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1. Introduction and preliminaries

If (X ; ∥·∥) is a normed linear space, then

(1.1)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

∥xi∥,

for any vectors xi ∈ X , i ∈ {1, ..., n}. Inequalities of this kind have been called
triangle inequality. A number of mathematicians have investigated the inequal-
ity (1.1) in various settings. Farenick [13] have investigated the triangle inequal-
ity over matrix algebras in Hilbert C∗-modules. We also refer to interesting
papers by Shrawan et al. [15] and Dadipour et al. [6]. Some versions of the
triangle inequality with simple conditions for the case of equality are presented
in [5, 14].

The first to consider the problem of obtaining reverses for the triangle in-
equality in the more general case of Hilbert and Banach spaces were Diaz and
Metcalf [7] who showed that in an inner product spaceH over the real or complex
number field, the following reverse of the triangle inequality holds

(1.2) r
n∑

i=1

∥xi∥ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided

0 ≤ r ≤ ∥xi∥ ≤ Re ⟨xi, e⟩
for k ∈ {1, . . . , n}, where e ∈ H is a unit vector, i.e. ∥e∥ = 1.

Another reverse of the generalized triangle inequality in Hilbert space was
given in [10, Theorem 5] as follows:

Theorem 1.1. Let (H; ⟨·, ·⟩) be an inner product space, xi ∈ H, for all i ∈
{1, ..., n} and pi ≥ 0 with

∑n
i=1 pi = 1 (probability distribution). If there exists

constants ri > 0, i ∈ {1, ..., n} , so that∥∥∥∥∥∥xi −
n∑

j=1

pjxj

∥∥∥∥∥∥ ≤ ri

for all i ∈ {1, ..., n} , then

(1.3)
n∑

i=1

pi∥xi∥2 −

∥∥∥∥∥
n∑

i=1

pixi

∥∥∥∥∥
2

≤
n∑

i=1

pir
2
i .

Some other interesting reverses of the triangle inequality for the case of
Hilbert space can be found in [12]. For related results, see also [1, 2, 3, 4, 8, 16].

The motivation of this paper is to extend some generalizations of the reverse
triangle inequality like (1.3), in the framework of Hilbert C∗-modules (see The-
orem 2.1). We also improve inequality (1.2) in a similar framework (this will be
considered in Theorem 3.1).
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At the end of this section, we would like to recall some notions, which will
be used in the forthcoming sections. Let A be a C∗-algebra. A pre-Hilbert A-
module is a linear space X which is a right A-module together with an A-valued
mapping ⟨·, ·⟩ : X × X → A with following properties:

(a) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0;

(b) ⟨x, λy + z⟩ = λ ⟨x, y⟩+ ⟨x, z⟩;

(c) ⟨x, ya⟩ = ⟨x, y⟩ a;

(d) ⟨x, y⟩∗ = ⟨y, x⟩;

for all x, y, z ∈ X , a ∈ A and λ ∈ C. It is straightforward that a C∗-algebra
valued inner product is conjugate-linear in the first variable. We can define a

norm on X by ∥x∥ = ∥⟨x, x⟩∥
1
2 . If X is complete with respect to this norm,

then X is called a Hilbert A-module. The absolute value of x ∈ X is defined as
the square root of ⟨x, x⟩, and it is denoted by |x|. It is worthwhile to point out
that this is not actually an extension of a norm, in general, since it may happen
that the triangle inequality does not hold.

Throughout the article, A and X are C∗-algebra and Hilbert A-module
respectively. A C∗-algebra is called unital if A has a unit 1A and for each a ∈ A
we have a.1A = a. For convenience, in unital C∗-algebra A we write a instead
of a.1A.

2. On the generalized reverses of the triangle inequality

We start our work by presenting a reverse of the triangle inequality for Hilbert
C∗-modules.

Theorem 2.1. Let X be a Hilbert A-module and xi ∈ X for all i ∈ {1, ..., n},
and pi are positive elements in real number field such that

∑n
i=1 pi = 1. If there

exist positive elements ri, i ∈ {1, ..., n} in A, so that

(2.1)

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ r2i

for i ∈ {1, .., n}, then

(2.2)
n∑

i=1

pi|xi|2 −

∣∣∣∣∣
n∑

i=1

pixi

∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i .

Proof. According to (2.1) we have

(2.3) ⟨xi, xi⟩ − 2Re

⟨
xi,

n∑
j=1

pjxj

⟩
+

⟨
n∑

j=1

pjxj ,

n∑
j=1

pjxj

⟩
≤ r2i .
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Multiply (2.3) by pi ≥ 0, and sum over i from 1 to n, to get

n∑
i=1

pi ⟨xi, xi⟩ − 2Re

⟨
n∑

i=1

pixi,

n∑
j=1

pjxj

⟩
+

⟨
n∑

j=1

pjxj ,

n∑
j=1

pjxj

⟩
≤

n∑
i=1

pir
2
i .

This says that

n∑
i=1

pi|xi|2 − 2Re

⟨
n∑

i=1

pixi,

n∑
j=1

pjxj

⟩
+

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i ,

this inequality is equivalent with

n∑
i=1

pi|xi|2 −

∣∣∣∣∣
n∑

i=1

pixi

∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i ,

which is inequality (2.2).

As a consequence of Theorem 2.1 we have the following generalization of the
reverse triangle inequality in the framework of Hilbert C∗-modules.

Proposition 2.1. Let pi,ri and xi for all i ∈ {1, ..., n} be as in the statement
of Theorem 2.1, then

(2.4) Re

(
n∑

i=1

pi |xi|

)∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

pixi

∣∣∣∣∣
2

+
1

2

n∑
i=1

pir
2
i .

Proof. From (2.3) we obviously have

(2.5) |xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ 2Re

⟨
xi,

n∑
j=1

pjxj

⟩
+ r2i ,

for all i ∈ {1, ..., n}. Whence

2Re |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ |xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

.

Here we exploited the fact that for each a, b ∈ A, 2Re ab∗ ≤ |a|2+|b|2. Therefore

2Re |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ 2Re

⟨
xi,

n∑
j=1

pjxj

⟩
+ r2i

for all i ∈ {1, ..., n}. Arguments similar to the ones used in the proof of Theorem
2.1 give us (2.4).
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Remark 2.1. In particular, if A be a commutative C∗-algebra, by utilizing the
inequality 2 |a| |b| ≤ |a|2 + |b|2, we can obtain from (2.5) the following result:

n∑
i=1

pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

pixi

∣∣∣∣∣
2

+
1

2

n∑
i=1

pir
2
i .

One more consequence of Theorem 2.1 is the following result:

Proposition 2.2. Let pi,ri and xi for all i ∈ {1, ..., n} be as in the statement
of Theorem 2.1 with the additional assumption that A is commutative. Then

2√
n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
 ≤ 2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+

n∑
i=1

pir
2
i .

Proof. If we multiply (2.5) by pi > 0 and sum over i from 1 to n, we get

n∑
i=1

pi|xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+

n∑
i=1

pir
2
i .

We now use the fact that 2 |a| |b| ≤ |a|2 + |b|2. Thus,

n∑
i=1

pi|xi|2 +
n∑

i=1

1

n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

=

n∑
i=1

pi|xi|2 +
1

n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≥ 2√
n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣


for all i ∈ {1, ..., n}. This is the same as saying that

2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+
n∑

i=1

pir
2
i ≥ 2√

n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
.

3. The case of a unit vector

The following refinement of the Diaz-Metcalf result may be stated as well:

Theorem 3.1. Let X be a Hilbert A-module. Suppose that xi ∈ X for all
i ∈ {1, . . . , n} satisfy the condition
(3.1)(

n∑
i=1

r1 |xi|

)2

≤

(
n∑

i=1

Re ⟨e, xi⟩

)2

,

(
n∑

i=1

r2 |xi|

)2

≤

(
n∑

i=1

Im ⟨e, xi⟩

)2

,
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for each i ∈ {1, . . . , n}, where e be a unit vector in X and r1, r2 are positive
elements in C∗-algebra A. Then

(3.2)
√

r21 + r22

n∑
i=1

|xi| ≤

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ .
Proof. We can simply exploit the Cauchy-Schwarz inequality and find the up-
per bound

(3.3)

∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣
2

≤ ∥e∥2
∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
2

.

We can rewrite the first term as∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

Re ⟨e, xi⟩+ i

(
n∑

i=1

Im ⟨e, xi⟩

)∣∣∣∣∣
2

=

(
n∑

i=1

Re ⟨e, xi⟩

)2

+

(
n∑

i=1

Im ⟨e, xi⟩

)2

.

On the other hand, from (3.1) we infer that

r21

(
n∑

i=1

|xi|

)2

≤

(
n∑

i=1

Re ⟨e, xi⟩

)2

and

r22

(
n∑

i=1

|xi|

)2

≤

(
n∑

i=1

Im ⟨e, xi⟩

)2

.

Adding these two inequalities to inequality (3.3), we deduce the desired inequal-
ity (3.2).

Remark 3.1. If A is a commutative C∗-algebra, then we can replace conditions
(3.1) with

0 ≤ r1 |xi| ≤ Re ⟨e, xi⟩ , 0 ≤ r2 |xi| ≤ Im ⟨e, xi⟩ .

We can apply Theorem 3.1 to derive some new operator inequalities. We only
give the following such results. Notice that, if B (H) denote the C∗-algebra of
all bounded linear operators on a complex Hilbert space H, then B (H) becomes
a B (H)-module if the inner product of elements A,B ∈ B (H) is defined by
⟨A,B⟩ = A∗B.

Corollary 3.1. Let Ai ∈ B (H) for all i ∈ {1, . . . , n} satisfy the condition

0 ≤ B1 |Ai| ≤ ReAi, 0 ≤ B2 |Ai| ≤ ImAi,
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for each i ∈ {1, . . . , n} and B1, B2 are positive operators in B (H), then√
B2

1 +B2
2

n∑
i=1

|Ai| ≤

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ .
In particular, for i ∈ {1, 2} we have

(3.4)
√

B2
1 +B2

2 (|A1|+ |A2|) ≤ |A1 +A2| .

The following reverse of the generalized triangle inequality also holds. Before
we proceed, we need the following lemma:

Lemma 3.1. Let A be a C∗-algebra and let a ∈ A.

(a) If a is self adjoint, then a ≤ |a|.

(b) If a is normal, then |Re a| ≤ |a|.

Theorem 3.2. Let X be a Hilbert A-module, and e be a unit vector in X . If
⟨e,
∑n

i=1 xi⟩ and ri are normal and positive elements in A for i ∈ {1, ..., n}
respectively, and xi ∈ X for all i ∈ {1, ..., n}, such that

(3.5) |xi| − Re ⟨e, xi⟩ ≤ ri,

for each i ∈ {1, ..., n}, then

(3.6)

n∑
i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

ri.

Proof. If we sum in (3.5) over i from 1 to n, then we get

(3.7)

n∑
i=1

|xi| ≤ Re

⟨
e,

n∑
i=1

xi

⟩
+

n∑
i=1

ri.

A little calculation shows that

Re

⟨
e,

n∑
i=1

xi

⟩
≤

∣∣∣∣∣Re
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣ (by Lemma 3.1 (a))(3.8)

≤

∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣ (by Lemma 3.1 (b))

≤ ∥e∥

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ (by Cauchy-Schwarz inequality)

=

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ .
Combining (3.7) and (3.8), we get (3.6).
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Theorem 3.2 immediately yields:

Corollary 3.2. If we consider H as a C-module, then from (3.6) we can obtain
the following reverse trangle inequality

n∑
i=1

∥xi∥ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ri,

where ri are positive elements in R for {1, . . . , n} (see [11] and also [9, Theorem
44]).

Remark 3.2. IfA is a commutative C∗-algebra, then the assumption ⟨e,
∑n

i=1 xi⟩
are normal is not necessary.

Another consequence of our discussion is the following.

Corollary 3.3. Let Ai ∈ B (H), for each i ∈ {1, . . . , n} and
∑n

i=1Ai be normal.
If Bi are positive operators in B (H) for all i ∈ {1, . . . , n} such that

|Ai| − ReAi ≤ Bi,

for each i ∈ {1, . . . , n}, then
n∑

i=1

|Ai| −

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ ≤
n∑

i=1

Bi.

In particular, for i ∈ {1, 2} we have

|A1|+ |A2| − |A1 +A2| ≤ B1 +B2.

Now we present a useful lemma, which is applied in the next theorem.

Lemma 3.2. Let A be a C∗-algebra and a, b in A be positive elements and
ab = ba, then

(3.9)
√
ab ≤ a+ b

2
.

The next theorem is known; see [9, Theorem 50]. The proof given here is
different, and in the spirit of our discussion.

Theorem 3.3. Let A be a unital C∗-algebra and X be a Hilbert A-module and
let e ∈ X be such that |e| = 1 and xi ∈ X , i ∈ {1, ..., n}. If Mi > mi > 0 for all
i ∈ {1, ..., n}, are such that

(3.10)

∣∣∣∣xi − Mi +mi

2
e

∣∣∣∣2 ≤ (Mi +mi)
2,

then
n∑

i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

(Mi −mi)
2

Mi +mi
.
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Proof. It follows from left side of inequality (3.10) that⟨
xi −

Mi +mi

2
e, xi −

Mi +mi

2
e

⟩
= |xi|2 − (Mi +mi)Re ⟨xi, e⟩+

∣∣∣∣Mi +mi

2

∣∣∣∣2.
Using the substitutions a = |xi|2 and b =

∣∣∣Mi+mi
2

∣∣∣2 in (3.9), this can be rewritten
as

2 |xi|
∣∣∣∣Mi +mi

2

∣∣∣∣ ≤ |xi|2 +
∣∣∣∣Mi +mi

2

∣∣∣∣2
or, after rearranging terms,

|xi| − Re ⟨xi, e⟩ ≤
(Mi −mi)

2

Mi +mi
.

Hence by Theorem 3.2 we obtain

n∑
i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

(Mi −mi)
2

Mi +mi
.

The validity of this inequality is just Theorem 3.3.

Another result of this type is the following one:

Theorem 3.4. Let A be a unital C∗-algebra and X be a Hilbert A-module and
let e ∈ X be such that |e| = 1 and xi ∈ X , i ∈ {1, ..., n}. If Mi ≥ 0 for all
i ∈ {1, ..., n}, are such that

(3.11)

∣∣∣∣xi − Mi

2
e

∣∣∣∣2 ≤ M2
i ,

then

(3.12)
n∑

i=1

|xi|2 − Re

⟨
n∑

i=1

Mixi, e

⟩
≤ 3

4

n∑
i=1

M2
i .

Proof. A short calculation reveals that

(3.13)

⟨
xi −

Mi

2
e, xi −

Mi

2
e

⟩
= |xi|2 +

∣∣∣∣Mi

2

∣∣∣∣2 |e| − 2Re

⟨
xi,

Mi

2
e

⟩
.

According to (3.13) validity of (3.11) implies

|xi|2 +
∣∣∣∣Mi

2

∣∣∣∣2 |e| − 2Re

⟨
xi,

Mi

2
e

⟩
≤ M2

i

which on simplification reduces to

|xi|2 − Re ⟨Mixi, e⟩ ≤
3

4
M2

i .

Summing over all terms then yields (3.12).
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The following particular case is of interest:

Theorem 3.5. Let X be a Hilbert A-module and e1, e2, ..., en be a sequence of
unit vectors in X such that ⟨ei, ej⟩ = 0 for i ̸= j ≤ n, and let xi ∈ X for
all i ∈ {1, ..., n}, and pi are positive elements in real number field such that∑n

i=1 pi = 1. If there exist constants positive elements ri in A so that∣∣∣∣∣∣xi −
n∑

j=1

pj ⟨ej , xj⟩ ej

∣∣∣∣∣∣
2

≤ r2i ,

for all i ∈ {1, ..., n} , then

(3.14)
n∑

i=1

pi|xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2 ≤
n∑

i=1

pir
2
i .

Proof. A straightforward computation shows that⟨
xi −

n∑
j=1

pj ⟨ej , xj⟩ ej , xi −
n∑

j=1

pj ⟨ej , xj⟩ ej

⟩

= ⟨xi, xi⟩+

⟨
n∑

i=1

piei ⟨ei, xi⟩,
n∑

j=1

pjej ⟨ej , xj⟩

⟩
− 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= ⟨xi, xi⟩+
n∑

i=1

n∑
j=1

pipj⟨ei, xi⟩∗ ⟨ej , ej⟩ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 +
n∑

i=1

p2j ⟨ej , xj⟩
∗ ⟨ej , ej⟩ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 +
n∑

j=1

p2j ⟨ej , xj⟩
∗ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2.

Using this one can see that

(3.15) |xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2 ≤ r2i .

If we multiply (3.15) by pi ≥ 0 and sum over i from 1 to n, we obtain

n∑
i=1

pi|xi|2 −
n∑

i=1

|pi ⟨ei, xi⟩|2 ≤
n∑

i=1

pir
2
i

which finishes the proof.
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Corollary 3.4. With the substitution pi =
1
n , i ∈ {1, ..., n}, (3.14) becomes

n∑
i=1

|xi|2 −
1

n

n∑
i=1

|⟨ei, xi⟩|2 ≤
n∑

i=1

r2i .

Acknowledgements. The authors would like to thank the anonymous re-
viewers for their helpful and constructive comments that greatly contributed to
improving the final version of the paper.

References

[1] K. Ali Khan, M. Adil Khan, U. Sadaf, New refinement of Jensen-mercer’s
operator inequality and applications to means, Punjab Univ. J. Math., 49
(2017), 127–151.

[2] M. Adil Khan, G. Ali Khan, T. Ali, A. Kılıçman, On the refinement of
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