REVERSES OF THE TRIANGLE INEQUALITY FOR ABSOLUTE VALUE IN HILBERT C^{*}-MODULES

Akram Mansoori
Department of Mathematics
Mashhad Branch
Islamic Azad University
Mashhad
Iran
aram_7777@yahoo.com
Mohsen Erfanian Omidvar*
Department of Mathematics
Mashhad Branch
Islamic Azad University
Mashhad
Iran
math.erfanian@gmail.com
\section*{Hamid Reza Moradi}
Young Researchers and Elite Club
Mashhad Branch
Islamic Azad University
Mashhad
Iran
hrmoradi@mshdiau.ac.ir
\section*{Silvestru Sever Dragomir}
Mathematics
College of Engineering and Science
Victoria University
P.O. Box 14428, Melbourne City, MC 8001
Australia
sever.dragomir@vu.edu.au

Abstract

In this paper we obtain some inequalities related to the reverse triangle inequalities for vectors in the framework of Hilbert C^{*}-modules. Also we improve a celebrated reverse triangle inequality due to Diaz and Metcalf. As a consequence, we apply our results to get some operator inequalities.

Keywords: triangle inequality, Hilbert C^{*}-module, C^{*}-algebra, positive element.

[^0]
1. Introduction and preliminaries

If $(\mathcal{X} ;\|\cdot\|)$ is a normed linear space, then

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i}\right\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\| \tag{1.1}
\end{equation*}
$$

for any vectors $x_{i} \in \mathcal{X}, i \in\{1, \ldots, n\}$. Inequalities of this kind have been called triangle inequality. A number of mathematicians have investigated the inequality (1.1) in various settings. Farenick [13] have investigated the triangle inequality over matrix algebras in Hilbert C^{*}-modules. We also refer to interesting papers by Shrawan et al. [15] and Dadipour et al. [6]. Some versions of the triangle inequality with simple conditions for the case of equality are presented in $[5,14]$.

The first to consider the problem of obtaining reverses for the triangle inequality in the more general case of Hilbert and Banach spaces were Diaz and Metcalf $[7]$ who showed that in an inner product space \mathcal{H} over the real or complex number field, the following reverse of the triangle inequality holds

$$
\begin{equation*}
r \sum_{i=1}^{n}\left\|x_{i}\right\| \leq\left\|\sum_{i=1}^{n} x_{i}\right\|, \tag{1.2}
\end{equation*}
$$

provided

$$
0 \leq r \leq\left\|x_{i}\right\| \leq \operatorname{Re}\left\langle x_{i}, e\right\rangle
$$

for $k \in\{1, \ldots, n\}$, where $e \in \mathcal{H}$ is a unit vector, i.e. $\|e\|=1$.
Another reverse of the generalized triangle inequality in Hilbert space was given in [10, Theorem 5] as follows:
Theorem 1.1. Let $(\mathcal{H} ;\langle\cdot, \cdot\rangle)$ be an inner product space, $x_{i} \in \mathcal{H}$, for all $i \in$ $\{1, \ldots, n\}$ and $p_{i} \geq 0$ with $\sum_{i=1}^{n} p_{i}=1$ (probability distribution). If there exists constants $r_{i}>0, i \in\{1, \ldots, n\}$, so that

$$
\left\|x_{i}-\sum_{j=1}^{n} p_{j} x_{j}\right\| \leq r_{i}
$$

for all $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|^{2}-\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2} \tag{1.3}
\end{equation*}
$$

Some other interesting reverses of the triangle inequality for the case of Hilbert space can be found in [12]. For related results, see also [1, 2, 3, 4, 8, 16].

The motivation of this paper is to extend some generalizations of the reverse triangle inequality like (1.3), in the framework of Hilbert C^{*}-modules (see Theorem 2.1). We also improve inequality (1.2) in a similar framework (this will be considered in Theorem 3.1).

At the end of this section, we would like to recall some notions, which will be used in the forthcoming sections. Let \mathcal{A} be a C^{*}-algebra. A pre-Hilbert \mathcal{A} module is a linear space \mathcal{X} which is a right \mathcal{A}-module together with an \mathcal{A}-valued mapping $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{A}$ with following properties:
(a) $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0$ if and only if $x=0$;
(b) $\langle x, \lambda y+z\rangle=\lambda\langle x, y\rangle+\langle x, z\rangle$;
(c) $\langle x, y a\rangle=\langle x, y\rangle a ;$
(d) $\langle x, y\rangle^{*}=\langle y, x\rangle$;
for all $x, y, z \in \mathcal{X}, a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. It is straightforward that a C^{*}-algebra valued inner product is conjugate-linear in the first variable. We can define a norm on \mathcal{X} by $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$. If \mathcal{X} is complete with respect to this norm, then \mathcal{X} is called a Hilbert \mathcal{A}-module. The absolute value of $x \in \mathcal{X}$ is defined as the square root of $\langle x, x\rangle$, and it is denoted by $|x|$. It is worthwhile to point out that this is not actually an extension of a norm, in general, since it may happen that the triangle inequality does not hold.

Throughout the article, \mathcal{A} and \mathcal{X} are C^{*}-algebra and Hilbert \mathcal{A}-module respectively. A C^{*}-algebra is called unital if \mathcal{A} has a unit $1_{\mathcal{A}}$ and for each $a \in \mathcal{A}$ we have $a .1_{\mathcal{A}}=a$. For convenience, in unital C^{*}-algebra \mathcal{A} we write a instead of $a .1_{\mathcal{A}}$.

2. On the generalized reverses of the triangle inequality

We start our work by presenting a reverse of the triangle inequality for Hilbert C^{*}-modules.

Theorem 2.1. Let \mathcal{X} be a Hilbert \mathcal{A}-module and $x_{i} \in \mathcal{X}$ for all $i \in\{1, \ldots, n\}$, and p_{i} are positive elements in real number field such that $\sum_{i=1}^{n} p_{i}=1$. If there exist positive elements $r_{i}, i \in\{1, \ldots, n\}$ in \mathcal{A}, so that

$$
\begin{equation*}
\left|x_{i}-\sum_{j=1}^{n} p_{j} x_{j}\right|^{2} \leq r_{i}^{2} \tag{2.1}
\end{equation*}
$$

for $i \in\{1, . ., n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}-\left|\sum_{i=1}^{n} p_{i} x_{i}\right|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2} \tag{2.2}
\end{equation*}
$$

Proof. According to (2.1) we have

$$
\begin{equation*}
\left\langle x_{i}, x_{i}\right\rangle-2 \operatorname{Re}\left\langle x_{i}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle+\left\langle\sum_{j=1}^{n} p_{j} x_{j}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle \leq r_{i}^{2} \tag{2.3}
\end{equation*}
$$

Multiply (2.3) by $p_{i} \geq 0$, and sum over i from 1 to n, to get

$$
\sum_{i=1}^{n} p_{i}\left\langle x_{i}, x_{i}\right\rangle-2 \operatorname{Re}\left\langle\sum_{i=1}^{n} p_{i} x_{i}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle+\left\langle\sum_{j=1}^{n} p_{j} x_{j}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle \leq \sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

This says that

$$
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}-2 \operatorname{Re}\left\langle\sum_{i=1}^{n} p_{i} x_{i}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle+\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

this inequality is equivalent with

$$
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}-\left|\sum_{i=1}^{n} p_{i} x_{i}\right|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

which is inequality (2.2).
As a consequence of Theorem 2.1 we have the following generalization of the reverse triangle inequality in the framework of Hilbert C^{*}-modules.

Proposition 2.1. Let p_{i}, r_{i} and x_{i} for all $i \in\{1, \ldots, n\}$ be as in the statement of Theorem 2.1, then

$$
\begin{equation*}
\operatorname{Re}\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|\right)\left|\sum_{j=1}^{n} p_{j} x_{j}\right| \leq\left|\sum_{i=1}^{n} p_{i} x_{i}\right|^{2}+\frac{1}{2} \sum_{i=1}^{n} p_{i} r_{i}^{2} \tag{2.4}
\end{equation*}
$$

Proof. From (2.3) we obviously have

$$
\begin{equation*}
\left|x_{i}\right|^{2}+\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2} \leq 2 \operatorname{Re}\left\langle x_{i}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle+r_{i}^{2} \tag{2.5}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$. Whence

$$
2 \operatorname{Re}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right| \leq\left|x_{i}\right|^{2}+\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2}
$$

Here we exploited the fact that for each $a, b \in \mathcal{A}, 2 \operatorname{Re} a b^{*} \leq|a|^{2}+|b|^{2}$. Therefore

$$
2 \operatorname{Re}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right| \leq 2 \operatorname{Re}\left\langle x_{i}, \sum_{j=1}^{n} p_{j} x_{j}\right\rangle+r_{i}^{2}
$$

for all $i \in\{1, \ldots, n\}$. Arguments similar to the ones used in the proof of Theorem 2.1 give us (2.4).

Remark 2.1. In particular, if \mathcal{A} be a commutative C^{*}-algebra, by utilizing the inequality $2|a||b| \leq|a|^{2}+|b|^{2}$, we can obtain from (2.5) the following result:

$$
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right| \leq\left|\sum_{i=1}^{n} p_{i} x_{i}\right|^{2}+\frac{1}{2} \sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

One more consequence of Theorem 2.1 is the following result:
Proposition 2.2. Let p_{i}, r_{i} and x_{i} for all $i \in\{1, \ldots, n\}$ be as in the statement of Theorem 2.1 with the additional assumption that \mathcal{A} is commutative. Then

$$
\frac{2}{\sqrt{n}} \sum_{i=1}^{n}\left(\sqrt{p_{i}}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right|\right) \leq 2\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2}+\sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

Proof. If we multiply (2.5) by $p_{i}>0$ and sum over i from 1 to n, we get

$$
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}+\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2} \leq 2\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2}+\sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

We now use the fact that $2|a||b| \leq|a|^{2}+|b|^{2}$. Thus,

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}+\sum_{i=1}^{n} \frac{1}{n}\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2} & =\sum_{i=1}^{n}\left(p_{i}\left|x_{i}\right|^{2}+\frac{1}{n}\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2}\right) \\
& \geq \frac{2}{\sqrt{n}} \sum_{i=1}^{n}\left(\sqrt{p_{i}}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right|\right)
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}$. This is the same as saying that

$$
2\left|\sum_{j=1}^{n} p_{j} x_{j}\right|^{2}+\sum_{i=1}^{n} p_{i} r_{i}^{2} \geq \frac{2}{\sqrt{n}} \sum_{i=1}^{n}\left(\sqrt{p_{i}}\left|x_{i}\right|\left|\sum_{j=1}^{n} p_{j} x_{j}\right|\right)
$$

3. The case of a unit vector

The following refinement of the Diaz-Metcalf result may be stated as well:
Theorem 3.1. Let \mathcal{X} be a Hilbert \mathcal{A}-module. Suppose that $x_{i} \in \mathcal{X}$ for all $i \in\{1, \ldots, n\}$ satisfy the condition

$$
\begin{equation*}
\left(\sum_{i=1}^{n} r_{1}\left|x_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{n} \operatorname{Re}\left\langle e, x_{i}\right\rangle\right)^{2}, \quad\left(\sum_{i=1}^{n} r_{2}\left|x_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{n} \operatorname{Im}\left\langle e, x_{i}\right\rangle\right)^{2} \tag{3.1}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$, where e be a unit vector in \mathcal{X} and r_{1}, r_{2} are positive elements in C^{*}-algebra \mathcal{A}. Then

$$
\begin{equation*}
\sqrt{r_{1}^{2}+r_{2}^{2}} \sum_{i=1}^{n}\left|x_{i}\right| \leq\left|\sum_{i=1}^{n} x_{i}\right| \tag{3.2}
\end{equation*}
$$

Proof. We can simply exploit the Cauchy-Schwarz inequality and find the upper bound

$$
\begin{equation*}
\left|\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle\right|^{2} \leq\|e\|^{2}\left|\sum_{i=1}^{n} x_{i}\right|^{2}=\left|\sum_{i=1}^{n} x_{i}\right|^{2} \tag{3.3}
\end{equation*}
$$

We can rewrite the first term as

$$
\begin{aligned}
\left|\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle\right|^{2} & =\left|\sum_{i=1}^{n} \operatorname{Re}\left\langle e, x_{i}\right\rangle+i\left(\sum_{i=1}^{n} \operatorname{Im}\left\langle e, x_{i}\right\rangle\right)\right|^{2} \\
& =\left(\sum_{i=1}^{n} \operatorname{Re}\left\langle e, x_{i}\right\rangle\right)^{2}+\left(\sum_{i=1}^{n} \operatorname{Im}\left\langle e, x_{i}\right\rangle\right)^{2}
\end{aligned}
$$

On the other hand, from (3.1) we infer that

$$
r_{1}^{2}\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{n} \operatorname{Re}\left\langle e, x_{i}\right\rangle\right)^{2}
$$

and

$$
r_{2}^{2}\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2} \leq\left(\sum_{i=1}^{n} \operatorname{Im}\left\langle e, x_{i}\right\rangle\right)^{2}
$$

Adding these two inequalities to inequality (3.3), we deduce the desired inequality (3.2).

Remark 3.1. If \mathcal{A} is a commutative C^{*}-algebra, then we can replace conditions (3.1) with

$$
0 \leq r_{1}\left|x_{i}\right| \leq \operatorname{Re}\left\langle e, x_{i}\right\rangle, 0 \leq r_{2}\left|x_{i}\right| \leq \operatorname{Im}\left\langle e, x_{i}\right\rangle
$$

We can apply Theorem 3.1 to derive some new operator inequalities. We only give the following such results. Notice that, if $\mathbb{B}(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}, then $\mathbb{B}(\mathcal{H})$ becomes a $\mathbb{B}(\mathcal{H})$-module if the inner product of elements $A, B \in \mathbb{B}(\mathcal{H})$ is defined by $\langle A, B\rangle=A^{*} B$.

Corollary 3.1. Let $A_{i} \in \mathbb{B}(\mathcal{H})$ for all $i \in\{1, \ldots, n\}$ satisfy the condition

$$
0 \leq B_{1}\left|A_{i}\right| \leq \operatorname{Re} A_{i}, 0 \leq B_{2}\left|A_{i}\right| \leq \operatorname{Im} A_{i}
$$

for each $i \in\{1, \ldots, n\}$ and B_{1}, B_{2} are positive operators in $\mathbb{B}(\mathcal{H})$, then

$$
\sqrt{B_{1}^{2}+B_{2}^{2}} \sum_{i=1}^{n}\left|A_{i}\right| \leq\left|\sum_{i=1}^{n} A_{i}\right|
$$

In particular, for $i \in\{1,2\}$ we have

$$
\begin{equation*}
\sqrt{B_{1}^{2}+B_{2}^{2}}\left(\left|A_{1}\right|+\left|A_{2}\right|\right) \leq\left|A_{1}+A_{2}\right| \tag{3.4}
\end{equation*}
$$

The following reverse of the generalized triangle inequality also holds. Before we proceed, we need the following lemma:

Lemma 3.1. Let \mathcal{A} be a C^{*}-algebra and let $a \in \mathcal{A}$.
(a) If a is self adjoint, then $a \leq|a|$.
(b) If a is normal, then $|\operatorname{Re} a| \leq|a|$.

Theorem 3.2. Let \mathcal{X} be a Hilbert \mathcal{A}-module, and e be a unit vector in \mathcal{X}. If $\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle$ and r_{i} are normal and positive elements in \mathcal{A} for $i \in\{1, \ldots, n\}$ respectively, and $x_{i} \in \mathcal{X}$ for all $i \in\{1, \ldots, n\}$, such that

$$
\begin{equation*}
\left|x_{i}\right|-\operatorname{Re}\left\langle e, x_{i}\right\rangle \leq r_{i}, \tag{3.5}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i}\right|-\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n} r_{i} \tag{3.6}
\end{equation*}
$$

Proof. If we sum in (3.5) over i from 1 to n, then we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i}\right| \leq \operatorname{Re}\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle+\sum_{i=1}^{n} r_{i} \tag{3.7}
\end{equation*}
$$

A little calculation shows that

$$
\begin{align*}
\operatorname{Re}\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle & \leq\left|\operatorname{Re}\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle\right| \quad \text { (by Lemma 3.1 (a)) } \tag{3.8}\\
& \leq\left|\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle\right| \quad \text { (by Lemma 3.1 (b)) } \\
& \leq\|e\|\left|\sum_{i=1}^{n} x_{i}\right| \quad \text { (by Cauchy-Schwarz inequality) } \\
& =\left|\sum_{i=1}^{n} x_{i}\right|
\end{align*}
$$

Combining (3.7) and (3.8), we get (3.6).

Theorem 3.2 immediately yields:
Corollary 3.2. If we consider \mathcal{H} as a \mathbb{C}-module, then from (3.6) we can obtain the following reverse trangle inequality

$$
\sum_{i=1}^{n}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{n} x_{i}\right\| \leq \sum_{i=1}^{n} r_{i}
$$

where r_{i} are positive elements in \mathbb{R} for $\{1, \ldots, n\}$ (see [11] and also [9, Theorem 44).

Remark 3.2. If \mathcal{A} is a commutative C^{*}-algebra, then the assumption $\left\langle e, \sum_{i=1}^{n} x_{i}\right\rangle$ are normal is not necessary.

Another consequence of our discussion is the following.
Corollary 3.3. Let $A_{i} \in \mathbb{B}(\mathcal{H})$, for each $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} A_{i}$ be normal. If B_{i} are positive operators in $\mathbb{B}(\mathcal{H})$ for all $i \in\{1, \ldots, n\}$ such that

$$
\left|A_{i}\right|-\operatorname{Re} A_{i} \leq B_{i}
$$

for each $i \in\{1, \ldots, n\}$, then

$$
\sum_{i=1}^{n}\left|A_{i}\right|-\left|\sum_{i=1}^{n} A_{i}\right| \leq \sum_{i=1}^{n} B_{i}
$$

In particular, for $i \in\{1,2\}$ we have

$$
\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1}+A_{2}\right| \leq B_{1}+B_{2}
$$

Now we present a useful lemma, which is applied in the next theorem.
Lemma 3.2. Let \mathcal{A} be a C^{*}-algebra and a, b in \mathcal{A} be positive elements and $a b=b a$, then

$$
\begin{equation*}
\sqrt{a b} \leq \frac{a+b}{2} \tag{3.9}
\end{equation*}
$$

The next theorem is known; see [9, Theorem 50]. The proof given here is different, and in the spirit of our discussion.

Theorem 3.3. Let \mathcal{A} be a unital C^{*}-algebra and \mathcal{X} be a Hilbert \mathcal{A}-module and let $e \in \mathcal{X}$ be such that $|e|=1$ and $x_{i} \in \mathcal{X}, i \in\{1, \ldots, n\}$. If $M_{i}>m_{i}>0$ for all $i \in\{1, \ldots, n\}$, are such that

$$
\begin{equation*}
\left|x_{i}-\frac{M_{i}+m_{i}}{2} e\right|^{2} \leq\left(M_{i}+m_{i}\right)^{2} \tag{3.10}
\end{equation*}
$$

then

$$
\sum_{i=1}^{n}\left|x_{i}\right|-\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n} \frac{\left(M_{i}-m_{i}\right)^{2}}{M_{i}+m_{i}}
$$

Proof. It follows from left side of inequality (3.10) that

$$
\begin{aligned}
& \left\langle x_{i}-\frac{M_{i}+m_{i}}{2} e, x_{i}-\frac{M_{i}+m_{i}}{2} e\right\rangle \\
& \quad=\left|x_{i}\right|^{2}-\left(M_{i}+m_{i}\right) \operatorname{Re}\left\langle x_{i}, e\right\rangle+\left|\frac{M_{i}+m_{i}}{2}\right|^{2}
\end{aligned}
$$

Using the substitutions $a=\left|x_{i}\right|^{2}$ and $b=\left|\frac{M_{i}+m_{i}}{2}\right|^{2}$ in (3.9), this can be rewritten as

$$
2\left|x_{i}\right|\left|\frac{M_{i}+m_{i}}{2}\right| \leq\left|x_{i}\right|^{2}+\left|\frac{M_{i}+m_{i}}{2}\right|^{2}
$$

or, after rearranging terms,

$$
\left|x_{i}\right|-\operatorname{Re}\left\langle x_{i}, e\right\rangle \leq \frac{\left(M_{i}-m_{i}\right)^{2}}{M_{i}+m_{i}}
$$

Hence by Theorem 3.2 we obtain

$$
\sum_{i=1}^{n}\left|x_{i}\right|-\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n} \frac{\left(M_{i}-m_{i}\right)^{2}}{M_{i}+m_{i}}
$$

The validity of this inequality is just Theorem 3.3.
Another result of this type is the following one:
Theorem 3.4. Let \mathcal{A} be a unital C^{*}-algebra and \mathcal{X} be a Hilbert \mathcal{A}-module and let $e \in \mathcal{X}$ be such that $|e|=1$ and $x_{i} \in \mathcal{X}, i \in\{1, \ldots, n\}$. If $M_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$, are such that

$$
\begin{equation*}
\left|x_{i}-\frac{M_{i}}{2} e\right|^{2} \leq M_{i}^{2} \tag{3.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i}\right|^{2}-\operatorname{Re}\left\langle\sum_{i=1}^{n} M_{i} x_{i}, e\right\rangle \leq \frac{3}{4} \sum_{i=1}^{n} M_{i}^{2} \tag{3.12}
\end{equation*}
$$

Proof. A short calculation reveals that

$$
\begin{equation*}
\left\langle x_{i}-\frac{M_{i}}{2} e, x_{i}-\frac{M_{i}}{2} e\right\rangle=\left|x_{i}\right|^{2}+\left|\frac{M_{i}}{2}\right|^{2}|e|-2 \operatorname{Re}\left\langle x_{i}, \frac{M_{i}}{2} e\right\rangle \tag{3.13}
\end{equation*}
$$

According to (3.13) validity of (3.11) implies

$$
\left|x_{i}\right|^{2}+\left|\frac{M_{i}}{2}\right|^{2}|e|-2 \operatorname{Re}\left\langle x_{i}, \frac{M_{i}}{2} e\right\rangle \leq M_{i}^{2}
$$

which on simplification reduces to

$$
\left|x_{i}\right|^{2}-\operatorname{Re}\left\langle M_{i} x_{i}, e\right\rangle \leq \frac{3}{4} M_{i}^{2}
$$

Summing over all terms then yields (3.12).

The following particular case is of interest:
Theorem 3.5. Let \mathcal{X} be a Hilbert \mathcal{A}-module and $e_{1}, e_{2}, \ldots, e_{n}$ be a sequence of unit vectors in \mathcal{X} such that $\left\langle e_{i}, e_{j}\right\rangle=0$ for $i \neq j \leq n$, and let $x_{i} \in \mathcal{X}$ for all $i \in\{1, \ldots, n\}$, and p_{i} are positive elements in real number field such that $\sum_{i=1}^{n} p_{i}=1$. If there exist constants positive elements r_{i} in \mathcal{A} so that

$$
\left|x_{i}-\sum_{j=1}^{n} p_{j}\left\langle e_{j}, x_{j}\right\rangle e_{j}\right|^{2} \leq r_{i}^{2}
$$

for all $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}-\sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2} \tag{3.14}
\end{equation*}
$$

Proof. A straightforward computation shows that

$$
\begin{aligned}
& \left\langle x_{i}-\sum_{j=1}^{n} p_{j}\left\langle e_{j}, x_{j}\right\rangle e_{j}, x_{i}-\sum_{j=1}^{n} p_{j}\left\langle e_{j}, x_{j}\right\rangle e_{j}\right\rangle \\
& \quad=\left\langle x_{i}, x_{i}\right\rangle+\left\langle\sum_{i=1}^{n} p_{i} e_{i}\left\langle e_{i}, x_{i}\right\rangle, \sum_{j=1}^{n} p_{j} e_{j}\left\langle e_{j}, x_{j}\right\rangle\right\rangle-2 \sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \\
& =\left\langle x_{i}, x_{i}\right\rangle+\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}\left\langle e_{i}, x_{i}\right\rangle^{*}\left\langle e_{j}, e_{j}\right\rangle\left\langle e_{j}, x_{j}\right\rangle-2 \sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \\
& =\left|x_{i}\right|^{2}+\sum_{i=1}^{n} p_{j}^{2}\left\langle e_{j}, x_{j}\right\rangle^{*}\left\langle e_{j}, e_{j}\right\rangle\left\langle e_{j}, x_{j}\right\rangle-2 \sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \\
& =\left|x_{i}\right|^{2}+\sum_{j=1}^{n} p_{j}^{2}\left\langle e_{j}, x_{j}\right\rangle^{*}\left\langle e_{j}, x_{j}\right\rangle-2 \sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \\
& =\left|x_{i}\right|^{2}-\sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} .
\end{aligned}
$$

Using this one can see that

$$
\begin{equation*}
\left|x_{i}\right|^{2}-\sum_{j=1}^{n}\left|p_{j}\left\langle e_{j}, x_{j}\right\rangle\right|^{2} \leq r_{i}^{2} \tag{3.15}
\end{equation*}
$$

If we multiply (3.15) by $p_{i} \geq 0$ and sum over i from 1 to n, we obtain

$$
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}-\sum_{i=1}^{n}\left|p_{i}\left\langle e_{i}, x_{i}\right\rangle\right|^{2} \leq \sum_{i=1}^{n} p_{i} r_{i}^{2}
$$

which finishes the proof.

Corollary 3.4. With the substitution $p_{i}=\frac{1}{n}, i \in\{1, \ldots, n\}$, (3.14) becomes

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{2}-\frac{1}{n} \sum_{i=1}^{n}\left|\left\langle e_{i}, x_{i}\right\rangle\right|^{2} \leq \sum_{i=1}^{n} r_{i}^{2}
$$

Acknowledgements. The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper.

References

[1] K. Ali Khan, M. Adil Khan, U. Sadaf, New refinement of Jensen-mercer's operator inequality and applications to means, Punjab Univ. J. Math., 49 (2017), 127-151.
[2] M. Adil Khan, G. Ali Khan, T. Ali, A. Kıliçman, On the refinement of Jensen's inequality, Appl. Math. Comput., 262 (2015), 128-135.
[3] M. Adil Khan, T. Ali, Q. Din, A. Kılıçman, Refinements of Jensen's inequality for convex functions on the co-ordinates of a rectangle from the plane, Filomat., 30 (2016), 803-814.
[4] M. Adil Khan, J. Khan, J. Pečarić, Generalization of Jensen's and JensenSteffensen's inequalities by generalized majorization theorem, J. Math. Inequal., 11 (2017), 1049-1074.
[5] L. Arambašić, R. Rajić, On the C^{*}-valued triangle equality and inequality in Hilbert C^{*}-modules, Acta Math. Hungar., 119 (2008), 373-380.
[6] F. Dadipour, M.S. Moslehian, J.M. Rassias, S.-E. Takahasi, Characterization of a generalized triangle inequality in normed spaces, Nonlinear Anal., 75 (2012), 735-741.
[7] J.B. Diaz, F.T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc., 17 (1966), 88-97.
[8] S. S. Dragomir, M. Adil Khan, A. Abathun, Refinement of Jensen's integral inequality, Open Math., 14 (2016), 221-228.
[9] S.S. Dragomir, Advances in inequalities of the Schwarz, Triangle and Heisenberg type in inner product spaces, Nova Publishers. 2007.
[10] S.S. Dragomir, Y.J. Cho, S.S. Kim, Some inequalities in inner product spaces related to the generalized triangle inequality, Appl. Math. Comput., 217 (2011), 7462-7468.
[11] S.S. Dragomir, Reverses of the triangle inequality in inner product spaces, Aust. J. Math. Anal. Appl., 1 (2004), article 7.
[12] S.S. Dragomir, Some reverses of the generalized triangle inequality in complex inner product spaces, Linear Algebra Appl., 402 (2005), 245-254.
[13] D.R. Farenick, J.P. Panayiotis, A triangle inequality in Hilbert modules over matrix algebras, Linear Algebra Appl., 341 (2002), 57-67.
[14] R. Rajić, Characterization of the norm triangle equality in pre-Hilbert C^{*} modules and applications, J. Math. Inequal., 3 (2009), 347-355.
[15] K. Shrawan, B. Leeb, J. Millson, The generalized triangle inequalities for rank 3 symmetric spaces of non compact type, Contemp. Math., 332 (2003), 171-196.
[16] H.R. Moradi, M.E. Omidvar, M. Adil Khan, K. Nikodem, Around Jensen's inequality for strongly convex functions, Aequationes Math., 92 (2018), 2537.

Accepted: 3.01.2018

[^0]: *. Corresponding author

