CRITERION FOR NONEXISTENCE HORSESHOE-LIKE IN
C^1 TOPOLOGY

Alireza Zamani Bahabadi
Department of Mathematics
Ferdowsi University of Mashhad
Mashhad
Iran
zamany@um.ac.ir

Abstract. In this paper we show that if $\Lambda \subset M$ is a closed invariant set and $p \in \Lambda$ is a hyperbolic saddle periodic point satisfying condition A with real and positive eigenvalues, then Λ is not horseshoe-like.

Keywords: hyperbolic set, partially hyperbolic set, horseshoe.

1. Introduction

Bowen in his remarkable survey on Anosov diffeomorphism has proved that C^{1+}-diffeomorphisms do not have fat horseshoes, these are horseshoes of positive Lebesgue measure. In contrast, he gave an example of a totally disconnected horseshoe on sphere S^2 of positive volume. On the other hand, Bowen has proved that a basic set (locally maximal hyperbolic set with a dense orbit) of a C^2 diffeomorphism which attracts a set with positive volume, necessarily attracts a neighborhood of itself [3 Theorem 4.11]. In particular, the unstable manifolds through points of this set must be contained in it, and consequently C^2 diffeomorphisms have no horseshoes with positive volume. In this context A. Fakhari and M. Soufi proved that any partially hyperbolic horseshoe-like attractor of a C^1-generic diffeomorphism has zero volume [4]. As well they constructed a C^1-diffeomorphism with a partially hyperbolic horseshoe-like attractor of positive volume. In this paper we show that under some conditions there is no horseshoe-like in the context of C^1-diffeomorphisms. Indeed we show that if $\Lambda \subset M$ is a closed invariant set and $p \in \Lambda$ is a hyperbolic saddle periodic point satisfying condition A with real and positive eigenvalues, then Λ is not horseshoe-like.

Let $f : M \to M$ be a diffeomorphism of a compact connected Riemannian manifold M. A set Λ is said to be invariant relative to f if $f(\Lambda) = \Lambda$.

For a point $x \in M$ the stable set of x is

$$W^s(x) = \{y \in M : d(f^k(x), f^k(y)) \to 0 \quad as \quad k \to +\infty\}$$

and the unstable of x is

$$W^u(x) = \{y \in M : d(f^k(x), f^k(y)) \to 0 \quad as \quad k \to -\infty\}.$$
Let $O(p)$ be a hyperbolic periodic orbit of f, then the dimension of unstable manifold of p is called index of p.

A compact invariant set Λ is said to be horseshoe-like if there are local stable and local unstable manifolds through all its points which intersect Λ in a Cantor set.

A splitting $T_\Lambda M = E \oplus F$ of the tangent bundle restricted to an invariant set Λ is dominated splitting if there is a constant $0 < \lambda < 1$ such that for some choice of a Riemannian metric on M

$$\|Df|_{E_x}\| \|Df^{-1}|_{F_{f(x)}}\| \leq \lambda, \quad \text{for every } x \in \Lambda.$$

Λ is partially hyperbolic, if additionally E is uniformly contracting or F is uniformly expanding, i.e there exists $0 < \lambda < 1$ such that

$$\|Df|_{E_x}\| \leq \lambda \quad \text{or} \quad \|Df^{-1}|_{F_{f(x)}}\| \leq \lambda.$$

A compact invariant set Λ is called hyperbolic if there is a Df-invariant splitting $T_\Lambda M = E^s \oplus E^u$ of the tangent bundle restricted to Λ and a constant $\lambda < 1$ such that (for some choice of a Riemannian metric on M) for every $x \in \Lambda$

$$\|Df|_{E^s_x}\| < \lambda$$

and

$$\|Df^{-1}|_{E^u_x}\| < \lambda.$$

Alves and Pinheiro have studied nonuniformly expanding partially hyperbolic sets for C^{1+} diffeomorphisms [1]. They have proved that if non-uniformly expanding condition holds for a positive Lebesgue set of points, then Λ contains some local unstable disk. As a corollary, they deduced the non-existence of partially hyperbolic horseshoe like sets of positive volume. Also, Pacifico et al. have tried to construct Lorenz attractor of positive volume in the C^1-topology. The same result have obtained in the context of the volume preserving diffeomorphism. Indeed Xia proved in [2] that if an invariant set Λ of a volume-preserving C^{1+}-diffeomorphism f with positive volume has a dominated splitting $E \oplus F$, with E is uniformly contractive, then Λ contains stable leaves of almost every point. This argument leads to another proof of the classical result toward the ergodicity of C^{1+} volume-preserving Anosov diffeomorphisms without using the Hopf argument.

2. Main theorems

In this section we present a condition that an invariant set satisfying it, is not horseshoe-like.
Definition. Let Λ be an invariant set. We say that a point \(p \in M \) satisfies condition \(A \) if there are a local chart \(h \) at \(p \) and sequences \(\{x_n\} \) and \(\{w_n\} \subset T_pM \), \(w_n = \sum_{i=1}^{m} \lambda_i^{w_n} v_i \) such that for \(1 \leq i \leq m \),

\[
\begin{align*}
\lim_{n \to \infty} \frac{\lambda_i^{w_n} \lambda_i^{w_{n+1}}}{\lambda_i^{w_{n+1}}} &= 0 \\
\lambda_i^{w_{n+1}} < \lambda_i^{w_n} \\
\lim_{n \to \infty} \lambda_i^{w_n} &= 0 \\
h^{-1}(w_n) &= x_n \in \Lambda,
\end{align*}
\]

where \(\{v_1, v_2, ..., v_m\} \) is a basis of \(T_pM \).

Remark. In the above definition \(\lambda_i^{w_n} \) is a notation relative to \(w_n \) as a scaler. Indeed for any \(\alpha \in T_pM \), since \(\{v_1, v_2, ..., v_m\} \) is a basis of \(T_pM \), so one can write \(\alpha = \sum_{i=1}^{m} \lambda_i^{\alpha} v_i \) where \(\lambda_i^{\alpha} \) for \(1 \leq i \leq m \), are scalers.

Example 1. Let \(f : M \to M \) be a \(C^1 \)-diffeomorphism on a \(C^\infty \)-manifold \(M \) with \(\dim M = 2 \) and \(p \in M \) be a hyperbolic fixed point of \(f \). Let \(f \) at \(p \) in local chart be as \(f(x, y) = (4x, \frac{1}{8}y) \) and \(\{(x_n, y_n)\} \) be a sequence such that \(x_n = \frac{1}{n} \), \(y_n \to 0 \) as the following figure.

![Diagram of Example 1](image)

If \(\Lambda \) is a closed invariant set containing \(p \) and \(\{(x_n, y_n)\} \subset \Lambda \), then \(p \) satisfies condition \(A \), since \(x_{n+1} < x_n \), \(\frac{x_n - x_{n+1}}{x_{n+1}} \to 0 \) and \(x_n \to 0 \).

Definition. Let \(\Lambda \) be a close invariant subset of the compact manifold \(M \). A point \(p \in \Lambda \) is said to be **topologically dense point** if

\[
\lim_{\delta \to 0} \frac{1}{\delta} \max \{ \epsilon > 0 \mid B_\epsilon(x) \cap \Lambda = \emptyset, \forall x \in B_\delta(p) \} = 0
\]

where \(B_r(z) = \{ x \in M \mid d(z, x) < r \} \).
Example 2. Let $f \in Diff^1(M)$ and $\Lambda \subset M$ be a closed invariant set which is not a periodic point containing a saddle fixed point $p \in \Lambda$ which is topologically dense and whose eigenvalues are real and positive.

p is topologically dense therefore for every $m \in \mathbb{N}$ there are positive integers ϵ_m, δ_m such that $\frac{\epsilon_m}{2\delta_m} \to 0$ as $m \to +\infty$ and $B_{\delta_m}(x) \cap \Lambda \neq \emptyset$ for every $x \in B_{2\delta_m}(p)$. Thus by induction we find sequence $\{q_m\} \subseteq \Lambda$ such that $d(q_m, q_{m+1}) = \epsilon_m$ and $d(q_m, p) = 2\delta_m$ (see the following Figure). So by taking suitable charts we can suppose that $p = 0$ and $\lim_{m \to \infty} \frac{q_m - q_{m+1}}{q_m} = 0$. Therefore p satisfies condition A.

The following theorem shows that Example 2 is a prototype structures for an invariant set to be not horseshoe-like.

Theorem 1. Let $f \in Diff^1(M)$ and $\Lambda \subset M$ be a closed invariant set which is not a periodic point. Suppose Λ contains a saddle fixed point p satisfying condition A with real and positive eigenvalues. Then Λ is not horseshoe-like.

Proof. We show that there is a connected component in Λ which is not consist of a single point. So Λ is not a Cantor set and hence it is not horseshoe-like. Since p is a hyperbolic point, there is an $\epsilon_0 > 0$ and a homeomorphism $h : B_{\epsilon_0}(p) \to T_pM$ such that

1. $h(p) = 0$
2. $D_pf h = h f$.

There exists $\epsilon' > 0$ such that

$$\{v \in T_pM \mid \|v\| < \epsilon'\} = h(B_{\epsilon_0}(p)).$$

Let $\{\lambda_i \mid 1 \leq i \leq s\}$ be the set of all eigenvalues of $D_p f$ which norm greater than 1. Denote by $\{\lambda_i \mid s + 1 \leq i \leq m\}$ the set of all eigenvalues of $D_p f$ which norm less than 1 and let $\{v_1, \ldots, v_s\}$ and $\{v_{s+1}, \ldots, v_m\}$ be the set of eigenvectors of $\{\lambda_i \mid 1 \leq i \leq s\}$ and $\{\lambda_i \mid s + 1 \leq i \leq m\}$ respectively. Put

$$L = \left\{ \sum_{i=1}^{m} \lambda_i v_i \mid 0 < \lambda_i < \frac{\epsilon'}{2m} \right\}$$
and
\[L = \left\{ \sum_{i=1}^{s} \lambda_i v_i \mid 0 < \lambda_i < \frac{\epsilon'}{2s} \right\}. \]

We can see that \(h^{-1}(\bar{L}) \) and \(h^{-1}(L) \subset B_\epsilon(p) \). Since \(p \) is a saddle point with condition \(A \), there are sequences \(\{x_n\} \) and \(\{w_n\} \subset T_p M \), \(w_n = \sum_{i=1}^{m} \lambda_i^{w_n} v_i \) such that for \(1 \leq i \leq s \), we have
\[
\begin{align*}
\text{(1.3)} & \quad \begin{cases}
\lim_{n \to \infty} \frac{\lambda_i^{w_n} - \lambda_i^{w_{n+1}}}{\lambda_i^{w_n}} = 0 \\
\lambda_i^{w_{n+1}} < \lambda_i^{w_n} \\
\lim_{n \to \infty} \lambda_i^{w_n} = 0 \\
h^{-1}(w_n) = x_n \in \Lambda
\end{cases}
\end{align*}
\]

Let \(z \in L \). For every \(s + 1 \leq i \leq m \) there exists \(N_i \in \mathbb{N} \) such that for any \(n \geq N_i \), \(0 < \lambda_i^{w_n} < \frac{\delta}{2M(m-s)} \) where
\[M = \max\{\tilde{\lambda}_i \mid 1 \leq i \leq m\}. \]

Put \(N_0 = \max\{N_i \mid s+1 \leq i \leq m\} \). Since \(z \in L \), we can consider \(z = \sum_{i=1}^{s} \lambda_i^z v_i \) such that \(0 < \lambda_i^z < \frac{\epsilon'}{2s} \). For every \(k > N_0 \) put
\[m_k = \min\left\{ m \mid \lambda_i^{w_{m+1}} \leq \frac{\lambda_i^z + \frac{\delta}{2s}}{\lambda_i^k} \right\} \]
for \(1 \leq i \leq s \). So
\[\lambda_i^{w_{m_k+1}} \leq \frac{\lambda_i^z + \frac{\delta}{2s}}{\lambda_i^k} \leq \lambda_i^{w_{m_k}} \]
for \(1 \leq i \leq s \).

We claim that there exists \(k_0 > N_0 \) such that for \(1 \leq i \leq s \),
\[\lambda_i^{w_{m_{k_0}+1}} > \frac{\lambda_i^z - \frac{\delta}{2s}}{\lambda_i^{k_0}}. \]

Suppose our claim is not true. Hence for every \(k > N_0 \) and some \(1 \leq i \leq s \)
\[\lambda_i^{w_{m_k+1}} \leq \frac{\lambda_i^z - \frac{\delta}{2s}}{\lambda_i^k} < \frac{\lambda_i^z + \frac{\delta}{2s}}{\lambda_i^k} \leq \lambda_i^{w_{m_k}}. \]

So
\[\frac{\lambda_i^{w_{m_k}} - \lambda_i^{w_{m_{k+1}}}}{\lambda_i^{w_{m_{k+1}}}} \geq \frac{\frac{2\delta}{2s\lambda_i^k}}{\lambda_i^{w_{m_{k+1}}}} = \frac{2\delta}{2s\lambda_i^k} + \frac{\delta}{2s} > 0 \]
that contradicts (1.3). Hence there exists \(n_0 > N_0 \) such that
\[\frac{\lambda_i^z - \frac{\delta}{2s}}{\lambda_i^{n_0}} < \lambda_i^{w_{m_{n_0}+1}} < \frac{\lambda_i^z + \frac{\delta}{2s}}{\lambda_i^{n_0}}. \]
for $1 \leq i \leq s$. This shows that
\[
\sum_{i=1}^{s} \left| \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} - \lambda_i^2 \right| < \delta \frac{2}{\delta}.
\]
Hence we have
\[
\left\| Df^{n_0} \left(\sum_{i=1}^{m} \lambda_i^{w_{m_0}+1} v_i \right) - z \right\|
= \left\| \sum_{i=1}^{s} \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} v_i + \sum_{i=s+1}^{m} \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} v_i - \sum_{i=1}^{s} \lambda_i^2 v_i \right\|
\leq \left\| \sum_{i=1}^{s} \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} v_i - \sum_{i=1}^{s} \lambda_i^2 v_i \right\| + \left\| \sum_{i=s+1}^{m} \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} v_i \right\| =: B
\]
Since for $s + 1 \leq i \leq m$, $\tilde{\lambda}_i^{n_0} < 1$ and $0 < \lambda_i^{w_{m_0}+1} < \frac{\delta}{2M(m-s)}$. Hence
\[
B \leq \sum_{i=1}^{s} \left| \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} - \lambda_i^2 \right| + \sum_{i=s+1}^{m} \left| \tilde{\lambda}_i^{n_0} \lambda_i^{w_{m_0}+1} \right|
\leq \frac{\delta}{2} + \frac{(m-s)\delta}{2(m-s)M} < \delta.
\]
This shows that $Df^{n_0} \left(\sum_{i=1}^{m} \lambda_i^{w_{m_0}+1} v_i \right) \in B_\delta(z)$. This shows that for every $x \in h^{-1}(L)$ there is sequence such that
\[
D_p f^m(v_{nm}) \to h(x)
\{h(v_{nm}) = x_{nm}\} \subset \Lambda
\]
since $h^{-1} \circ D_p \circ h = f$ so
\[
f^m(x_{nm}) \to x.
\]
Λ is closed and invariant so we have $x \in \Lambda$. Hence $h^{-1}(L) \subset \Lambda$. Note that $h^{-1}(L)$ is connected component. Hence Λ is not like horseshoe. □

Acknowledgments

I should thank professor Vilton Pinheiro help me to prepare this paper in the ICTP.

The author would like to thank professors Bahman Honary and Abbas Fakhari for their comments. This research was supported by a grant from Ferdowsi University of Mashhad;(No. MP94345AZB).
References

Accepted: 30.01.2018