I) is called

- 1. a strong θ_{pre} -B-I set if $A=U\cap V$, where $U\in \tau$ and and V is a strong θ_{pre} -t-I-set.
- 2. a θ_{pre} -B-I set [4] if there exist $U \in \tau$ and a θ_{pre} -t-I-set V in X such that $A = U \cap V$.

Theorem 13. For a subset A of an ideal topological space (X, τ, I) , the following properties hold:

- 1. If A is a strong θ_{pre} -t-I-set, then it is a strong θ_{pre} -B-I set.
- 2. If A is a strong θ_{pre} -B-I set, then it is a θ_{pre} -B-I set.

Proof. 1. Let A be a strong θ_{pre} -t-I-set, then we have $sCl(sInt(Cl_{\theta_I}(A))) = Int(A)$. $A = A \cap X$ and X is open. This implies that A is a strong θ_{pre} -B-I set.

2. Let A be a strong θ_{pre} -B-I set, then we have $A = U \cap V$, where U is an open set and V is strong θ_{pre} -t-I-set. By Theorem 11, V is θ_{pre} -t-I-set and hence A is a θ_{pre} -B-I set.

Definition 11. [4] A subset A of an ideal topological space (X, τ, I) is called a θ^A set if $A = U \cap V$, where $U \in \tau$ and V is strongly θ_I -semi-closed i.e. V is θ_I -semi-closed and $Int(Cl_{\theta_I}(A)) = Cl(Int_{\theta_I}(A))$.

Definition 12. [4] A subset A of an ideal topological space (X, τ, I) is said to be θ_{I} - β -closed if $Int(Cl(Int_{\theta_{I}}(A)))) \subseteq A$.

Definition 13. A subset A of an ideal topological space (X, τ, I) is called a θ^B -set if $A = U \cap V$, where $U \in \tau$ and V is θ_I - β -closed.

Theorem 14. Every θ^A -set is θ^B -set.

Proof. Let V be strongly θ_I -semi-closed, then $Int(Cl_{\theta_I}(V)) \subseteq V$ and $Int(Cl_{\theta_I}(V)) = Cl(Int_{\theta_I}(V))$. Now $Int(Cl(Int_{\theta_I}(V))) = Int(Int(Cl_{\theta_I}(V))) \subseteq Int(Cl_{\theta_I}(V)) \subseteq V$. We get $Int(Cl(Int_{\theta_I}(V))) \subseteq V$. Therefore V is θ_I - α -

 $\subseteq Int(Ct_{\theta_I}(V)) \subseteq V$. We get $Int(Ct(Int_{\theta_I}(V)))) \subseteq V$. Therefore V is $\theta_I - \alpha$ closed. This implies that every θ^A -set is θ^B -set.

But the converse of Theorem 14 need not be true as shown by the following example.

Example 5. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b, c\}, \{a, c\}\}$ and $I = \{\phi, \{a, c\}\}$ then (X, τ, I) is an ideal topological space. $C(X) = \{X, \phi, \{d\}, \{b, d\}\}$. If $A = \{a, b\}$ then we can write A as $A = X \cap A$, where X is an open set and A is θ_I - β -closed, since $Int(Cl(Int_{\theta_I}(A))) = \phi \subseteq A$. Hence A is θ^B -set. But A is not a θ^A -set, since A is not a θ_I -semi-closed, as $Int(Cl_{\theta_I}(A)) = X \nsubseteq A$.

Theorem 15. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- 1. A is open.
- 2. A is preopen and a θ^B -set.
- 3. A is θ_I -preopen and a θ^B -set.
- 4. A is weakly θ_I -preopen and a θ^B -set.
- 5. A is θ_I - β -open and a θ^B -set.
- 6. A is weakly θ_I -preopen and a strong θ_{pre} -B-I-set.

Proof. Here $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ follows from Theorem 1.

- $(5) \Rightarrow (1)$ It follows directly from Theorems 1, 6 and 14.
- $(1) \Rightarrow (6)$: It is obvious.
- (6) \Rightarrow (1): Let A be weakly θ_I -preopen and a strong θ_{pre} -B-I-set, then we have $A \subseteq sCl(Int(Cl_{\theta_I}(A)))$ and $A = U \cap V$, where U is open and V is a strong θ_{pre} -t-I-set so that $sCl(sInt(Cl_{\theta_I}(V))) = Int(V)$. Hence we get $A = A \cap U \subseteq sCl(Int(Cl_{\theta_I}(A))) \cap U = \{(sCl(Int(Cl_{\theta_I}(U \cap V)))) \cap U\}$ $\subseteq \{sCl(Int(Cl_{\theta_I}(V)))\} \cap U$ $\subseteq \{sCl(Int(Cl_{\theta_I}(V)))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V)))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V)))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V)))\} \cap U$ $\subseteq \{sCl(sInt(Cl_{\theta_I}(V))\} \cap U$ $\subseteq \{sCl(sInt(C$

6. Weakly θ_I -precontinuous

Definition 14. A function $f:(X,\tau,I)\to (Y,\sigma)$ is said to be

- 1. precontinuous [22] if preimage of every open set in Y is preopen in X.
- 2. θ_I - α -continuous if the preimage of every open set in Y is θ_I - α -open in X.
- 3. θ_I -precontinuous [4] if the preimage of every open set in Y is θ_I -preopen in X.
- 4. θ_I - β -continuous [4] if the preimage of every open set in Y is a θ_I - β -open in X.
- 5. θ_{pre} -B-I-continuous [4] if the preimage of every open set in Y is a θ_{pre} -B-I-set
- 6. θ^A -continuous [4] if the preimage of every open set in Y is a θ^A set.

Definition 15. A function $f:(X,\tau,I)\to (Y,\sigma)$ is said to be

- 1. weakly θ_I -precontinuous if the preimage of every open set in Y is weakly θ_I -preopen in X.
- 2. strong θ_{pre} -t-*I*-continuous if the preimage of every open set in Y is a strongly θ_{pre} -t-*I*-set.
- 3. strong θ_{pre} -B-I-continuous if the preimage of every open set in Y is a strongly θ_{pre} -B-I-set.
- 4. θ^B -continuous if the preimage of every open set in Y is a θ^B -set.

Theorem 16. 1. Every θ_I -precontinuous function is weakly θ_I -precontinuous.

- 2. Every precontinuous function is weakly θ_I -precontinuous.
- 3. Every weakly θ_I -precontinuous function is θ_I - β -continuous.
- 4. Every θ^A -continuous function is θ^B -continuous.

Proof. It follows directly from the Theorems 1 and 14.

The converse of (1)-(3) in Theorem 16 need not be true as shown in the following three examples.

Example 6. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}\}$ and I = P(X) then (X, τ, I) is an ideal topological space. $C(X) = \{\phi, X, \{b, c, d\}, \{c, d\}, \{b\}\}$. Let $Y = \{1, 2, 3, 4\}$ and $\sigma = \{Y, \phi, \{1, 2\}, \{1, 2, 3\}\}$ then (Y, σ) is a topological space. Let $f: (X, \tau, I) \to (Y, \sigma)$ be the function defined as f(a) = 2, f(b) = 3, f(c) = 4, f(d) = 1. Then f is weakly θ_I -precontinuous function but it is not θ_I -precontinuous. Since the preimage of every open set in Y is weakly θ_I -preopen but it is not θ_I -preopen in X. For, let $A = \{1, 2\}$, then the preimage $f^{-1}(\{1, 2\}) = \{a, d\}$ is weakly θ_I -preopen but it is not θ_I -open.

Example 7. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{a, c\}, \{c\}\}\}$ and $I = \{\phi, \{a\}\}\}$ then (X, τ, I) is an ideal topological space. $C(X) = \{\phi, X, \{b, c, d\}, \{a, b, d\}, \{b, d\}\}\}$. Let $Y = \{1, 2, 3, 4\}$, $\sigma = \{Y, \phi, \{2\}, \{2, 3\}, \{2, 4\}, \{2, 3, 4\}\}\}$ then (Y, σ) is a topological space. Let $f: (X, \tau, I) \to (Y, \sigma)$ be a function defined as f(a) = 2, f(b) = 3, f(c) = 1, f(d) = 4. Then f is weakly θ_{I} -precontinuous function but it is not precontinuous, since the preimage of every open set in Y is weakly θ_{I} -preopen but it is not preopen in X. For, let $A = \{2, 3\}$, then its preimage $f^{-1}(\{2, 3\}) = \{a, b\}$ is not a preopen in X.

Example 8. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}, \{b\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b, \}\}$ then (X, τ, I) is an ideal topological space. $C(X) = \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{c\}\}$. Let $Y = \{1, 2, 3, 4\}$ and $\sigma = \{Y, \phi, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$ then (Y, σ) is a topological space. Let $f : (X, \tau, I) \to (Y, \sigma)$ be the function defined as f(a) = 4, f(b) = 1, f(c) = 2, f(d) = 3. Then f is θ_{I} - β -continuous but it is not weakly θ_{I} -precontinuous. Since the preimage of

every open set in Y is θ_{I} - β -continuous but it is not weakly θ_{I} -preopen in X. For, let $A = \{1, 2\}$, then its preimage $f^{-1}(\{1, 2\}) = \{b, c\}$ is not a weakly θ_{I} -preopen set but it is θ_{I} - β -open in X.

Example 9. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b, c\}, \{a, c\}\}$ and $I = \{\phi, \{a, c, \}\}$ then (X, τ, I) is an ideal topological space. $C(X) = \{\phi, X, \{d\}, \{b, d\}\}$. Let $Y = \{1, 2, 3, 4\}$ and $\sigma = \{Y, \phi, \{2\}, \{2, 3\}\}$ then (Y, σ) is a topological space. Let $f: (X, \tau, I) \to (Y, \sigma)$ be the function defined as f(a) = 3, f(b) = 2, f(c) = 4, f(d) = 1. Then f is θ^B -continuous but it is not θ^A -continuous, since the preimage of every open set in Y is a θ^B -set but it is not a θ^A -set. For, let $A = \{2, 3\}$, its preimage $f^{-1}(\{2, 3\} = \{a, b\} \text{ is } \theta_I$ -closed but it is not θ_I -semiclosed in X as $X = X \cap A$ where X is open and X is $X = X \cap A$ where X is $X \cap A$ is $X \cap A$ where X is $X \cap A$ is $X \cap A$

Definition 16. Let A be a subset of the space (X, τ, I) and let $x \in X$. Then A is called a weakly θ_I -preneighborhood of x if there exists a weakly θ_I -preopen set V containing x such that $V \subseteq A$.

Theorem 17. For a function $f:(X,\tau,I)\to (Y,\sigma)$, the following properties are equivalent:

- 1. f is weakly θ_I -precontinuous.
- 2. For each $x \in X$ and for each $U \in \sigma$ containing f(x), $f^{-1}(U)$ is weakly θ_I -preneighborhood of x.
- **Proof.** (1) \Rightarrow (2) Suppose $x \in X$ and U is any open set in Y such that $f(x) \in U$. By Theorem 18 there exists a weakly θ_I -preopen set M containing x in X such that $f(M) \subseteq U$; hence $x \in M \subseteq f^{-1}(U)$. Therefore $f^{-1}(U)$ is weakly θ_I -preneighborhood of x.
- $(2) \Rightarrow (1)$ Let U be any open set in Y and $x \in f^{-1}(U)$. Since $f^{-1}(U)$ is weakly θ_I -preneighborhood of x, therefore there exists a weakly θ_I -preopen set M_x such that $x \in M_x \subset f^{-1}(U)$. Thus we have $f^{-1}(U) = \bigcup \{M_x : x \in f^{-1}(U)\}$ and hence $f^{-1}(U)$ is weakly θ_I -preopen in X.

Theorem 18. For a function $f:(X,\tau,I)\to (Y,\sigma)$, the following properties are equivalent:

- 1. f is is weakly θ_I -precontinuous.
- 2. For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists a weakly θ_I -preopen set U containing x such that $f(U) \subset V$.
- 3. For each $x \in X$ and each $V \in \sigma$ containing f(x), $Cl_{\theta_I}(f^{-1}(V))$ is weakly θ_I -preneighborhood of x.
- 4. The inverse image of each closed set in Y is weakly θ_I -preclosed.

- **Proof.** (1) \Rightarrow (2) Let $x \in X$ and let V be any open set in Y such that $f(x) \in V$. Set $P = f^{-1}(V)$. By (1) P is weakly θ_I -preopen and therefore $x \in P$ implies that $f(P) \subset V$.
- (2) \Rightarrow (3) Since V is open in Y and $f(x) \in V$, then by (2) there exists a weakly θ_I -preopen set P containing x such that $f(P) \subset V$. Therefore $x \in P \subseteq sCl(Int(Cl_{\theta_I}(P))) \subseteq sCl(Int(Cl_{\theta_I}(f^{-1}(V)))) \subseteq Cl_{\theta_I}(Cl_{\theta_I}(f^{-1}(V))) = Cl_{\theta_I}(f^{-1}(V))$. This shows that $Cl_{\theta_I}(f^{-1}(V))$ is a weakly θ_I -preneighborhood of x.
- $(3) \Rightarrow (1)$ Let V be any open set in Y and $x \in f^{-1}(V)$. By (3), $Cl_{\theta_I}(f^{-1}(V))$ is weakly θ_I -preneighborhood of X, there exists a weakly θ_I -preopen set U_x in X such that $x \in U_x \subseteq Cl_{\theta_I}(f^{-1}(V))$. Hence $Cl_{\theta_I}f^{-1}(V) \subseteq \bigcup_{x \in f^{-1}(V)} U_x$. This implies that $f^{-1}(V)$ is weakly θ_I -preopen in X and therefore f is weakly θ_I -precontinuous.

Theorem 19. If $f:(X,\tau,I)\to (Y,\sigma)$ is any weakly θ_I -precontinuous function and $U\in\tau$, then the restriction $f\mid U:(U,\tau\mid U,I\mid U)\to (Y,\sigma)$ is weakly θ_I -precontinuous.

Proof. Let V be any open set in Y. Since f is weakly θ_I -precontinuous, $f^{-1}(V)$ is weakly θ_I -preopen. Since U is open, by Corollary 1, $U \cap f^{-1}(V)$ is weakly θ_I -preopen in $(U, \tau \mid U, I \mid U)$. Since $(f \mid U)^{-1}(V) = U \cap f^{-1}(V)$ and $(f \mid U)^{-1}(V)$ is weakly θ_I -preopen in $(U, \tau \mid U, I \mid U)$. This implies that $(f \mid U)$ is weakly θ_I -precontinuous function.

Theorem 20. Let $f:(X,\tau,I) \to (Y,\sigma)$ be a function and $\{U_{\alpha} : \alpha \in \tau\}$ be an open cover of X. Then f is weakly θ_I -precontinuous if and only if the restriction $(f \mid U_{\alpha}):(U_{\alpha}, \tau \mid U_{\alpha}, I \mid U_{\alpha})$ is weakly θ_I -precontinuous for each $\alpha \in \Delta$.

Proof. Necessity. It follows directly from the Theorem 19.

Sufficiency. Let V be any open set in Y. Since $(f \mid U_{\alpha})$ is a weakly θ_I -precontinuous for each $\alpha \in \triangle$, $(f \mid U_{\alpha})^{-1}(V)$ is a weakly θ_I -preopen set in $(U_{\alpha}, \tau \mid U_{\alpha}, I \mid U_{\alpha})$. Hence by Theorem 5 $(f \mid U_{\alpha})^{-1}(V)$ is weakly θ_I -preopen in (X, τ, I) . Moreover we consider $f^{-1}(V) = X \cap f^{-1}(V) = \bigcup_{\alpha \in \triangle} (U_{\alpha} \cap f^{-1}(V)) = \bigcup_{\alpha \in \triangle} (f \mid U_{\alpha})^{-1}(V)$. By using Theorem 2, $\bigcup_{\alpha \in \triangle} (f \mid U_{\alpha})^{-1}(V)$ is weakly θ_I -preopen in (X, τ, I) .

Therefore $f^{-1}(V)$ is weakly θ_I -preopen in (X, τ, I) . Hence f is weakly θ_I -precontinuous.

Theorem 21. A function $f:(X,\tau,I)\to (Y,\sigma)$ is weakly θ_I -precontinuous if and only if the function $g:X\to X\times Y$, defined by g(x)=(x,f(x)) for each $x\in X$, is weakly θ_I -precontinuous.

Proof. Necessity. Let f be weakly θ_I -precontinuous. Let $x \in X$ and R be any open neighborhood of g(x) in $X \times Y$. Then there exists an open set $P \times Q$ in $X \times Y$ such that $g(x) = (x, f(x)) \in (P \times Q) \subseteq R$. By assumption f is weakly

 θ_I -precontinuous and there exists a weakly θ_I -preopen set P_0 in X containing x such that $f(P_0) \subset Q$. By Theorem 2 $P \cap P_0$ is weakly θ_I -preopen and $g(P \cap P_0) \subset (P \times Q) \subset R$. This implies that g is weakly θ_I -precontinuous.

Sufficiency. Suppose that the function g is weakly θ_I -precontinuous Let $x \in X$ and Q be any open set in Y containing f(x). Then $X \times Q$ is open in $X \times Y$. Since g is weakly θ_I -precontinuous, by hypothesis there exits a weakly θ_I -preopen set P containing x such that $g(P) \subset X \times Q$ and hence we get $f(P) \subset Q$. This shows that f is weakly θ_I -precontinuous.

Definition 17. A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be weakly θ_I -preirresolute if $f^{-1}(V)$ is weakly θ_I -preopen in (X,τ,I) for every weakly θ_J -preopen set V in (Y,σ,J) .

Theorem 22. Let $f:(X,\tau,I)\to (Y,\sigma,J)$ and $g:(Y,\sigma,J)\to (Z,\rho)$ be two functions, then the following properties hold:

- 1. if f is weakly θ_I -precontinuous and g is continuous, then $g \circ f$ is weakly θ_I -precontinuous.
- 2. if f is weakly θ_I -preirresolute and g is weakly θ_I -precontinuous then $g \circ f$ is weakly θ_I -precontinuous.

Proof. It is obvious from the definitions.

7. Decompositions of continuity

Theorem 23. For a function $f:(X,\tau,I)\to (Y,\sigma)$, the following properties are equivalent:

- 1. f is continuous;
- 2. f is precontinuous and θ^B -continuous;
- 3. f is θ_I -precontinuous and θ^B -continuous;
- 4. f is weakly θ_I -precontinuous and θ^B -continuous;
- 5. f is θ_I - β -continuous and θ^B -continuous;
- 6. f is weakly θ_I -precontinuous and strongly θ_{pre} -B-I-continuous.

Proof. It follows directly from Theorem 15.

References

- [1] A. Açikgöz, T. Noiri and S. Yüksel, A decomposition of continuity in ideal topological spaces, Acta Math. Hungar., 105 (2004), 285-289.
- [2] A. Açikgöz, T. Noiri and S. Yüksel, On α -I-continuous and α -I-open functions, Acta Math. Hungar., 105 (2004), 27-37.

- [3] M. Akdağ, θ -I-open sets, Kochi J. Math., 3 (2008), 217-229.
- [4] A. Al-Omari, T. Noiri, Decompositions of continuity in ideal topological spaces, Anal. St. Univ. "Al.I. Cuza" Iasi(S.N.) Mat., 60 (2014), 37-49.
- [5] D. Andrijević, On b-open sets, Mat. Vesnik., 48 (1996), 59-64.
- [6] S.G. Crossley, S.K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [7] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).
- [8] J. Dontchev, *Idealization of Ganster Reilly decomposition theorems*, Math. GN/9901017, 5, Jan. 1999 (Internet).
- [9] T.R. Hamlett, D.S. Janković, Compactness with respect to an ideal, Boll. Un. Mat. Ital. (7), 4-B (1990), 849-861.
- [10] T.R. Hamlett, D.S. Janković, *Ideals in General Topology and Applications* (Mid-dletown, CT, 1988), 115-125, Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990.
- [11] T.R. Hamlett, D.S. Janković, *Compatible extensions of ideals*, Boll. Un. Mat. Ital., 7 (1992), 453-465.
- [12] E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.
- [13] E. Hatir, T. Noiri, Strong C-sets and decompositions of continuity, Acta Math. Hungar., 94(4), 2002, 281-287.
- [14] E. Hatir, T. Noiri, Weakly pre-I-open sets and decomposition of continuity, Acta Math. Hungar., 106 (2005), 227-238.
- [15] E. Hatir, T. Noiri, On β-I-open sets and a decomposition of almost-Icontinuity, Bull. Malays. Math. Sci. Soc., 29 (2006), 119-124.
- [16] E. Hatir, S. Jafari, On weakly semi-I-open sets and another decomposition of continuity via ideals, Sarajevo J. Math., 2 (2006), 107-114.
- [17] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205-215.
- [18] D.S. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [19] K. Kuratowski, Topology, Vol.I, Academic Press, New York, 1966.

- [20] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [21] R.A. Mahmound , D.A. Rose, A note on spaces via dense sets, Tamkang J. Math., 24 (1993), 333-339.
- [22] A.S. Mashhour, I.A. Hasanein and S.N. EL-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys Soc. Egypt, 53 (1982), 47-53.
- [23] A.S. Mashhour, I.A. Hasanein and S.N. EL-Deeb, α -continuous and α -open mappings, Acta Math.Hungar., 41 (1983), 213-18.
- [24] M.E. Monsef Abd-El, S.N. El-Deeb , R.A. Mahmoud, β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ.A, 12 (1983), 77-90.
- [25] M.E. Monsef Abd-El, E.F. Lashien and A.A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32 21-30, (1992).
- [26] J.M. Mustafa, S. Al Ghour, Weakly b-I-open sets and weakly b-I-continuous functions, Ital. J. Pure Appl. Math., 30 (2013), 23-32.
- [27] R.L. Newcomb, Topologies which are compact modulo an ideal, Ph.D.dissertation, University of California, Santa Barbara, California, Usa, 1967.
- [28] O. Njåstad, , On some classes of nearly open sets, Pacific J. Math, 15 (1965), 96170.
- [29] D.V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13 (1972), 193-197.
- [30] Q.L. Shi, A note on weakly-α-I-functions and weakly-α-I-paracompact spaces*, Open Journal of Discrete Mathematics, 2 (2012), 142-144.
- [31] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc., 10 (1975), 409-416.
- [32] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1989), 51-55.
- [33] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.
- [34] N.V. Veličko, *H-closed topological spaces*, (Russian) Mat. Sb.(N.S.), 70 (1966), 98-112.
- [35] S. Yüksel, A. Açikgöz, and T. Noiri, On δ -I-continuous functions, Turkish J.Math., 29 (2005), 39-51.

[36] S. Willard, *General Topology*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.

Accepted: 15.02.2018